Abstract

In this paper we discuss the fabrication and the electromagnetic (EM) characterization of anisotropic eutectic metamaterials, consisting of cylindrical polaritonic LiF rods embedded in either KCl or NaCl polaritonic host. The fabrication was performed using the eutectics directional solidification self-organization approach. For the EM characterization the specular reflectance at far infrared, between 3 THz and 11 THz, was measured and also calculated by numerically solving Maxwell equations, obtaining good agreement between experimental and calculated spectra. Applying an effective medium approach to describe the response of our samples, we predicted a range of frequencies in which most of our systems behave as homogeneous anisotropic media with a hyperbolic dispersion relation, opening thus possibilities for using them in negative refractive index and imaging applications at THz range.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
    [CrossRef] [PubMed]
  2. S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101–R112 (2001).
    [CrossRef] [PubMed]
  3. D. L. Woolard, J. O. Jensen, R. J. Hwu, and M. S. Shur, Terahertz Science and Technology for Military and Security Applications (World Scientific Publishing Co. Pte. Ltd., 2007).
    [CrossRef]
  4. T. Edwards, Gigahertz and Terahertz Technologies for Broadband Communications (Artech House Inc., 2000).
  5. V. Minier, G. Durand, P.-O. Lagage, M. Talvard, T. Travouillon, M. Busso, and G. Tosti, “Submillimetre/terahertz astronomy at dome C with CEA filled bolometer array,” EAS Publications Series 25, 321–326 (2007).
    [CrossRef]
  6. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [CrossRef]
  7. J. B. Pendry, “Negative refraction makes perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. 47, 2075–2084 (1999).
    [CrossRef]
  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
    [CrossRef]
  10. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [CrossRef] [PubMed]
  11. S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14, 4035–4044 (2002).
    [CrossRef]
  12. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
    [CrossRef] [PubMed]
  13. L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).
    [CrossRef]
  14. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Sanders College Publishing/Harcourt Brace, 1976).
  15. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
    [CrossRef]
  16. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
    [CrossRef] [PubMed]
  17. M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” App. Phys. Lett. 94, 151105 (2009).
    [CrossRef]
  18. M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, L. Heng, and E. E. Narimanov, “Bulk metamaterial with hyperbolic dispersion,” Conference on lasers and electro-optics/International quantum electronics conference, OSA technical digest (CD) (Optical Society of America, 2009), paper JWC2.
    [PubMed]
  19. T. Tumkur, G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” App. Phys. Lett. 99, 151115 (2011).
    [CrossRef]
  20. A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, and C. M. Soukoulis, “Electromagnetic response of anisotropic eutectic metamaterials in THz range,” AIP Conf. Proc. 1291, 148–150 (2010).
    [CrossRef]
  21. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
    [CrossRef] [PubMed]
  22. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
    [CrossRef] [PubMed]
  23. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
    [CrossRef] [PubMed]
  24. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
    [CrossRef]
  25. A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
    [CrossRef]
  26. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
    [CrossRef] [PubMed]
  27. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
    [CrossRef]
  28. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
    [CrossRef] [PubMed]
  29. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
    [CrossRef] [PubMed]
  30. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. 22, 3171–3175 (2010).
    [CrossRef] [PubMed]
  31. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
    [CrossRef] [PubMed]
  32. V. M. Orera, J. I. Peña, A. Larrea, R. I. Merino, and P. B. Oliete, “Engineered self-organized microstructures using directional solidification of eutectics,” Ceramics Trans. 225, 185–196 (2011).
  33. V. M. Orera and A. Larrea, “NaCl-assisted growth of micrometer-wide long single crystalline fluoride fibres,” Opt. Mater. 27, 1726–1729 (2005).
    [CrossRef]
  34. D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization,” Adv. Funct. Mater. 20, 1116–1124 (2010).
    [CrossRef]
  35. J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51, 711–809 (2006).
    [CrossRef]
  36. V. M. Orera, J. I. Peña, P. B. Oliete, R. I. Merino, and A. Larrea, “Growth of eutectic ceramic structures by directional solidification methods,” J. Cryst. Growth (2011), .
    [CrossRef]
  37. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc., 1985).
  38. V. M. Orera, A. Larrea, R. I. Merino, M. A. Rebolledo, J. A. Valles, R. Gotor, and J. I. Peña, “Novel photonic materials made from ionic eutectic compounds,” Acta Phys. Slovaca 55, 261–269 (2005).
  39. A. Larrea and V. M. Orera, “Porous crystal structures obtained from directionally solidified eutectic precursors,” J. Cryst. Growth 300, 387–393 (2007).
    [CrossRef]
  40. A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mat. Res. 15, 1314–1319 (2000).
    [CrossRef]
  41. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
    [CrossRef]
  42. J. C. Maxwell Garnett, “Colours in metal glasses and metal films,” Phil. Trans. R. Soc. London Ser. A 203, 385–420 (1904).
  43. A. Sihvola, Metamaterials Handbook. Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), Chap. 9.
  44. A. Kirchner, K. Busch, and C. M. Soukoulis, “Transport properties of random arrays of dielectric cylinders,” Phys. Rev. B 57, 277–288 (1998).
    [CrossRef]
  45. J. A. Straton, Electromagnetic Theory (Wiley, 2007).
  46. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
    [CrossRef]
  47. R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182, 273–279 (2000).
    [CrossRef]
  48. P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
    [CrossRef]
  49. K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
    [CrossRef]
  50. K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
    [CrossRef] [PubMed]

2011 (3)

T. Tumkur, G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” App. Phys. Lett. 99, 151115 (2011).
[CrossRef]

V. M. Orera, J. I. Peña, A. Larrea, R. I. Merino, and P. B. Oliete, “Engineered self-organized microstructures using directional solidification of eutectics,” Ceramics Trans. 225, 185–196 (2011).

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

2010 (3)

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. 22, 3171–3175 (2010).
[CrossRef] [PubMed]

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, and C. M. Soukoulis, “Electromagnetic response of anisotropic eutectic metamaterials in THz range,” AIP Conf. Proc. 1291, 148–150 (2010).
[CrossRef]

2009 (3)

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” App. Phys. Lett. 94, 151105 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

2008 (3)

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[CrossRef] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

2007 (6)

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

A. Larrea and V. M. Orera, “Porous crystal structures obtained from directionally solidified eutectic precursors,” J. Cryst. Growth 300, 387–393 (2007).
[CrossRef]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
[CrossRef] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

V. Minier, G. Durand, P.-O. Lagage, M. Talvard, T. Travouillon, M. Busso, and G. Tosti, “Submillimetre/terahertz astronomy at dome C with CEA filled bolometer array,” EAS Publications Series 25, 321–326 (2007).
[CrossRef]

2006 (4)

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[CrossRef] [PubMed]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51, 711–809 (2006).
[CrossRef]

2005 (3)

V. M. Orera, A. Larrea, R. I. Merino, M. A. Rebolledo, J. A. Valles, R. Gotor, and J. I. Peña, “Novel photonic materials made from ionic eutectic compounds,” Acta Phys. Slovaca 55, 261–269 (2005).

V. M. Orera and A. Larrea, “NaCl-assisted growth of micrometer-wide long single crystalline fluoride fibres,” Opt. Mater. 27, 1726–1729 (2005).
[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
[CrossRef]

2003 (4)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
[CrossRef]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
[CrossRef] [PubMed]

2002 (2)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14, 4035–4044 (2002).
[CrossRef]

2001 (1)

S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101–R112 (2001).
[CrossRef] [PubMed]

2000 (4)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mat. Res. 15, 1314–1319 (2000).
[CrossRef]

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182, 273–279 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. 47, 2075–2084 (1999).
[CrossRef]

1998 (2)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
[CrossRef]

A. Kirchner, K. Busch, and C. M. Soukoulis, “Transport properties of random arrays of dielectric cylinders,” Phys. Rev. B 57, 277–288 (1998).
[CrossRef]

1989 (1)

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

1904 (1)

J. C. Maxwell Garnett, “Colours in metal glasses and metal films,” Phil. Trans. R. Soc. London Ser. A 203, 385–420 (1904).

Acosta, M. F.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, and C. M. Soukoulis, “Electromagnetic response of anisotropic eutectic metamaterials in THz range,” AIP Conf. Proc. 1291, 148–150 (2010).
[CrossRef]

Alekseyev, L. V.

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Sanders College Publishing/Harcourt Brace, 1976).

Atkinson, R.

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Barnakov, Y. A.

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, L. Heng, and E. E. Narimanov, “Bulk metamaterial with hyperbolic dispersion,” Conference on lasers and electro-optics/International quantum electronics conference, OSA technical digest (CD) (Optical Society of America, 2009), paper JWC2.
[PubMed]

Barnakov, Yu. A.

T. Tumkur, G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” App. Phys. Lett. 99, 151115 (2011).
[CrossRef]

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” App. Phys. Lett. 94, 151105 (2009).
[CrossRef]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Belov, P. A.

P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Berry, E.

S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101–R112 (2001).
[CrossRef] [PubMed]

Bienstman, P.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
[CrossRef]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
[CrossRef] [PubMed]

Black, P.

T. Tumkur, G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” App. Phys. Lett. 99, 151115 (2011).
[CrossRef]

Bonner, C. E.

T. Tumkur, G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” App. Phys. Lett. 99, 151115 (2011).
[CrossRef]

Brener, I.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. 22, 3171–3175 (2010).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

Burckel, D. B.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. 22, 3171–3175 (2010).
[CrossRef] [PubMed]

Busch, K.

A. Kirchner, K. Busch, and C. M. Soukoulis, “Transport properties of random arrays of dielectric cylinders,” Phys. Rev. B 57, 277–288 (1998).
[CrossRef]

Busso, M.

V. Minier, G. Durand, P.-O. Lagage, M. Talvard, T. Travouillon, M. Busso, and G. Tosti, “Submillimetre/terahertz astronomy at dome C with CEA filled bolometer array,” EAS Publications Series 25, 321–326 (2007).
[CrossRef]

Chamberlain, J. M.

S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101–R112 (2001).
[CrossRef] [PubMed]

Contreras, L.

A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mat. Res. 15, 1314–1319 (2000).
[CrossRef]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Dickson, W.

Diduszko, R.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Doyle, W. T.

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[CrossRef]

Durand, G.

V. Minier, G. Durand, P.-O. Lagage, M. Talvard, T. Travouillon, M. Busso, and G. Tosti, “Submillimetre/terahertz astronomy at dome C with CEA filled bolometer array,” EAS Publications Series 25, 321–326 (2007).
[CrossRef]

Economou, E. N.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

Edwards, T.

T. Edwards, Gigahertz and Terahertz Technologies for Broadband Communications (Artech House Inc., 2000).

Ellis, A. R.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. 22, 3171–3175 (2010).
[CrossRef] [PubMed]

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Etrich, C.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Evans, P.

Fan, S.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
[CrossRef] [PubMed]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
[CrossRef]

Fang, A.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

Fitzgerald, A. J.

S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101–R112 (2001).
[CrossRef] [PubMed]

Foteinopoulou, S.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

Gajc, M.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

Gotor, R.

V. M. Orera, A. Larrea, R. I. Merino, M. A. Rebolledo, J. A. Valles, R. Gotor, and J. I. Peña, “Novel photonic materials made from ionic eutectic compounds,” Acta Phys. Slovaca 55, 261–269 (2005).

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

Hendren, W.

Heng, L.

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, L. Heng, and E. E. Narimanov, “Bulk metamaterial with hyperbolic dispersion,” Conference on lasers and electro-optics/International quantum electronics conference, OSA technical digest (CD) (Optical Society of America, 2009), paper JWC2.
[PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. 47, 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
[CrossRef]

Huang, K. C.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
[CrossRef] [PubMed]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
[CrossRef]

Hwu, R. J.

D. L. Woolard, J. O. Jensen, R. J. Hwu, and M. S. Shur, Terahertz Science and Technology for Military and Security Applications (World Scientific Publishing Co. Pte. Ltd., 2007).
[CrossRef]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Jacob, Z.

Jensen, J. O.

D. L. Woolard, J. O. Jensen, R. J. Hwu, and M. S. Shur, Terahertz Science and Technology for Military and Security Applications (World Scientific Publishing Co. Pte. Ltd., 2007).
[CrossRef]

Joannopoulos, J. D.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
[CrossRef] [PubMed]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
[CrossRef]

Jylhä, L.

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).
[CrossRef]

Kafesaki, M.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, and C. M. Soukoulis, “Electromagnetic response of anisotropic eutectic metamaterials in THz range,” AIP Conf. Proc. 1291, 148–150 (2010).
[CrossRef]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

Katsarakis, N.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, and C. M. Soukoulis, “Electromagnetic response of anisotropic eutectic metamaterials in THz range,” AIP Conf. Proc. 1291, 148–150 (2010).
[CrossRef]

Kenanakis, G.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, and C. M. Soukoulis, “Electromagnetic response of anisotropic eutectic metamaterials in THz range,” AIP Conf. Proc. 1291, 148–150 (2010).
[CrossRef]

Kirchner, A.

A. Kirchner, K. Busch, and C. M. Soukoulis, “Transport properties of random arrays of dielectric cylinders,” Phys. Rev. B 57, 277–288 (1998).
[CrossRef]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Kolmakov, I.

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).
[CrossRef]

Kolodziejak, K.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Koschny, T.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

Lagage, P.-O.

V. Minier, G. Durand, P.-O. Lagage, M. Talvard, T. Travouillon, M. Busso, and G. Tosti, “Submillimetre/terahertz astronomy at dome C with CEA filled bolometer array,” EAS Publications Series 25, 321–326 (2007).
[CrossRef]

Larrea, A.

V. M. Orera, J. I. Peña, A. Larrea, R. I. Merino, and P. B. Oliete, “Engineered self-organized microstructures using directional solidification of eutectics,” Ceramics Trans. 225, 185–196 (2011).

A. Larrea and V. M. Orera, “Porous crystal structures obtained from directionally solidified eutectic precursors,” J. Cryst. Growth 300, 387–393 (2007).
[CrossRef]

V. M. Orera, A. Larrea, R. I. Merino, M. A. Rebolledo, J. A. Valles, R. Gotor, and J. I. Peña, “Novel photonic materials made from ionic eutectic compounds,” Acta Phys. Slovaca 55, 261–269 (2005).

V. M. Orera and A. Larrea, “NaCl-assisted growth of micrometer-wide long single crystalline fluoride fibres,” Opt. Mater. 27, 1726–1729 (2005).
[CrossRef]

A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mat. Res. 15, 1314–1319 (2000).
[CrossRef]

V. M. Orera, J. I. Peña, P. B. Oliete, R. I. Merino, and A. Larrea, “Growth of eutectic ceramic structures by directional solidification methods,” J. Cryst. Growth (2011), .
[CrossRef]

Lederer, F.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Lee, H.

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
[CrossRef] [PubMed]

Li, H.

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” App. Phys. Lett. 94, 151105 (2009).
[CrossRef]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Liu, N.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

Liu, Z.

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
[CrossRef] [PubMed]

Llorca, J.

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51, 711–809 (2006).
[CrossRef]

A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mat. Res. 15, 1314–1319 (2000).
[CrossRef]

Marqués, R.

P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Maslovski, S.

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).
[CrossRef]

Maslovski, S. I.

P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, “Colours in metal glasses and metal films,” Phil. Trans. R. Soc. London Ser. A 203, 385–420 (1904).

Merino, R. I.

V. M. Orera, J. I. Peña, A. Larrea, R. I. Merino, and P. B. Oliete, “Engineered self-organized microstructures using directional solidification of eutectics,” Ceramics Trans. 225, 185–196 (2011).

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, and C. M. Soukoulis, “Electromagnetic response of anisotropic eutectic metamaterials in THz range,” AIP Conf. Proc. 1291, 148–150 (2010).
[CrossRef]

V. M. Orera, A. Larrea, R. I. Merino, M. A. Rebolledo, J. A. Valles, R. Gotor, and J. I. Peña, “Novel photonic materials made from ionic eutectic compounds,” Acta Phys. Slovaca 55, 261–269 (2005).

A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mat. Res. 15, 1314–1319 (2000).
[CrossRef]

V. M. Orera, J. I. Peña, P. B. Oliete, R. I. Merino, and A. Larrea, “Growth of eutectic ceramic structures by directional solidification methods,” J. Cryst. Growth (2011), .
[CrossRef]

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Sanders College Publishing/Harcourt Brace, 1976).

Minier, V.

V. Minier, G. Durand, P.-O. Lagage, M. Talvard, T. Travouillon, M. Busso, and G. Tosti, “Submillimetre/terahertz astronomy at dome C with CEA filled bolometer array,” EAS Publications Series 25, 321–326 (2007).
[CrossRef]

Moroz, A.

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
[CrossRef]

Narimanov, E.

Narimanov, E. E.

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” App. Phys. Lett. 94, 151105 (2009).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, L. Heng, and E. E. Narimanov, “Bulk metamaterial with hyperbolic dispersion,” Conference on lasers and electro-optics/International quantum electronics conference, OSA technical digest (CD) (Optical Society of America, 2009), paper JWC2.
[PubMed]

Nefedov, I. S.

P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Nelson, K. A.

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
[CrossRef]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Noginov, M. A.

T. Tumkur, G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” App. Phys. Lett. 99, 151115 (2011).
[CrossRef]

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” App. Phys. Lett. 94, 151105 (2009).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, L. Heng, and E. E. Narimanov, “Bulk metamaterial with hyperbolic dispersion,” Conference on lasers and electro-optics/International quantum electronics conference, OSA technical digest (CD) (Optical Society of America, 2009), paper JWC2.
[PubMed]

O’Brien, S.

S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14, 4035–4044 (2002).
[CrossRef]

O’Connor, D.

Oliete, P. B.

V. M. Orera, J. I. Peña, A. Larrea, R. I. Merino, and P. B. Oliete, “Engineered self-organized microstructures using directional solidification of eutectics,” Ceramics Trans. 225, 185–196 (2011).

V. M. Orera, J. I. Peña, P. B. Oliete, R. I. Merino, and A. Larrea, “Growth of eutectic ceramic structures by directional solidification methods,” J. Cryst. Growth (2011), .
[CrossRef]

Orera, V. M.

V. M. Orera, J. I. Peña, A. Larrea, R. I. Merino, and P. B. Oliete, “Engineered self-organized microstructures using directional solidification of eutectics,” Ceramics Trans. 225, 185–196 (2011).

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, and C. M. Soukoulis, “Electromagnetic response of anisotropic eutectic metamaterials in THz range,” AIP Conf. Proc. 1291, 148–150 (2010).
[CrossRef]

A. Larrea and V. M. Orera, “Porous crystal structures obtained from directionally solidified eutectic precursors,” J. Cryst. Growth 300, 387–393 (2007).
[CrossRef]

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51, 711–809 (2006).
[CrossRef]

V. M. Orera, A. Larrea, R. I. Merino, M. A. Rebolledo, J. A. Valles, R. Gotor, and J. I. Peña, “Novel photonic materials made from ionic eutectic compounds,” Acta Phys. Slovaca 55, 261–269 (2005).

V. M. Orera and A. Larrea, “NaCl-assisted growth of micrometer-wide long single crystalline fluoride fibres,” Opt. Mater. 27, 1726–1729 (2005).
[CrossRef]

A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mat. Res. 15, 1314–1319 (2000).
[CrossRef]

V. M. Orera, J. I. Peña, P. B. Oliete, R. I. Merino, and A. Larrea, “Growth of eutectic ceramic structures by directional solidification methods,” J. Cryst. Growth (2011), .
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc., 1985).

Pawlak, D. A.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Peña, J. I.

V. M. Orera, J. I. Peña, A. Larrea, R. I. Merino, and P. B. Oliete, “Engineered self-organized microstructures using directional solidification of eutectics,” Ceramics Trans. 225, 185–196 (2011).

V. M. Orera, A. Larrea, R. I. Merino, M. A. Rebolledo, J. A. Valles, R. Gotor, and J. I. Peña, “Novel photonic materials made from ionic eutectic compounds,” Acta Phys. Slovaca 55, 261–269 (2005).

V. M. Orera, J. I. Peña, P. B. Oliete, R. I. Merino, and A. Larrea, “Growth of eutectic ceramic structures by directional solidification methods,” J. Cryst. Growth (2011), .
[CrossRef]

Pendry, J. B.

S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14, 4035–4044 (2002).
[CrossRef]

J. B. Pendry, “Negative refraction makes perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. 47, 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
[CrossRef]

Pertsch, T.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Pollard, R.

Rebolledo, M. A.

V. M. Orera, A. Larrea, R. I. Merino, M. A. Rebolledo, J. A. Valles, R. Gotor, and J. I. Peña, “Novel photonic materials made from ionic eutectic compounds,” Acta Phys. Slovaca 55, 261–269 (2005).

Reyes-Coronado, A.

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, and C. M. Soukoulis, “Electromagnetic response of anisotropic eutectic metamaterials in THz range,” AIP Conf. Proc. 1291, 148–150 (2010).
[CrossRef]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. 47, 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Rozniatowski, K.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Ruppin, R.

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182, 273–279 (2000).
[CrossRef]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Scharf, T.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

Shur, M. S.

D. L. Woolard, J. O. Jensen, R. J. Hwu, and M. S. Shur, Terahertz Science and Technology for Military and Security Applications (World Scientific Publishing Co. Pte. Ltd., 2007).
[CrossRef]

Sihvola, A.

A. Sihvola, Metamaterials Handbook. Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), Chap. 9.

Silveirinha, M.

P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Simovski, C. R.

P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Sinclair, M. B.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. 22, 3171–3175 (2010).
[CrossRef] [PubMed]

Smalc, J.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Smith, D. R.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Smye, S. W.

S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101–R112 (2001).
[CrossRef] [PubMed]

Soukoulis, C. M.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, and C. M. Soukoulis, “Electromagnetic response of anisotropic eutectic metamaterials in THz range,” AIP Conf. Proc. 1291, 148–150 (2010).
[CrossRef]

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

A. Kirchner, K. Busch, and C. M. Soukoulis, “Transport properties of random arrays of dielectric cylinders,” Phys. Rev. B 57, 277–288 (1998).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. 47, 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
[CrossRef]

Straton, J. A.

J. A. Straton, Electromagnetic Theory (Wiley, 2007).

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
[CrossRef] [PubMed]

Talvard, M.

V. Minier, G. Durand, P.-O. Lagage, M. Talvard, T. Travouillon, M. Busso, and G. Tosti, “Submillimetre/terahertz astronomy at dome C with CEA filled bolometer array,” EAS Publications Series 25, 321–326 (2007).
[CrossRef]

Taubner, T.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

Ten Eyck, G. A.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. 22, 3171–3175 (2010).
[CrossRef] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Tosti, G.

V. Minier, G. Durand, P.-O. Lagage, M. Talvard, T. Travouillon, M. Busso, and G. Tosti, “Submillimetre/terahertz astronomy at dome C with CEA filled bolometer array,” EAS Publications Series 25, 321–326 (2007).
[CrossRef]

Travouillon, T.

V. Minier, G. Durand, P.-O. Lagage, M. Talvard, T. Travouillon, M. Busso, and G. Tosti, “Submillimetre/terahertz astronomy at dome C with CEA filled bolometer array,” EAS Publications Series 25, 321–326 (2007).
[CrossRef]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Tretyakov, S.

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).
[CrossRef]

Tretyakov, S. A.

P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Tumkur, T.

T. Tumkur, G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” App. Phys. Lett. 99, 151115 (2011).
[CrossRef]

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” App. Phys. Lett. 94, 151105 (2009).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, L. Heng, and E. E. Narimanov, “Bulk metamaterial with hyperbolic dispersion,” Conference on lasers and electro-optics/International quantum electronics conference, OSA technical digest (CD) (Optical Society of America, 2009), paper JWC2.
[PubMed]

Turczynski, S.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Valles, J. A.

V. M. Orera, A. Larrea, R. I. Merino, M. A. Rebolledo, J. A. Valles, R. Gotor, and J. I. Peña, “Novel photonic materials made from ionic eutectic compounds,” Acta Phys. Slovaca 55, 261–269 (2005).

Vendik, I.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Wendt, J. R.

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. 22, 3171–3175 (2010).
[CrossRef] [PubMed]

Woolard, D. L.

D. L. Woolard, J. O. Jensen, R. J. Hwu, and M. S. Shur, Terahertz Science and Technology for Military and Security Applications (World Scientific Publishing Co. Pte. Ltd., 2007).
[CrossRef]

Wurtz, G. A.

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
[CrossRef] [PubMed]

Yannopapas, V.

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
[CrossRef]

Zayats, A. V.

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
[CrossRef] [PubMed]

Zhu, G.

T. Tumkur, G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” App. Phys. Lett. 99, 151115 (2011).
[CrossRef]

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” App. Phys. Lett. 94, 151105 (2009).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, L. Heng, and E. E. Narimanov, “Bulk metamaterial with hyperbolic dispersion,” Conference on lasers and electro-optics/International quantum electronics conference, OSA technical digest (CD) (Optical Society of America, 2009), paper JWC2.
[PubMed]

Zia, R.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

Acta Phys. Slovaca (1)

V. M. Orera, A. Larrea, R. I. Merino, M. A. Rebolledo, J. A. Valles, R. Gotor, and J. I. Peña, “Novel photonic materials made from ionic eutectic compounds,” Acta Phys. Slovaca 55, 261–269 (2005).

Adv. Funct. Mater. (1)

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization,” Adv. Funct. Mater. 20, 1116–1124 (2010).
[CrossRef]

Adv. Mater. (1)

D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, A. R. Ellis, I. Brener, and M. B. Sinclair, “Fabrication of 3D metamaterial resonators using self-aligned membrane projection lithography,” Adv. Mater. 22, 3171–3175 (2010).
[CrossRef] [PubMed]

AIP Conf. Proc. (1)

A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, and C. M. Soukoulis, “Electromagnetic response of anisotropic eutectic metamaterials in THz range,” AIP Conf. Proc. 1291, 148–150 (2010).
[CrossRef]

App. Phys. Lett. (2)

T. Tumkur, G. Zhu, P. Black, Yu. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” App. Phys. Lett. 99, 151115 (2011).
[CrossRef]

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” App. Phys. Lett. 94, 151105 (2009).
[CrossRef]

Ceramics Trans. (1)

V. M. Orera, J. I. Peña, A. Larrea, R. I. Merino, and P. B. Oliete, “Engineered self-organized microstructures using directional solidification of eutectics,” Ceramics Trans. 225, 185–196 (2011).

EAS Publications Series (1)

V. Minier, G. Durand, P.-O. Lagage, M. Talvard, T. Travouillon, M. Busso, and G. Tosti, “Submillimetre/terahertz astronomy at dome C with CEA filled bolometer array,” EAS Publications Series 25, 321–326 (2007).
[CrossRef]

IEEE Trans. Microw. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. 47, 2075–2084 (1999).
[CrossRef]

J. Appl. Phys. (1)

L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006).
[CrossRef]

J. Cryst. Growth (1)

A. Larrea and V. M. Orera, “Porous crystal structures obtained from directionally solidified eutectic precursors,” J. Cryst. Growth 300, 387–393 (2007).
[CrossRef]

J. Mat. Res. (1)

A. Larrea, L. Contreras, R. I. Merino, J. Llorca, and V. M. Orera, “Microstructure and physical properties of CaF2-MgO eutectics produced by the Bridgman method,” J. Mat. Res. 15, 1314–1319 (2000).
[CrossRef]

J. Phys.: Condens. Matter (3)

S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14, 4035–4044 (2002).
[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717–3734 (2005).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
[CrossRef]

Nat. Mater. (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

Nature (2)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun. 182, 273–279 (2000).
[CrossRef]

Opt. Express (3)

Opt. Mater. (1)

V. M. Orera and A. Larrea, “NaCl-assisted growth of micrometer-wide long single crystalline fluoride fibres,” Opt. Mater. 27, 1726–1729 (2005).
[CrossRef]

Phil. Trans. R. Soc. London Ser. A (1)

J. C. Maxwell Garnett, “Colours in metal glasses and metal films,” Phil. Trans. R. Soc. London Ser. A 203, 385–420 (1904).

Phys. Med. Biol. (1)

S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol. 46, R101–R112 (2001).
[CrossRef] [PubMed]

Phys. Rev. B (7)

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

A. Kirchner, K. Busch, and C. M. Soukoulis, “Transport properties of random arrays of dielectric cylinders,” Phys. Rev. B 57, 277–288 (1998).
[CrossRef]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B 84, 035128 (2011).
[CrossRef]

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[CrossRef]

P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B 68, 075209 (2003).
[CrossRef]

Phys. Rev. Lett. (6)

K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, “Field expulsion and reconfiguration in polaritonic photonic crystals,” Phys. Rev. Lett. 90, 196402 (2003).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401 (2007).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[CrossRef] [PubMed]

Prog. Mater. Sci. (1)

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51, 711–809 (2006).
[CrossRef]

Science (2)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Other (8)

D. L. Woolard, J. O. Jensen, R. J. Hwu, and M. S. Shur, Terahertz Science and Technology for Military and Security Applications (World Scientific Publishing Co. Pte. Ltd., 2007).
[CrossRef]

T. Edwards, Gigahertz and Terahertz Technologies for Broadband Communications (Artech House Inc., 2000).

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Sanders College Publishing/Harcourt Brace, 1976).

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, L. Heng, and E. E. Narimanov, “Bulk metamaterial with hyperbolic dispersion,” Conference on lasers and electro-optics/International quantum electronics conference, OSA technical digest (CD) (Optical Society of America, 2009), paper JWC2.
[PubMed]

V. M. Orera, J. I. Peña, P. B. Oliete, R. I. Merino, and A. Larrea, “Growth of eutectic ceramic structures by directional solidification methods,” J. Cryst. Growth (2011), .
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc., 1985).

J. A. Straton, Electromagnetic Theory (Wiley, 2007).

A. Sihvola, Metamaterials Handbook. Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Real (blue) and imaginary (red) parts of the dielectric response function for LiF, KCl and NaCl polaritonic materials. The open circles represent experimental measured data obtained from Palik [37], and the continuous lines result from the fitting of those data using Eq. (1) and the parameters in Table 1.

Fig. 2
Fig. 2

(a) Slices of the eutectic NaCl-LiF cut transverse to the ingot and polished. The high transparency is the result of a good alignment of the fibers along the solidification direction; (b) SEM micrograph of longitudinal cut of KCl-LiF sample, partially corroded by ambient water vapor; (c) transverse cross-section of sample LN10.5 (NaCl-LiF eutectic, transmission optical micrograph); (d) transverse cross-section of sample LK7.8 (KCl-LiF eutectic, SEM micrograph).

Fig. 3
Fig. 3

Diameter distributions in KCl-LiF samples of interphase spacing (a) 11.2 μm and (b) 23.3 μm.

Fig. 4
Fig. 4

Schematics of (a) parallel and (b) perpendicular polarization configurations measured.

Fig. 5
Fig. 5

(a) Sketch of the model for the eutectic metamaterial system used in numerical calculations. The cylinders were considered as LiF circular rods with hexagonal arrangement, embedded either in KCl or NaCl host. (b) A transverse cut of the computational cell employed in most of the calculations presented here. The cell consists of 7 unit cells along propagation direction, while periodic boundary conditions along the other directions have been considered. a is the unit cell size (lattice constant) and d is the rod diameter.

Fig. 6
Fig. 6

Comparison between experimentally-measured reflectance and both simulation results and effective medium predictions for the KCl-LiF systems. Left column (a) shows results for parallel polarization and right column (b) for perpendicular polarization in respect to the axes of cylinders in the sample. First row shows the real and imaginary parts of the effective electrical permittivity for each polarization, and orange-shaded regions highlight the frequency regimes where the real part of the permittivity is negative.

Fig. 7
Fig. 7

(a) Single LiF cylinder extinction cross-section (normalized with the cylinder diameter) in a host with ε = 2 for parallel polarization. Legends show the radius of the cylinder. The numbers l close to some extinction peaks denote the order of the cylindrical harmonic modes which are responsible for those peaks. (b) Effective permittivity calculated using the approach of Ref. [11] for a system of LiF cylinders of radius R in a host with ε = 2, with LiF volume fraction 6.95%.

Fig. 8
Fig. 8

Comparison between measured reflectance data for the system LK2.8, and the reflectance predicted by applying Fresnel formulas in a homogeneous “effective” slab of the same thickness, where the effective parameters have been calculated using both Lorentz-fitted data and Palik data for the permittivities of KCl and LiF. Reflectance for (a) parallel and (b) perpendicular polarization in respect to the axes of cylinders.

Fig. 9
Fig. 9

Comparison between experimentally-measured reflectance and both simulation results and analytical models for sample LK23.3. Left column (a) shows results for parallel polarization and right column (b) for perpendicular polarization, in respect to the axes of cylinders in the sample. The simulated results concern the cylinder diameters (d) and lattice constants (a) shown in the legends. Filling fraction is always 6.95%. The top row shows the effective permittivity versus frequency and the orange-shaded regions highlight the regimes where that permittivity is negative.

Fig. 10
Fig. 10

Comparison between experimentally-measured reflectance and both simulation results and analytical models for the LiF rods in NaCl host systems. Left column (a) shows results for parallel polarization and right column (b) for perpendicular polarization, in respect to the axes of the rods in the sample. In both cases the propagation is in the plane of periodicity. First row shows the real and imaginary parts of the effective dielectric permittivity for each polarization. The orange-shaded regions highlight the negative effective permittivity regimes.

Fig. 11
Fig. 11

Effective dielectric response function for (a) KCl-LiF system and (b) NaCl-LiF system, as a function of frequency, for both polarizations: parallel and perpendicular to the axes of the LiF cylinders.

Tables (3)

Tables Icon

Table 1 Fitting parameters of dielectric function for LiF, NaCl and KCl, using a Lorentzian formula.

Tables Icon

Table 2 Cylinder diameter and interphase distances (average distance between nearest neighbors rod centers) in the KCl-LiF samples. Errors are standard deviations of the image analysis.

Tables Icon

Table 3 Cylinder diameter and interphase distances (average distance between nearest neighbors rod centers) in the NaCl-LiF samples. Errors are standard deviations of the image analysis.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ɛ ( ω ) = ɛ ( ɛ 0 ɛ ) ω T 2 ω 2 ω T 2 + i ω γ .
ɛ eff ( ω ) = ɛ host ( ω ) ( 1 + φ ) ɛ cyl ( ω ) + ( 1 φ ) ɛ host ( ω ) ( 1 φ ) ɛ cyl ( ω ) + ( 1 + φ ) ɛ host ( ω ) ,
ɛ eff ( ω ) = φ ɛ cyl ( ω ) + ( 1 φ ) ɛ host ( ω ) .
( ɛ eff 0 0 0 ɛ eff 0 0 0 ɛ eff )
ɛ eff ω 2 c 2 = k x 2 + k y 2 + k z 2 , ω 2 c 2 = k x 2 + k y 2 ɛ eff + k z 2 ɛ eff

Metrics