Abstract

A bifluorenylidene derivative with extended π-conjugated system has been designed and successfully synthesized. The compound displays strong three-photon absorption effect. The obtained three-photon absorption cross section is as high as 81.3 × 10−76 cm6s2. Distinguished 3PA-induced optical limiting and optical stabilization performances have been achieved. The on-axis transmitted intensity approached a constant even though the incident laser pulse fluctuation was 300%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275(5299), 530–532 (1997).
    [CrossRef] [PubMed]
  2. J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134(9), 094503 (2011).
    [CrossRef] [PubMed]
  3. K. D. Belfield, M. V. Bondar, F. E. Hernández, O. V. Przhonska, X. Wang, and S. Yao, “A superfluorescent fluorenyl probe with efficient two-photon absorption,” Phys. Chem. Chem. Phys. 13(10), 4303–4310 (2011).
    [CrossRef] [PubMed]
  4. G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415(6873), 767–770 (2002).
    [CrossRef] [PubMed]
  5. K. D. Belfied, M. V. Bondar, C. O. Yanez, F. E. Hernández, and O. V. Przhonska, “Two-photon absorption and lasing properties of new fluorene derivatives,” J. Mater. Chem. 19(40), 7498–7502 (2009).
    [CrossRef]
  6. P. L. Wu, X. J. Feng, H. L. Tam, M. S. Wong, and K. W. Cheah, “Efficient three-photon excited deep blue photoluminescence and lasing of diphenylamino and 1,2,4-triazole endcapped oligofluorenes,” J. Am. Chem. Soc. 131(3), 886–887 (2009).
    [CrossRef] [PubMed]
  7. X. J. Feng, P. L. Wu, K. F. Li, M. S. Wong, and K. W. Cheah, “Highly efficient multiphoton-absorbing quadrupolar oligomers for frequency upconversion,” Chemistry 17(8), 2518–2526 (2011).
    [PubMed]
  8. G. S. He, J. D. Bhawalkar, P. N. Prasad, and B. A. Reinhardt, “Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound,” Opt. Lett. 20(14), 1524–1526 (1995).
    [CrossRef] [PubMed]
  9. Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, and C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114(12), 5391–5396 (2001).
    [CrossRef]
  10. I. Cohanoschi, L. Echeverría, and F. E. Hernández, “Three-photon absorption measurements in hematoporphyrin IX: “Ground-breaking opportunities in deep photodynamic therapy,” Chem. Phys. Lett. 419(1-3), 33–36 (2006).
    [CrossRef]
  11. L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
    [CrossRef] [PubMed]
  12. Y. P. Yi, L. Y. Zhu, and Z. G. Shuai, “The correction vector method for three-photon absorption: The effects of π conjugation in extended rylenebis(dicarboximide)s,” J. Chem. Phys. 125(16), 164505 (2006).
    [CrossRef] [PubMed]
  13. P. Cronstrand, Y. Luo, P. Norman, and H. Àgren, “Ab initio calculations of three-photon absorption,” Chem. Phys. Lett. 375(1-2), 233–239 (2003).
    [CrossRef]
  14. P. C. Jha, Y. Luo, I. Polyzos, P. Persephonis, and H. Ågren, “Two- and three-photon absorption of organic ionic pyrylium based materials,” J. Chem. Phys. 130(17), 174312 (2009).
    [CrossRef] [PubMed]
  15. I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
    [CrossRef] [PubMed]
  16. S. Delysse, P. Filloux, V. Dumarcher, C. Fiouini, and J. M. Nunzi, “Multiphoton absorption in organic dye solutions,” Opt. Mater. 9(1-4), 347–351 (1998).
    [CrossRef]
  17. J. H. Liu, Y. L. Mao, Y. Z. Gu, M. J. Huang, W. F. Zhang, L. J. Guo, and W. B. Ma, “Large irradiance limiting induced by three-photon absorption of a symmetrical fluorene-based molecule,” Opt. Express 16(7), 4739–4746 (2008).
    [CrossRef] [PubMed]

2011

J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134(9), 094503 (2011).
[CrossRef] [PubMed]

K. D. Belfield, M. V. Bondar, F. E. Hernández, O. V. Przhonska, X. Wang, and S. Yao, “A superfluorescent fluorenyl probe with efficient two-photon absorption,” Phys. Chem. Chem. Phys. 13(10), 4303–4310 (2011).
[CrossRef] [PubMed]

X. J. Feng, P. L. Wu, K. F. Li, M. S. Wong, and K. W. Cheah, “Highly efficient multiphoton-absorbing quadrupolar oligomers for frequency upconversion,” Chemistry 17(8), 2518–2526 (2011).
[PubMed]

2009

K. D. Belfied, M. V. Bondar, C. O. Yanez, F. E. Hernández, and O. V. Przhonska, “Two-photon absorption and lasing properties of new fluorene derivatives,” J. Mater. Chem. 19(40), 7498–7502 (2009).
[CrossRef]

P. L. Wu, X. J. Feng, H. L. Tam, M. S. Wong, and K. W. Cheah, “Efficient three-photon excited deep blue photoluminescence and lasing of diphenylamino and 1,2,4-triazole endcapped oligofluorenes,” J. Am. Chem. Soc. 131(3), 886–887 (2009).
[CrossRef] [PubMed]

P. C. Jha, Y. Luo, I. Polyzos, P. Persephonis, and H. Ågren, “Two- and three-photon absorption of organic ionic pyrylium based materials,” J. Chem. Phys. 130(17), 174312 (2009).
[CrossRef] [PubMed]

2008

2006

I. Cohanoschi, L. Echeverría, and F. E. Hernández, “Three-photon absorption measurements in hematoporphyrin IX: “Ground-breaking opportunities in deep photodynamic therapy,” Chem. Phys. Lett. 419(1-3), 33–36 (2006).
[CrossRef]

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

Y. P. Yi, L. Y. Zhu, and Z. G. Shuai, “The correction vector method for three-photon absorption: The effects of π conjugation in extended rylenebis(dicarboximide)s,” J. Chem. Phys. 125(16), 164505 (2006).
[CrossRef] [PubMed]

2003

P. Cronstrand, Y. Luo, P. Norman, and H. Àgren, “Ab initio calculations of three-photon absorption,” Chem. Phys. Lett. 375(1-2), 233–239 (2003).
[CrossRef]

2002

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[CrossRef] [PubMed]

G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415(6873), 767–770 (2002).
[CrossRef] [PubMed]

2001

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, and C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114(12), 5391–5396 (2001).
[CrossRef]

1998

S. Delysse, P. Filloux, V. Dumarcher, C. Fiouini, and J. M. Nunzi, “Multiphoton absorption in organic dye solutions,” Opt. Mater. 9(1-4), 347–351 (1998).
[CrossRef]

1997

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275(5299), 530–532 (1997).
[CrossRef] [PubMed]

1995

Àgren, H.

P. Cronstrand, Y. Luo, P. Norman, and H. Àgren, “Ab initio calculations of three-photon absorption,” Chem. Phys. Lett. 375(1-2), 233–239 (2003).
[CrossRef]

Ågren, H.

P. C. Jha, Y. Luo, I. Polyzos, P. Persephonis, and H. Ågren, “Two- and three-photon absorption of organic ionic pyrylium based materials,” J. Chem. Phys. 130(17), 174312 (2009).
[CrossRef] [PubMed]

Andraud, C.

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[CrossRef] [PubMed]

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, and C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114(12), 5391–5396 (2001).
[CrossRef]

Andrews, D. L.

J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134(9), 094503 (2011).
[CrossRef] [PubMed]

Baldeck, P. L.

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[CrossRef] [PubMed]

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, and C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114(12), 5391–5396 (2001).
[CrossRef]

Belfied, K. D.

K. D. Belfied, M. V. Bondar, C. O. Yanez, F. E. Hernández, and O. V. Przhonska, “Two-photon absorption and lasing properties of new fluorene derivatives,” J. Mater. Chem. 19(40), 7498–7502 (2009).
[CrossRef]

Belfield, K. D.

K. D. Belfield, M. V. Bondar, F. E. Hernández, O. V. Przhonska, X. Wang, and S. Yao, “A superfluorescent fluorenyl probe with efficient two-photon absorption,” Phys. Chem. Chem. Phys. 13(10), 4303–4310 (2011).
[CrossRef] [PubMed]

Beljonne, D.

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

Bhawalkar, J. D.

Bondar, M. V.

K. D. Belfield, M. V. Bondar, F. E. Hernández, O. V. Przhonska, X. Wang, and S. Yao, “A superfluorescent fluorenyl probe with efficient two-photon absorption,” Phys. Chem. Chem. Phys. 13(10), 4303–4310 (2011).
[CrossRef] [PubMed]

K. D. Belfied, M. V. Bondar, C. O. Yanez, F. E. Hernández, and O. V. Przhonska, “Two-photon absorption and lasing properties of new fluorene derivatives,” J. Mater. Chem. 19(40), 7498–7502 (2009).
[CrossRef]

Bouriau, M.

Brédas, J. L.

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

Cheah, K. W.

X. J. Feng, P. L. Wu, K. F. Li, M. S. Wong, and K. W. Cheah, “Highly efficient multiphoton-absorbing quadrupolar oligomers for frequency upconversion,” Chemistry 17(8), 2518–2526 (2011).
[PubMed]

P. L. Wu, X. J. Feng, H. L. Tam, M. S. Wong, and K. W. Cheah, “Efficient three-photon excited deep blue photoluminescence and lasing of diphenylamino and 1,2,4-triazole endcapped oligofluorenes,” J. Am. Chem. Soc. 131(3), 886–887 (2009).
[CrossRef] [PubMed]

Cohanoschi, I.

I. Cohanoschi, L. Echeverría, and F. E. Hernández, “Three-photon absorption measurements in hematoporphyrin IX: “Ground-breaking opportunities in deep photodynamic therapy,” Chem. Phys. Lett. 419(1-3), 33–36 (2006).
[CrossRef]

Cronstrand, P.

P. Cronstrand, Y. Luo, P. Norman, and H. Àgren, “Ab initio calculations of three-photon absorption,” Chem. Phys. Lett. 375(1-2), 233–239 (2003).
[CrossRef]

Delysse, S.

S. Delysse, P. Filloux, V. Dumarcher, C. Fiouini, and J. M. Nunzi, “Multiphoton absorption in organic dye solutions,” Opt. Mater. 9(1-4), 347–351 (1998).
[CrossRef]

Dumarcher, V.

S. Delysse, P. Filloux, V. Dumarcher, C. Fiouini, and J. M. Nunzi, “Multiphoton absorption in organic dye solutions,” Opt. Mater. 9(1-4), 347–351 (1998).
[CrossRef]

Echeverría, L.

I. Cohanoschi, L. Echeverría, and F. E. Hernández, “Three-photon absorption measurements in hematoporphyrin IX: “Ground-breaking opportunities in deep photodynamic therapy,” Chem. Phys. Lett. 419(1-3), 33–36 (2006).
[CrossRef]

Feng, X. J.

X. J. Feng, P. L. Wu, K. F. Li, M. S. Wong, and K. W. Cheah, “Highly efficient multiphoton-absorbing quadrupolar oligomers for frequency upconversion,” Chemistry 17(8), 2518–2526 (2011).
[PubMed]

P. L. Wu, X. J. Feng, H. L. Tam, M. S. Wong, and K. W. Cheah, “Efficient three-photon excited deep blue photoluminescence and lasing of diphenylamino and 1,2,4-triazole endcapped oligofluorenes,” J. Am. Chem. Soc. 131(3), 886–887 (2009).
[CrossRef] [PubMed]

Filloux, P.

S. Delysse, P. Filloux, V. Dumarcher, C. Fiouini, and J. M. Nunzi, “Multiphoton absorption in organic dye solutions,” Opt. Mater. 9(1-4), 347–351 (1998).
[CrossRef]

Fiouini, C.

S. Delysse, P. Filloux, V. Dumarcher, C. Fiouini, and J. M. Nunzi, “Multiphoton absorption in organic dye solutions,” Opt. Mater. 9(1-4), 347–351 (1998).
[CrossRef]

Gu, Y. Z.

Guo, L. J.

He, G. S.

G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415(6873), 767–770 (2002).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, P. N. Prasad, and B. A. Reinhardt, “Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound,” Opt. Lett. 20(14), 1524–1526 (1995).
[CrossRef] [PubMed]

Hernández, F. E.

K. D. Belfield, M. V. Bondar, F. E. Hernández, O. V. Przhonska, X. Wang, and S. Yao, “A superfluorescent fluorenyl probe with efficient two-photon absorption,” Phys. Chem. Chem. Phys. 13(10), 4303–4310 (2011).
[CrossRef] [PubMed]

K. D. Belfied, M. V. Bondar, C. O. Yanez, F. E. Hernández, and O. V. Przhonska, “Two-photon absorption and lasing properties of new fluorene derivatives,” J. Mater. Chem. 19(40), 7498–7502 (2009).
[CrossRef]

I. Cohanoschi, L. Echeverría, and F. E. Hernández, “Three-photon absorption measurements in hematoporphyrin IX: “Ground-breaking opportunities in deep photodynamic therapy,” Chem. Phys. Lett. 419(1-3), 33–36 (2006).
[CrossRef]

Huang, M. J.

Irimia, A.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, and C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114(12), 5391–5396 (2001).
[CrossRef]

Jha, P. C.

P. C. Jha, Y. Luo, I. Polyzos, P. Persephonis, and H. Ågren, “Two- and three-photon absorption of organic ionic pyrylium based materials,” J. Chem. Phys. 130(17), 174312 (2009).
[CrossRef] [PubMed]

Kervella, Y.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, and C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114(12), 5391–5396 (2001).
[CrossRef]

Leeder, J. M.

J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134(9), 094503 (2011).
[CrossRef] [PubMed]

Li, K. F.

X. J. Feng, P. L. Wu, K. F. Li, M. S. Wong, and K. W. Cheah, “Highly efficient multiphoton-absorbing quadrupolar oligomers for frequency upconversion,” Chemistry 17(8), 2518–2526 (2011).
[PubMed]

Lin, T. C.

G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415(6873), 767–770 (2002).
[CrossRef] [PubMed]

Liu, J. H.

Luo, Y.

P. C. Jha, Y. Luo, I. Polyzos, P. Persephonis, and H. Ågren, “Two- and three-photon absorption of organic ionic pyrylium based materials,” J. Chem. Phys. 130(17), 174312 (2009).
[CrossRef] [PubMed]

P. Cronstrand, Y. Luo, P. Norman, and H. Àgren, “Ab initio calculations of three-photon absorption,” Chem. Phys. Lett. 375(1-2), 233–239 (2003).
[CrossRef]

Ma, W. B.

Maiti, S.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275(5299), 530–532 (1997).
[CrossRef] [PubMed]

Mao, Y. L.

Markowicz, P. P.

G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415(6873), 767–770 (2002).
[CrossRef] [PubMed]

Martineau, C.

Morel, Y.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, and C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114(12), 5391–5396 (2001).
[CrossRef]

Najechalski, P.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, and C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114(12), 5391–5396 (2001).
[CrossRef]

Norman, P.

P. Cronstrand, Y. Luo, P. Norman, and H. Àgren, “Ab initio calculations of three-photon absorption,” Chem. Phys. Lett. 375(1-2), 233–239 (2003).
[CrossRef]

Nunzi, J. M.

S. Delysse, P. Filloux, V. Dumarcher, C. Fiouini, and J. M. Nunzi, “Multiphoton absorption in organic dye solutions,” Opt. Mater. 9(1-4), 347–351 (1998).
[CrossRef]

Persephonis, P.

P. C. Jha, Y. Luo, I. Polyzos, P. Persephonis, and H. Ågren, “Two- and three-photon absorption of organic ionic pyrylium based materials,” J. Chem. Phys. 130(17), 174312 (2009).
[CrossRef] [PubMed]

Polyzos, I.

P. C. Jha, Y. Luo, I. Polyzos, P. Persephonis, and H. Ågren, “Two- and three-photon absorption of organic ionic pyrylium based materials,” J. Chem. Phys. 130(17), 174312 (2009).
[CrossRef] [PubMed]

Prasad, P. N.

G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415(6873), 767–770 (2002).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, P. N. Prasad, and B. A. Reinhardt, “Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound,” Opt. Lett. 20(14), 1524–1526 (1995).
[CrossRef] [PubMed]

Przhonska, O. V.

K. D. Belfield, M. V. Bondar, F. E. Hernández, O. V. Przhonska, X. Wang, and S. Yao, “A superfluorescent fluorenyl probe with efficient two-photon absorption,” Phys. Chem. Chem. Phys. 13(10), 4303–4310 (2011).
[CrossRef] [PubMed]

K. D. Belfied, M. V. Bondar, C. O. Yanez, F. E. Hernández, and O. V. Przhonska, “Two-photon absorption and lasing properties of new fluorene derivatives,” J. Mater. Chem. 19(40), 7498–7502 (2009).
[CrossRef]

Reinhardt, B. A.

Shear, J. B.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275(5299), 530–532 (1997).
[CrossRef] [PubMed]

Shuai, Z. G.

Y. P. Yi, L. Y. Zhu, and Z. G. Shuai, “The correction vector method for three-photon absorption: The effects of π conjugation in extended rylenebis(dicarboximide)s,” J. Chem. Phys. 125(16), 164505 (2006).
[CrossRef] [PubMed]

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

Stephan, O.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, and C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114(12), 5391–5396 (2001).
[CrossRef]

Tam, H. L.

P. L. Wu, X. J. Feng, H. L. Tam, M. S. Wong, and K. W. Cheah, “Efficient three-photon excited deep blue photoluminescence and lasing of diphenylamino and 1,2,4-triazole endcapped oligofluorenes,” J. Am. Chem. Soc. 131(3), 886–887 (2009).
[CrossRef] [PubMed]

Wang, I.

Wang, X.

K. D. Belfield, M. V. Bondar, F. E. Hernández, O. V. Przhonska, X. Wang, and S. Yao, “A superfluorescent fluorenyl probe with efficient two-photon absorption,” Phys. Chem. Chem. Phys. 13(10), 4303–4310 (2011).
[CrossRef] [PubMed]

Webb, W. W.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275(5299), 530–532 (1997).
[CrossRef] [PubMed]

Williams, R. M.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275(5299), 530–532 (1997).
[CrossRef] [PubMed]

Wong, M. S.

X. J. Feng, P. L. Wu, K. F. Li, M. S. Wong, and K. W. Cheah, “Highly efficient multiphoton-absorbing quadrupolar oligomers for frequency upconversion,” Chemistry 17(8), 2518–2526 (2011).
[PubMed]

P. L. Wu, X. J. Feng, H. L. Tam, M. S. Wong, and K. W. Cheah, “Efficient three-photon excited deep blue photoluminescence and lasing of diphenylamino and 1,2,4-triazole endcapped oligofluorenes,” J. Am. Chem. Soc. 131(3), 886–887 (2009).
[CrossRef] [PubMed]

Wu, P. L.

X. J. Feng, P. L. Wu, K. F. Li, M. S. Wong, and K. W. Cheah, “Highly efficient multiphoton-absorbing quadrupolar oligomers for frequency upconversion,” Chemistry 17(8), 2518–2526 (2011).
[PubMed]

P. L. Wu, X. J. Feng, H. L. Tam, M. S. Wong, and K. W. Cheah, “Efficient three-photon excited deep blue photoluminescence and lasing of diphenylamino and 1,2,4-triazole endcapped oligofluorenes,” J. Am. Chem. Soc. 131(3), 886–887 (2009).
[CrossRef] [PubMed]

Yanez, C. O.

K. D. Belfied, M. V. Bondar, C. O. Yanez, F. E. Hernández, and O. V. Przhonska, “Two-photon absorption and lasing properties of new fluorene derivatives,” J. Mater. Chem. 19(40), 7498–7502 (2009).
[CrossRef]

Yao, S.

K. D. Belfield, M. V. Bondar, F. E. Hernández, O. V. Przhonska, X. Wang, and S. Yao, “A superfluorescent fluorenyl probe with efficient two-photon absorption,” Phys. Chem. Chem. Phys. 13(10), 4303–4310 (2011).
[CrossRef] [PubMed]

Yi, Y. P.

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

Y. P. Yi, L. Y. Zhu, and Z. G. Shuai, “The correction vector method for three-photon absorption: The effects of π conjugation in extended rylenebis(dicarboximide)s,” J. Chem. Phys. 125(16), 164505 (2006).
[CrossRef] [PubMed]

Zhang, W. F.

Zhu, L. Y.

Y. P. Yi, L. Y. Zhu, and Z. G. Shuai, “The correction vector method for three-photon absorption: The effects of π conjugation in extended rylenebis(dicarboximide)s,” J. Chem. Phys. 125(16), 164505 (2006).
[CrossRef] [PubMed]

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

Zipfel, W. R.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275(5299), 530–532 (1997).
[CrossRef] [PubMed]

Zojer, E.

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

Chem. Phys. Lett.

P. Cronstrand, Y. Luo, P. Norman, and H. Àgren, “Ab initio calculations of three-photon absorption,” Chem. Phys. Lett. 375(1-2), 233–239 (2003).
[CrossRef]

I. Cohanoschi, L. Echeverría, and F. E. Hernández, “Three-photon absorption measurements in hematoporphyrin IX: “Ground-breaking opportunities in deep photodynamic therapy,” Chem. Phys. Lett. 419(1-3), 33–36 (2006).
[CrossRef]

Chemistry

X. J. Feng, P. L. Wu, K. F. Li, M. S. Wong, and K. W. Cheah, “Highly efficient multiphoton-absorbing quadrupolar oligomers for frequency upconversion,” Chemistry 17(8), 2518–2526 (2011).
[PubMed]

J. Am. Chem. Soc.

P. L. Wu, X. J. Feng, H. L. Tam, M. S. Wong, and K. W. Cheah, “Efficient three-photon excited deep blue photoluminescence and lasing of diphenylamino and 1,2,4-triazole endcapped oligofluorenes,” J. Am. Chem. Soc. 131(3), 886–887 (2009).
[CrossRef] [PubMed]

J. Chem. Phys.

J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134(9), 094503 (2011).
[CrossRef] [PubMed]

L. Y. Zhu, Y. P. Yi, Z. G. Shuai, J. L. Brédas, D. Beljonne, and E. Zojer, “Structure-property relationships for three-photon absorption in stilbene-based dipolar and quadrupolar chromophores,” J. Chem. Phys. 125(4), 044101 (2006).
[CrossRef] [PubMed]

Y. P. Yi, L. Y. Zhu, and Z. G. Shuai, “The correction vector method for three-photon absorption: The effects of π conjugation in extended rylenebis(dicarboximide)s,” J. Chem. Phys. 125(16), 164505 (2006).
[CrossRef] [PubMed]

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, and C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114(12), 5391–5396 (2001).
[CrossRef]

P. C. Jha, Y. Luo, I. Polyzos, P. Persephonis, and H. Ågren, “Two- and three-photon absorption of organic ionic pyrylium based materials,” J. Chem. Phys. 130(17), 174312 (2009).
[CrossRef] [PubMed]

J. Mater. Chem.

K. D. Belfied, M. V. Bondar, C. O. Yanez, F. E. Hernández, and O. V. Przhonska, “Two-photon absorption and lasing properties of new fluorene derivatives,” J. Mater. Chem. 19(40), 7498–7502 (2009).
[CrossRef]

Nature

G. S. He, P. P. Markowicz, T. C. Lin, and P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415(6873), 767–770 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mater.

S. Delysse, P. Filloux, V. Dumarcher, C. Fiouini, and J. M. Nunzi, “Multiphoton absorption in organic dye solutions,” Opt. Mater. 9(1-4), 347–351 (1998).
[CrossRef]

Phys. Chem. Chem. Phys.

K. D. Belfield, M. V. Bondar, F. E. Hernández, O. V. Przhonska, X. Wang, and S. Yao, “A superfluorescent fluorenyl probe with efficient two-photon absorption,” Phys. Chem. Chem. Phys. 13(10), 4303–4310 (2011).
[CrossRef] [PubMed]

Science

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275(5299), 530–532 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Zn dust, AcOH, reflux; b) PBr3, 150°C; (c) DBU, acetonitrile, 60°C; (d) DMF, 4-Methoxystyrene, Palladium acetate, K2CO3, TBAB, 110°C. 1H-NMR(400MHz, CDCl3):δppm 7.87(s, 4H), 7.64(d, 4H, J = 8Hz), 7.49(d, 8H, J = 8.4Hz),7.10(d, 8H, J = 18.4Hz), 6.92(d, 8H, J = 8.8Hz),6.16(s, 4H),3.85(s, 12H). MS(ESI) m/z: 896 [M + K]+.

Fig. 2
Fig. 2

Experimental setup for 3PA induced fluorescence and input-output relation measurements. Two lenses (L1, L2) and a pinhole (PH) form a spatial filter. D1 and D2 are used to obtain the incident and transmitted intensity. The fluorescence light is collected by lens L4 and coupled into the spectrometer with a photomultiplier (D3).

Fig. 3
Fig. 3

Linear absorption (solid line), steady-state fluorescence spectra (short dot line) and upconversion fluorescence spectra (scattered square) of the molecule in CHCl3.

Fig. 4
Fig. 4

Measured upconversion fluorescence intensity as a function of the incident 1064 nm intensity. The solid lines is the best-fit curves based on the function y = axn with n = 2.92

Fig. 5
Fig. 5

Transmitted on-axis intensity vs. incident on-axis intensity curves of the compound. The solid line represents the theoretical fitting curve. The best-fit parameter was γ = 11.9 × 10−20 cm3/W2.

Fig. 6
Fig. 6

Measured pulse energy fluctuation of incident laser pulses (a). Measured pulse energy fluctuation (b) and on-axis intensity fluctuation (c) of the corresponding transmitted laser pulses.

Tables (1)

Tables Icon

Table 1 Electronic transition data obtained by the TD-HF/6-31G combined with PCM model

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dI(z,r,t)/dz= α 3 I (z,r,t) 3 .
I(z=L/2,r,t)= I(z=L/2,r,t) 1+2 α 3 LI (z=L/2,r,t) 2 ,
I(z,r)= A 0 2 ω 2 (z) exp[ 2 r 2 ω 2 (z) ],
I '' (i,j,t)= I ' (i,j,t) 1+2 α 3 L ' I '2 (i,j,t) ,
I ' (i,j+1,t)= S '' (i,j) S ' (i,j+1) I '' (i,j,t),
T= i=1 i=n I '' (i,m,t) S '' (i,m) t p i=1 i=n I ' (i,1,t) S ' (i,1) t p .
σ 3 ' = α 3 N A d 0 × 10 3 ( hc λ ),

Metrics