Abstract

In this paper, a metal layer assisted guide mode resonance (MaGMR) device with high sensitivity is proposed for bioanalytical applications and its functioning is experimentally proved. We find that the reflection spectra present a unique inversed response. The resonance mechanism is also discussed. Numerical calculation results indicate that the high sensitivity performance of MaGMR comes from the strongly asymmetric resonance modal profile and low propagation angle inside the waveguide. There is a one-fold enhancement of the evanescent wave in the analytes region compared to typical GMR. According to the experimental results, the proposed MaGMR achieved a bulk sensitivity of 376.78nm/RIU in fundamental TM mode resonating at 0.809μm with the first diffraction angle. Experiment results show a 264.78% enhancement in the sensitivity compared to that of the typical GMR sensor in the same resonance conditions of TM mode.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Zaninotto, S. Altinier, M. Lachin, L. Celegon, and M. Plebani, “Strategies for the early diagnosis of acute myocardial infarction using biochemical markers,” Am. J. Clin. Pathol. 111(3), 399–405 (1999).
    [PubMed]
  2. L. Babuin and A. S. Jaffe, “Troponin: the biomarker of choice for the detection of cardiac injury,” CMAJ 173(10), 1191–1202 (2005).
    [CrossRef] [PubMed]
  3. M. Esteller and J. G. Herman, “Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours,” J. Pathol. 196(1), 1–7 (2002).
    [CrossRef] [PubMed]
  4. C. Ayela, F. Roquet, L. Valera, C. Granier, L. Nicu, and M. Pugnière, “Antibody–antigenic peptide interactions monitored by SPR and QCM-D,” Biosens. Bioelectron. 22(12), 3113–3119 (2007).
    [CrossRef] [PubMed]
  5. M. A. Cooper and V. T. Singleton, “A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions,” J. Mol. Recognit. 20(3), 154–184 (2007).
    [CrossRef] [PubMed]
  6. E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature 445(7127), 519–522 (2007).
    [CrossRef] [PubMed]
  7. S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
    [CrossRef]
  8. C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron. 24(5), 1223–1229 (2009).
    [CrossRef] [PubMed]
  9. F. Fernández, K. Hegnerová, M. Piliarik, F. Sanchez-Baeza, J. Homola, and M. P. Marco, “A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples,” Biosens. Bioelectron. 26(4), 1231–1238 (2010).
    [CrossRef] [PubMed]
  10. K.-L. Lee, S.-H. Wu, C.-W. Lee, and P.-K. Wei, “Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves,” Opt. Express 19(24), 24530–24539 (2011).
    [CrossRef] [PubMed]
  11. Y. Panitchob, G. S. Murugan, M. N. Zervas, P. Horak, S. Berneschi, S. Pelli, G. Nunzi Conti, and J. S. Wilkinson, “Whispering gallery mode spectra of channel waveguide coupled microspheres,” Opt. Express 16(15), 11066–11076 (2008).
    [CrossRef] [PubMed]
  12. A. Schweinsberg, S. Hocde, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123(2), 727–732 (2007).
    [CrossRef]
  13. S. F. Lin, T. J. Ding, J. T. Liu, C. C. Lee, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A guided mode resonance aptasensor for thrombin detection,” Sensors (Basel) 11(9), 8953–8965 (2011).
    [CrossRef] [PubMed]
  14. M. El Beheiry, V. Liu, S. H. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18(22), 22702–22714 (2010).
    [CrossRef] [PubMed]
  15. C. J. Choi, I. D. Block, B. Bole, D. Dralle, and B. T. Cunningham, “Label-Free Photonic Crystal Biosensor Integrated Microfluidic Chip for Determination of Kinetic Reaction Rate Constants,” IEEE Sens. J. 9(12), 1697–1704 (2009).
    [CrossRef]
  16. I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
    [CrossRef]
  17. D. D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, “Optical fiber endface biosensor based on resonances in dielectric waveguide gratings,” Proc. SPIE 3911, 86–94 (2000).
    [CrossRef]
  18. H. Kikuta, N. Maegawa, A. Mizutani, K. Iwata, and H. Toyota, “Refractive index sensor with a guided-mode resonant grating filter,” Proc. SPIE 4416, 219–222 (2001).
    [CrossRef]
  19. B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
    [CrossRef]
  20. N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
    [CrossRef]
  21. W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
    [CrossRef]
  22. I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
    [CrossRef]
  23. S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. (to be published).
  24. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-Mode Resonances in Planar Dielectric-Layer Diffraction Gratings,” J. Opt. Soc. Am. A 7(8), 1470–1474 (1990).
    [CrossRef]
  25. D. W. Lynch and W. R. Hunter, “Gold (Au)”, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  26. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
    [CrossRef] [PubMed]
  27. R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase gratings with arbitrary grating space,” J. Opt. Soc. Am. 68(6), 806–809 (1978).
    [CrossRef]

2011 (2)

S. F. Lin, T. J. Ding, J. T. Liu, C. C. Lee, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A guided mode resonance aptasensor for thrombin detection,” Sensors (Basel) 11(9), 8953–8965 (2011).
[CrossRef] [PubMed]

K.-L. Lee, S.-H. Wu, C.-W. Lee, and P.-K. Wei, “Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves,” Opt. Express 19(24), 24530–24539 (2011).
[CrossRef] [PubMed]

2010 (2)

M. El Beheiry, V. Liu, S. H. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18(22), 22702–22714 (2010).
[CrossRef] [PubMed]

F. Fernández, K. Hegnerová, M. Piliarik, F. Sanchez-Baeza, J. Homola, and M. P. Marco, “A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples,” Biosens. Bioelectron. 26(4), 1231–1238 (2010).
[CrossRef] [PubMed]

2009 (2)

C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron. 24(5), 1223–1229 (2009).
[CrossRef] [PubMed]

C. J. Choi, I. D. Block, B. Bole, D. Dralle, and B. T. Cunningham, “Label-Free Photonic Crystal Biosensor Integrated Microfluidic Chip for Determination of Kinetic Reaction Rate Constants,” IEEE Sens. J. 9(12), 1697–1704 (2009).
[CrossRef]

2008 (4)

Y. Panitchob, G. S. Murugan, M. N. Zervas, P. Horak, S. Berneschi, S. Pelli, G. Nunzi Conti, and J. S. Wilkinson, “Whispering gallery mode spectra of channel waveguide coupled microspheres,” Opt. Express 16(15), 11066–11076 (2008).
[CrossRef] [PubMed]

S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
[CrossRef]

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[CrossRef]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

2007 (4)

C. Ayela, F. Roquet, L. Valera, C. Granier, L. Nicu, and M. Pugnière, “Antibody–antigenic peptide interactions monitored by SPR and QCM-D,” Biosens. Bioelectron. 22(12), 3113–3119 (2007).
[CrossRef] [PubMed]

M. A. Cooper and V. T. Singleton, “A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions,” J. Mol. Recognit. 20(3), 154–184 (2007).
[CrossRef] [PubMed]

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature 445(7127), 519–522 (2007).
[CrossRef] [PubMed]

A. Schweinsberg, S. Hocde, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123(2), 727–732 (2007).
[CrossRef]

2006 (2)

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
[CrossRef]

2005 (1)

L. Babuin and A. S. Jaffe, “Troponin: the biomarker of choice for the detection of cardiac injury,” CMAJ 173(10), 1191–1202 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (2)

M. Esteller and J. G. Herman, “Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours,” J. Pathol. 196(1), 1–7 (2002).
[CrossRef] [PubMed]

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

2001 (1)

H. Kikuta, N. Maegawa, A. Mizutani, K. Iwata, and H. Toyota, “Refractive index sensor with a guided-mode resonant grating filter,” Proc. SPIE 4416, 219–222 (2001).
[CrossRef]

2000 (1)

D. D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, “Optical fiber endface biosensor based on resonances in dielectric waveguide gratings,” Proc. SPIE 3911, 86–94 (2000).
[CrossRef]

1999 (1)

M. Zaninotto, S. Altinier, M. Lachin, L. Celegon, and M. Plebani, “Strategies for the early diagnosis of acute myocardial infarction using biochemical markers,” Am. J. Clin. Pathol. 111(3), 399–405 (1999).
[PubMed]

1990 (1)

1978 (1)

Altinier, S.

M. Zaninotto, S. Altinier, M. Lachin, L. Celegon, and M. Plebani, “Strategies for the early diagnosis of acute myocardial infarction using biochemical markers,” Am. J. Clin. Pathol. 111(3), 399–405 (1999).
[PubMed]

Ayela, C.

C. Ayela, F. Roquet, L. Valera, C. Granier, L. Nicu, and M. Pugnière, “Antibody–antigenic peptide interactions monitored by SPR and QCM-D,” Biosens. Bioelectron. 22(12), 3113–3119 (2007).
[CrossRef] [PubMed]

Babuin, L.

L. Babuin and A. S. Jaffe, “Troponin: the biomarker of choice for the detection of cardiac injury,” CMAJ 173(10), 1191–1202 (2005).
[CrossRef] [PubMed]

Bagby, J. S.

Berneschi, S.

Block, I. D.

C. J. Choi, I. D. Block, B. Bole, D. Dralle, and B. T. Cunningham, “Label-Free Photonic Crystal Biosensor Integrated Microfluidic Chip for Determination of Kinetic Reaction Rate Constants,” IEEE Sens. J. 9(12), 1697–1704 (2009).
[CrossRef]

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[CrossRef]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
[CrossRef]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

Bole, B.

C. J. Choi, I. D. Block, B. Bole, D. Dralle, and B. T. Cunningham, “Label-Free Photonic Crystal Biosensor Integrated Microfluidic Chip for Determination of Kinetic Reaction Rate Constants,” IEEE Sens. J. 9(12), 1697–1704 (2009).
[CrossRef]

Boyd, R. W.

A. Schweinsberg, S. Hocde, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123(2), 727–732 (2007).
[CrossRef]

Celegon, L.

M. Zaninotto, S. Altinier, M. Lachin, L. Celegon, and M. Plebani, “Strategies for the early diagnosis of acute myocardial infarction using biochemical markers,” Am. J. Clin. Pathol. 111(3), 399–405 (1999).
[PubMed]

Chan, L. L.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

Chang, J. Y.

S. F. Lin, T. J. Ding, J. T. Liu, C. C. Lee, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A guided mode resonance aptasensor for thrombin detection,” Sensors (Basel) 11(9), 8953–8965 (2011).
[CrossRef] [PubMed]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. (to be published).

Chase, C.

A. Schweinsberg, S. Hocde, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123(2), 727–732 (2007).
[CrossRef]

Chen, W. Y.

S. F. Lin, T. J. Ding, J. T. Liu, C. C. Lee, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A guided mode resonance aptasensor for thrombin detection,” Sensors (Basel) 11(9), 8953–8965 (2011).
[CrossRef] [PubMed]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. (to be published).

Chi, G. C.

S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
[CrossRef]

Choi, C. J.

C. J. Choi, I. D. Block, B. Bole, D. Dralle, and B. T. Cunningham, “Label-Free Photonic Crystal Biosensor Integrated Microfluidic Chip for Determination of Kinetic Reaction Rate Constants,” IEEE Sens. J. 9(12), 1697–1704 (2009).
[CrossRef]

Cooper, M. A.

M. A. Cooper and V. T. Singleton, “A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions,” J. Mol. Recognit. 20(3), 154–184 (2007).
[CrossRef] [PubMed]

Cunningham, B.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

Cunningham, B. T.

C. J. Choi, I. D. Block, B. Bole, D. Dralle, and B. T. Cunningham, “Label-Free Photonic Crystal Biosensor Integrated Microfluidic Chip for Determination of Kinetic Reaction Rate Constants,” IEEE Sens. J. 9(12), 1697–1704 (2009).
[CrossRef]

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[CrossRef]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
[CrossRef]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

Dennis, D. M.

S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
[CrossRef]

Ding, T. J.

S. F. Lin, T. J. Ding, J. T. Liu, C. C. Lee, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A guided mode resonance aptasensor for thrombin detection,” Sensors (Basel) 11(9), 8953–8965 (2011).
[CrossRef] [PubMed]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. (to be published).

Ding, Y.

Dralle, D.

C. J. Choi, I. D. Block, B. Bole, D. Dralle, and B. T. Cunningham, “Label-Free Photonic Crystal Biosensor Integrated Microfluidic Chip for Determination of Kinetic Reaction Rate Constants,” IEEE Sens. J. 9(12), 1697–1704 (2009).
[CrossRef]

El Beheiry, M.

Esteller, M.

M. Esteller and J. G. Herman, “Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours,” J. Pathol. 196(1), 1–7 (2002).
[CrossRef] [PubMed]

Fahmy, T. M.

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature 445(7127), 519–522 (2007).
[CrossRef] [PubMed]

Fajardo, J. E.

A. Schweinsberg, S. Hocde, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123(2), 727–732 (2007).
[CrossRef]

Fan, S. H.

Fernández, F.

F. Fernández, K. Hegnerová, M. Piliarik, F. Sanchez-Baeza, J. Homola, and M. P. Marco, “A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples,” Biosens. Bioelectron. 26(4), 1231–1238 (2010).
[CrossRef] [PubMed]

Ganesh, N.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[CrossRef]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
[CrossRef]

Gaylord, T. K.

Granier, C.

C. Ayela, F. Roquet, L. Valera, C. Granier, L. Nicu, and M. Pugnière, “Antibody–antigenic peptide interactions monitored by SPR and QCM-D,” Biosens. Bioelectron. 22(12), 3113–3119 (2007).
[CrossRef] [PubMed]

Hamilton, A. D.

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature 445(7127), 519–522 (2007).
[CrossRef] [PubMed]

Hegnerová, K.

F. Fernández, K. Hegnerová, M. Piliarik, F. Sanchez-Baeza, J. Homola, and M. P. Marco, “A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples,” Biosens. Bioelectron. 26(4), 1231–1238 (2010).
[CrossRef] [PubMed]

Herman, J. G.

M. Esteller and J. G. Herman, “Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours,” J. Pathol. 196(1), 1–7 (2002).
[CrossRef] [PubMed]

Hicks, B.

S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
[CrossRef]

Hocde, S.

A. Schweinsberg, S. Hocde, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123(2), 727–732 (2007).
[CrossRef]

Homola, J.

F. Fernández, K. Hegnerová, M. Piliarik, F. Sanchez-Baeza, J. Homola, and M. P. Marco, “A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples,” Biosens. Bioelectron. 26(4), 1231–1238 (2010).
[CrossRef] [PubMed]

Horak, P.

Hsiao, C. Y.

C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron. 24(5), 1223–1229 (2009).
[CrossRef] [PubMed]

Huang, T. Y.

C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron. 24(5), 1223–1229 (2009).
[CrossRef] [PubMed]

Hung, C. H.

C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron. 24(5), 1223–1229 (2009).
[CrossRef] [PubMed]

Hung, S. C.

S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
[CrossRef]

Iwata, K.

H. Kikuta, N. Maegawa, A. Mizutani, K. Iwata, and H. Toyota, “Refractive index sensor with a guided-mode resonant grating filter,” Proc. SPIE 4416, 219–222 (2001).
[CrossRef]

Jaffe, A. S.

L. Babuin and A. S. Jaffe, “Troponin: the biomarker of choice for the detection of cardiac injury,” CMAJ 173(10), 1191–1202 (2005).
[CrossRef] [PubMed]

Johnson, J. W.

S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
[CrossRef]

Kikuta, H.

H. Kikuta, N. Maegawa, A. Mizutani, K. Iwata, and H. Toyota, “Refractive index sensor with a guided-mode resonant grating filter,” Proc. SPIE 4416, 219–222 (2001).
[CrossRef]

Klemic, J. F.

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature 445(7127), 519–522 (2007).
[CrossRef] [PubMed]

Ko, F. H.

C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron. 24(5), 1223–1229 (2009).
[CrossRef] [PubMed]

Lachin, M.

M. Zaninotto, S. Altinier, M. Lachin, L. Celegon, and M. Plebani, “Strategies for the early diagnosis of acute myocardial infarction using biochemical markers,” Am. J. Clin. Pathol. 111(3), 399–405 (1999).
[PubMed]

LaVan, D. A.

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature 445(7127), 519–522 (2007).
[CrossRef] [PubMed]

Lee, C. C.

S. F. Lin, T. J. Ding, J. T. Liu, C. C. Lee, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A guided mode resonance aptasensor for thrombin detection,” Sensors (Basel) 11(9), 8953–8965 (2011).
[CrossRef] [PubMed]

C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron. 24(5), 1223–1229 (2009).
[CrossRef] [PubMed]

Lee, C.-W.

Lee, K.-L.

Lepeshkin, N. N.

A. Schweinsberg, S. Hocde, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123(2), 727–732 (2007).
[CrossRef]

Levi, O.

Li, P.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

Lin, B.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

Lin, C. H.

C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron. 24(5), 1223–1229 (2009).
[CrossRef] [PubMed]

Lin, H. C.

C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron. 24(5), 1223–1229 (2009).
[CrossRef] [PubMed]

Lin, S. F.

S. F. Lin, T. J. Ding, J. T. Liu, C. C. Lee, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A guided mode resonance aptasensor for thrombin detection,” Sensors (Basel) 11(9), 8953–8965 (2011).
[CrossRef] [PubMed]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. (to be published).

Linthicum, K. J.

S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
[CrossRef]

Liu, H.

D. D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, “Optical fiber endface biosensor based on resonances in dielectric waveguide gratings,” Proc. SPIE 3911, 86–94 (2000).
[CrossRef]

Liu, J. T.

S. F. Lin, T. J. Ding, J. T. Liu, C. C. Lee, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A guided mode resonance aptasensor for thrombin detection,” Sensors (Basel) 11(9), 8953–8965 (2011).
[CrossRef] [PubMed]

Liu, V.

Lo, Y. R.

C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron. 24(5), 1223–1229 (2009).
[CrossRef] [PubMed]

Lu, M.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

Maegawa, N.

H. Kikuta, N. Maegawa, A. Mizutani, K. Iwata, and H. Toyota, “Refractive index sensor with a guided-mode resonant grating filter,” Proc. SPIE 4416, 219–222 (2001).
[CrossRef]

Magnusson, R.

Marco, M. P.

F. Fernández, K. Hegnerová, M. Piliarik, F. Sanchez-Baeza, J. Homola, and M. P. Marco, “A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples,” Biosens. Bioelectron. 26(4), 1231–1238 (2010).
[CrossRef] [PubMed]

Mizutani, A.

H. Kikuta, N. Maegawa, A. Mizutani, K. Iwata, and H. Toyota, “Refractive index sensor with a guided-mode resonant grating filter,” Proc. SPIE 4416, 219–222 (2001).
[CrossRef]

Moharam, M. G.

Murugan, G. S.

Nicu, L.

C. Ayela, F. Roquet, L. Valera, C. Granier, L. Nicu, and M. Pugnière, “Antibody–antigenic peptide interactions monitored by SPR and QCM-D,” Biosens. Bioelectron. 22(12), 3113–3119 (2007).
[CrossRef] [PubMed]

Nunzi Conti, G.

Panitchob, Y.

Pearton, S. J.

S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
[CrossRef]

Pelli, S.

Piliarik, M.

F. Fernández, K. Hegnerová, M. Piliarik, F. Sanchez-Baeza, J. Homola, and M. P. Marco, “A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples,” Biosens. Bioelectron. 26(4), 1231–1238 (2010).
[CrossRef] [PubMed]

Piner, E. L.

S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
[CrossRef]

Plebani, M.

M. Zaninotto, S. Altinier, M. Lachin, L. Celegon, and M. Plebani, “Strategies for the early diagnosis of acute myocardial infarction using biochemical markers,” Am. J. Clin. Pathol. 111(3), 399–405 (1999).
[PubMed]

Pugnière, M.

C. Ayela, F. Roquet, L. Valera, C. Granier, L. Nicu, and M. Pugnière, “Antibody–antigenic peptide interactions monitored by SPR and QCM-D,” Biosens. Bioelectron. 22(12), 3113–3119 (2007).
[CrossRef] [PubMed]

Qiu, J.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

Rajagopal, P.

S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
[CrossRef]

Reed, M. A.

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature 445(7127), 519–522 (2007).
[CrossRef] [PubMed]

Ren, F.

S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
[CrossRef]

Roberts, J. C.

S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
[CrossRef]

Roquet, F.

C. Ayela, F. Roquet, L. Valera, C. Granier, L. Nicu, and M. Pugnière, “Antibody–antigenic peptide interactions monitored by SPR and QCM-D,” Biosens. Bioelectron. 22(12), 3113–3119 (2007).
[CrossRef] [PubMed]

Routenberg, D. A.

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature 445(7127), 519–522 (2007).
[CrossRef] [PubMed]

Sanchez-Baeza, F.

F. Fernández, K. Hegnerová, M. Piliarik, F. Sanchez-Baeza, J. Homola, and M. P. Marco, “A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples,” Biosens. Bioelectron. 26(4), 1231–1238 (2010).
[CrossRef] [PubMed]

Schweinsberg, A.

A. Schweinsberg, S. Hocde, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123(2), 727–732 (2007).
[CrossRef]

Singleton, V. T.

M. A. Cooper and V. T. Singleton, “A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions,” J. Mol. Recognit. 20(3), 154–184 (2007).
[CrossRef] [PubMed]

Stern, E.

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature 445(7127), 519–522 (2007).
[CrossRef] [PubMed]

Su, C. J.

C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron. 24(5), 1223–1229 (2009).
[CrossRef] [PubMed]

Tibuleac, S.

D. D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, “Optical fiber endface biosensor based on resonances in dielectric waveguide gratings,” Proc. SPIE 3911, 86–94 (2000).
[CrossRef]

Toyota, H.

H. Kikuta, N. Maegawa, A. Mizutani, K. Iwata, and H. Toyota, “Refractive index sensor with a guided-mode resonant grating filter,” Proc. SPIE 4416, 219–222 (2001).
[CrossRef]

Tsai, Y. L.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. (to be published).

Turner-Evans, D. B.

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature 445(7127), 519–522 (2007).
[CrossRef] [PubMed]

Valera, L.

C. Ayela, F. Roquet, L. Valera, C. Granier, L. Nicu, and M. Pugnière, “Antibody–antigenic peptide interactions monitored by SPR and QCM-D,” Biosens. Bioelectron. 22(12), 3113–3119 (2007).
[CrossRef] [PubMed]

Wang, C. M.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. (to be published).

Wang, S. S.

Wang, Y. L.

S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
[CrossRef]

Wawro, D. D.

D. D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, “Optical fiber endface biosensor based on resonances in dielectric waveguide gratings,” Proc. SPIE 3911, 86–94 (2000).
[CrossRef]

Wei, P.-K.

Wilkinson, J. S.

Wu, S.-H.

Wyrembak, P. N.

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature 445(7127), 519–522 (2007).
[CrossRef] [PubMed]

Yang, T. H.

S. F. Lin, T. J. Ding, J. T. Liu, C. C. Lee, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A guided mode resonance aptasensor for thrombin detection,” Sensors (Basel) 11(9), 8953–8965 (2011).
[CrossRef] [PubMed]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. (to be published).

Yang, Y. S.

C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron. 24(5), 1223–1229 (2009).
[CrossRef] [PubMed]

Zaninotto, M.

M. Zaninotto, S. Altinier, M. Lachin, L. Celegon, and M. Plebani, “Strategies for the early diagnosis of acute myocardial infarction using biochemical markers,” Am. J. Clin. Pathol. 111(3), 399–405 (1999).
[PubMed]

Zervas, M. N.

Zhang, W.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[CrossRef]

Am. J. Clin. Pathol. (1)

M. Zaninotto, S. Altinier, M. Lachin, L. Celegon, and M. Plebani, “Strategies for the early diagnosis of acute myocardial infarction using biochemical markers,” Am. J. Clin. Pathol. 111(3), 399–405 (1999).
[PubMed]

Appl. Phys. Lett. (2)

S. C. Hung, Y. L. Wang, B. Hicks, S. J. Pearton, D. M. Dennis, F. Ren, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, and G. C. Chi, “Detection of chloride ions using an integrated Ag/AgCl electrode with AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett. 92(19), 193903 (2008).
[CrossRef]

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
[CrossRef]

Biosens. Bioelectron. (3)

C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, F. H. Ko, T. Y. Huang, and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application,” Biosens. Bioelectron. 24(5), 1223–1229 (2009).
[CrossRef] [PubMed]

F. Fernández, K. Hegnerová, M. Piliarik, F. Sanchez-Baeza, J. Homola, and M. P. Marco, “A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples,” Biosens. Bioelectron. 26(4), 1231–1238 (2010).
[CrossRef] [PubMed]

C. Ayela, F. Roquet, L. Valera, C. Granier, L. Nicu, and M. Pugnière, “Antibody–antigenic peptide interactions monitored by SPR and QCM-D,” Biosens. Bioelectron. 22(12), 3113–3119 (2007).
[CrossRef] [PubMed]

CMAJ (1)

L. Babuin and A. S. Jaffe, “Troponin: the biomarker of choice for the detection of cardiac injury,” CMAJ 173(10), 1191–1202 (2005).
[CrossRef] [PubMed]

IEEE Sens. J. (2)

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008).
[CrossRef]

C. J. Choi, I. D. Block, B. Bole, D. Dralle, and B. T. Cunningham, “Label-Free Photonic Crystal Biosensor Integrated Microfluidic Chip for Determination of Kinetic Reaction Rate Constants,” IEEE Sens. J. 9(12), 1697–1704 (2009).
[CrossRef]

J. Mol. Recognit. (1)

M. A. Cooper and V. T. Singleton, “A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions,” J. Mol. Recognit. 20(3), 154–184 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Pathol. (1)

M. Esteller and J. G. Herman, “Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours,” J. Pathol. 196(1), 1–7 (2002).
[CrossRef] [PubMed]

Nature (1)

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, “Label-free immunodetection with CMOS-compatible semiconducting nanowires,” Nature 445(7127), 519–522 (2007).
[CrossRef] [PubMed]

Opt. Express (4)

Proc. SPIE (2)

D. D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, “Optical fiber endface biosensor based on resonances in dielectric waveguide gratings,” Proc. SPIE 3911, 86–94 (2000).
[CrossRef]

H. Kikuta, N. Maegawa, A. Mizutani, K. Iwata, and H. Toyota, “Refractive index sensor with a guided-mode resonant grating filter,” Proc. SPIE 4416, 219–222 (2001).
[CrossRef]

Sens. Actuators B Chem. (5)

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. (to be published).

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[CrossRef]

A. Schweinsberg, S. Hocde, N. N. Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator,” Sens. Actuators B Chem. 123(2), 727–732 (2007).
[CrossRef]

Sensors (Basel) (1)

S. F. Lin, T. J. Ding, J. T. Liu, C. C. Lee, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A guided mode resonance aptasensor for thrombin detection,” Sensors (Basel) 11(9), 8953–8965 (2011).
[CrossRef] [PubMed]

Other (1)

D. W. Lynch and W. R. Hunter, “Gold (Au)”, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Typical GMR structure supported by a substrate. (b) Proposed MaGMR structure with the addition of a metal buffer layer between the substrate and the GMR structure. One unit cell is sketched.

Fig. 2
Fig. 2

(a) Simulated reflection spectra of GMR and MaGMR. The GMR spectrum shows a reflection peak at 0.804 μm and the MaGMR spectrum shows a dip at 0.803 μm; (b) E field intensity inside waveguides. The decay constants for GMR and MaGMR are −0.01375 and −0.01533, respectively.

Fig. 3
Fig. 3

As the normalized grating depth increases, the resonance wavelengths of both GMR and MaGMR also increase. Given the same normalized depth increase, the increase in resonance wavelength is always greater with MaGMR than GMR. The Q value of GMR decreases as the normalized grating depth increases, but there is no obvious variation in the case of MaGMR.

Fig. 4
Fig. 4

(a) Solution for a typical GMR. Two critical angles from the top and bottom interfaces are shown at 40.4° and 45°. As the top R.I. increases, the first critical angle shift is to the right (40.8°), and the phase curve shifts as well; (b) for the solution for the MaGMR only one critical angle from the top interface is observed.

Fig. 5
Fig. 5

Resonance field distribution of (a) GMR and (b) MaGMR; (c) normalized field intensity across the Y axis. The dashed line indicates the bottom interface of the waveguide.

Fig. 6
Fig. 6

Sensitivity of the resonant wavelength for GMR and MaGMR in the (a) TE mode and (b) TM mode, in response to changes of the top medium refractive index.

Fig. 7
Fig. 7

(a) Photograph of the fabricated MaGMR chip and (b) a cross-sectional SEM micrograph. (c) Measured reflectance spectrum drawn against the computed reflectance spectrum under normal incidence for TM polarization. The structural parameters in the calculation are based on the SEM results which are period: 0.603μm, waveguide thickness: 0.24μm, grating depth: 0.04μm and filling factor: 0.49.

Fig. 8
Fig. 8

(a) Real time sensorgram of MaGMR. (b) Resonance wavelength shift of GMR and MaGMR chip, each result is obtained from 3 independent measurements. The slope of the linear fit indicates a bulk sensitivity of 103.29 and 376.78nm/RIU for GMR and MaGMR, respectively.

Tables (1)

Tables Icon

Table 1 Simulation parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k 0 n wg hcos(θ)mπ= ϕ top + ϕ bottom ,m=0,1,2,...,
Λ( n wg sin( θ d ) n c sin( θ i ))= m g λ, m g =0,1,2,...,
k g m g hcot(θ)mπ= ϕ top + ϕ bottom ,m=0,1,2,...,
S=λ/ n c [nm/RIU],

Metrics