Abstract

We present a miniature Fabry-Perot pressure sensor fabricated at the tip of an optical fiber with a pre-written Bragg grating by using UV-molding polymer process. The mold is constructed by integrating an optical fiber of 80 μm diameter with a zirconia ferrule. The optical fiber based mold makes it possible to use optical aligning method to monitor the coupled intensity between the mold-side and replica-side fibers, rendering a maskless alignment process with a submicrometer accuracy. A polymer-metal composite thin diaphragm is employed as the pressure transducer. The overall sensor size is around 200 μm in diameter. Experimental study shows that the sensor exhibits a good linearity over a pressure range of 1.9-7.9 psi, with a sensitivity of 0.0106 μm/psi. The fiber Bragg grating is exploited for simultaneous temperature measurements or compensation for temperature effects in pressure readings. The sensor is expected to benefit many fronts that require miniature and inexpensive sensors for reliable pressure measurement, especially biomedical applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [CrossRef]
  2. R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38(10), 974–981 (1991).
    [CrossRef] [PubMed]
  3. D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, “Novel MEMS pressure and temperature sensors fabricated on optical fibers,” J. Micromech. Microeng. 12(3), 229–235 (2002).
    [CrossRef]
  4. M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
    [CrossRef]
  5. D. Donlagic and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett. 30(16), 2071–2073 (2005).
    [CrossRef] [PubMed]
  6. J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
    [CrossRef] [PubMed]
  7. W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber,” Opt. Express 17(19), 16613–16618 (2009).
    [CrossRef] [PubMed]
  8. K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
    [CrossRef]
  9. G. Hill, R. Melamud, A. Davenport, F. Declercq, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
    [CrossRef]
  10. H. Bae, X. M. Zhang, H. Liu, and M. Yu, “Miniature surface-mountable Fabry-Perot pressure sensor constructed with a 45 ° angled fiber,” Opt. Lett. 35(10), 1701–1703 (2010).
    [CrossRef] [PubMed]
  11. E. S. Olson, “Observing middle and inner ear mechanics with novel intracochlear pressure sensors,” J. Acoust. Soc. Am. 103(6), 3445–3463 (1998).
    [CrossRef] [PubMed]
  12. E. Cibula and D. Donlagić, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
    [CrossRef] [PubMed]
  13. S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45(22), 5590–5596 (2006).
    [CrossRef] [PubMed]
  14. S. Nesson, M. Yu, X. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008).
    [CrossRef] [PubMed]
  15. W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbomachinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
    [CrossRef]
  16. F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry–Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett. 37(2), 133–135 (2012).
    [CrossRef]
  17. Q. Wang, L. Zhang, C. Sun, and Q. Yu, “Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement,” IEEE Sens. J. 8(11), 1879–1883 (2008).
    [CrossRef]
  18. K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
    [CrossRef]
  19. J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry–Pérot fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 18(10), 1134–1136 (2006).
    [CrossRef]
  20. S. Aref, H. Latifi, M. Zibaii, and M. Afshari, “Fiber optic Fabry–Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007).
    [CrossRef]
  21. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
    [CrossRef]
  22. S. M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
    [CrossRef]
  23. M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, and K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1(11), 384–385 (1989).
    [CrossRef]
  24. S. Ahn, M. Choi, H. Bae, J. Lim, H. Myung, H. Kim, and S. Kang, “Design and fabrication of micro optical film by ultraviolet roll imprinting,” Jpn. J. Appl. Phys. 46(8B), 5478–5484 (2007).
    [CrossRef]
  25. J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of hybrid microoptics using UV imprinting process with shrinkage compensation method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008).
    [CrossRef]
  26. B. Kim, M. Choi, H. Kim, J. Lim, and S. Kang, “Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination,” Opt. Express 17(20), 17916–17927 (2009).
    [CrossRef] [PubMed]
  27. P. Dannberg, L. Erdmann, A. Krehl, C. Wachter, and A. Brauer, “Integration of optical interconnects and optoelectronic elements on wafer-scale,” Mater. Sci. Semicond. Process. 3(5-6), 437–441 (2000).
    [CrossRef]
  28. J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed UV-nanoimprint lithography tool,” Microelectron. Eng. 85(5-6), 861–865 (2008).
    [CrossRef]
  29. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43(22), 4303–4310 (2004).
    [CrossRef] [PubMed]
  30. B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
    [CrossRef]
  31. T. Liu, G. F. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fiber Bragg grating sensor and an extrinsic Fabry-Perot sensor,” Proc. SPIE 3042, 203–212 (1997).
    [CrossRef]
  32. J. Ma, W. Tang, and W. Zhou, “Optical-fiber sensor for simultaneous measurement of pressure and temperature: analysis of cross sensitivity,” Appl. Opt. 35(25), 5206–5209 (1996).
    [CrossRef] [PubMed]
  33. X. Hu, D. Liang, J. Zeng, and G. Lu, “A long period grating for simultaneous measurement of temperature and strain based on support vector regression,” J. Intell. Mater. Syst. Struct. 21(10), 955–959 (2010).
    [CrossRef]

2012

2010

H. Bae, X. M. Zhang, H. Liu, and M. Yu, “Miniature surface-mountable Fabry-Perot pressure sensor constructed with a 45 ° angled fiber,” Opt. Lett. 35(10), 1701–1703 (2010).
[CrossRef] [PubMed]

X. Hu, D. Liang, J. Zeng, and G. Lu, “A long period grating for simultaneous measurement of temperature and strain based on support vector regression,” J. Intell. Mater. Syst. Struct. 21(10), 955–959 (2010).
[CrossRef]

2009

2008

Q. Wang, L. Zhang, C. Sun, and Q. Yu, “Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement,” IEEE Sens. J. 8(11), 1879–1883 (2008).
[CrossRef]

S. Nesson, M. Yu, X. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008).
[CrossRef] [PubMed]

J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of hybrid microoptics using UV imprinting process with shrinkage compensation method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008).
[CrossRef]

J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed UV-nanoimprint lithography tool,” Microelectron. Eng. 85(5-6), 861–865 (2008).
[CrossRef]

2007

S. Ahn, M. Choi, H. Bae, J. Lim, H. Myung, H. Kim, and S. Kang, “Design and fabrication of micro optical film by ultraviolet roll imprinting,” Jpn. J. Appl. Phys. 46(8B), 5478–5484 (2007).
[CrossRef]

S. Aref, H. Latifi, M. Zibaii, and M. Afshari, “Fiber optic Fabry–Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007).
[CrossRef]

G. Hill, R. Melamud, A. Davenport, F. Declercq, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[CrossRef]

2006

Y. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45(22), 5590–5596 (2006).
[CrossRef] [PubMed]

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry–Pérot fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 18(10), 1134–1136 (2006).
[CrossRef]

2005

2004

2003

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[CrossRef]

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

S. M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[CrossRef]

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[CrossRef]

2002

D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, “Novel MEMS pressure and temperature sensors fabricated on optical fibers,” J. Micromech. Microeng. 12(3), 229–235 (2002).
[CrossRef]

2000

P. Dannberg, L. Erdmann, A. Krehl, C. Wachter, and A. Brauer, “Integration of optical interconnects and optoelectronic elements on wafer-scale,” Mater. Sci. Semicond. Process. 3(5-6), 437–441 (2000).
[CrossRef]

1999

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbomachinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[CrossRef]

1998

E. S. Olson, “Observing middle and inner ear mechanics with novel intracochlear pressure sensors,” J. Acoust. Soc. Am. 103(6), 3445–3463 (1998).
[CrossRef] [PubMed]

1997

T. Liu, G. F. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fiber Bragg grating sensor and an extrinsic Fabry-Perot sensor,” Proc. SPIE 3042, 203–212 (1997).
[CrossRef]

1996

1991

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38(10), 974–981 (1991).
[CrossRef] [PubMed]

1989

M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, and K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1(11), 384–385 (1989).
[CrossRef]

Abeysinghe, D. C.

D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, “Novel MEMS pressure and temperature sensors fabricated on optical fibers,” J. Micromech. Microeng. 12(3), 229–235 (2002).
[CrossRef]

Afromowitz, M. A.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38(10), 974–981 (1991).
[CrossRef] [PubMed]

Afshari, M.

S. Aref, H. Latifi, M. Zibaii, and M. Afshari, “Fiber optic Fabry–Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007).
[CrossRef]

Ahn, S.

S. Ahn, M. Choi, H. Bae, J. Lim, H. Myung, H. Kim, and S. Kang, “Design and fabrication of micro optical film by ultraviolet roll imprinting,” Jpn. J. Appl. Phys. 46(8B), 5478–5484 (2007).
[CrossRef]

Anderson, S. J.

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[CrossRef]

Aoyama, S.

M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, and K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1(11), 384–385 (1989).
[CrossRef]

Aref, S.

S. Aref, H. Latifi, M. Zibaii, and M. Afshari, “Fiber optic Fabry–Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007).
[CrossRef]

Bae, H.

H. Bae, X. M. Zhang, H. Liu, and M. Yu, “Miniature surface-mountable Fabry-Perot pressure sensor constructed with a 45 ° angled fiber,” Opt. Lett. 35(10), 1701–1703 (2010).
[CrossRef] [PubMed]

S. Ahn, M. Choi, H. Bae, J. Lim, H. Myung, H. Kim, and S. Kang, “Design and fabrication of micro optical film by ultraviolet roll imprinting,” Jpn. J. Appl. Phys. 46(8B), 5478–5484 (2007).
[CrossRef]

Barton, J. S.

S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45(22), 5590–5596 (2006).
[CrossRef] [PubMed]

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[CrossRef]

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbomachinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[CrossRef]

Bennion, I.

T. Liu, G. F. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fiber Bragg grating sensor and an extrinsic Fabry-Perot sensor,” Proc. SPIE 3042, 203–212 (1997).
[CrossRef]

Boyd, J. T.

D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, “Novel MEMS pressure and temperature sensors fabricated on optical fibers,” J. Micromech. Microeng. 12(3), 229–235 (2002).
[CrossRef]

Brauer, A.

P. Dannberg, L. Erdmann, A. Krehl, C. Wachter, and A. Brauer, “Integration of optical interconnects and optoelectronic elements on wafer-scale,” Mater. Sci. Semicond. Process. 3(5-6), 437–441 (2000).
[CrossRef]

Bräuer, A.

Braune, T.

Bremer, K.

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

Chan, I.

G. Hill, R. Melamud, A. Davenport, F. Declercq, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[CrossRef]

Chana, K. S.

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[CrossRef]

Chen, J.

Choi, K.

J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed UV-nanoimprint lithography tool,” Microelectron. Eng. 85(5-6), 861–865 (2008).
[CrossRef]

Choi, M.

B. Kim, M. Choi, H. Kim, J. Lim, and S. Kang, “Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination,” Opt. Express 17(20), 17916–17927 (2009).
[CrossRef] [PubMed]

J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of hybrid microoptics using UV imprinting process with shrinkage compensation method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008).
[CrossRef]

S. Ahn, M. Choi, H. Bae, J. Lim, H. Myung, H. Kim, and S. Kang, “Design and fabrication of micro optical film by ultraviolet roll imprinting,” Jpn. J. Appl. Phys. 46(8B), 5478–5484 (2007).
[CrossRef]

Cibula, E.

Cooper, K. L.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry–Pérot fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 18(10), 1134–1136 (2006).
[CrossRef]

J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
[CrossRef] [PubMed]

Dannberg, P.

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43(22), 4303–4310 (2004).
[CrossRef] [PubMed]

P. Dannberg, L. Erdmann, A. Krehl, C. Wachter, and A. Brauer, “Integration of optical interconnects and optoelectronic elements on wafer-scale,” Mater. Sci. Semicond. Process. 3(5-6), 437–441 (2000).
[CrossRef]

Dasgupta, S.

D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, “Novel MEMS pressure and temperature sensors fabricated on optical fibers,” J. Micromech. Microeng. 12(3), 229–235 (2002).
[CrossRef]

Davenport, A.

G. Hill, R. Melamud, A. Davenport, F. Declercq, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[CrossRef]

Declercq, F.

G. Hill, R. Melamud, A. Davenport, F. Declercq, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[CrossRef]

Donlagic, D.

Duan, Y. H.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[CrossRef]

Duparré, J.

Erdmann, L.

P. Dannberg, L. Erdmann, A. Krehl, C. Wachter, and A. Brauer, “Integration of optical interconnects and optoelectronic elements on wafer-scale,” Mater. Sci. Semicond. Process. 3(5-6), 437–441 (2000).
[CrossRef]

Esashi, M.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[CrossRef]

Fernando, G. F.

T. Liu, G. F. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fiber Bragg grating sensor and an extrinsic Fabry-Perot sensor,” Proc. SPIE 3042, 203–212 (1997).
[CrossRef]

Gander, M. J.

S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45(22), 5590–5596 (2006).
[CrossRef] [PubMed]

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[CrossRef]

Haga, Y.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[CrossRef]

Hartl, J. C.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38(10), 974–981 (1991).
[CrossRef] [PubMed]

Hartwell, P.

G. Hill, R. Melamud, A. Davenport, F. Declercq, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[CrossRef]

Hill, G.

G. Hill, R. Melamud, A. Davenport, F. Declercq, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[CrossRef]

Houlihan, F. M.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Hsieh, A. H.

S. Nesson, M. Yu, X. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008).
[CrossRef] [PubMed]

Hu, X.

X. Hu, D. Liang, J. Zeng, and G. Lu, “A long period grating for simultaneous measurement of temperature and strain based on support vector regression,” J. Intell. Mater. Syst. Struct. 21(10), 955–959 (2010).
[CrossRef]

Huang, Z. Y.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[CrossRef]

Huo, W.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[CrossRef]

Imanaka, K.

M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, and K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1(11), 384–385 (1989).
[CrossRef]

Jackson, D. A.

T. Liu, G. F. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fiber Bragg grating sensor and an extrinsic Fabry-Perot sensor,” Proc. SPIE 3042, 203–212 (1997).
[CrossRef]

Jackson, H. E.

D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, “Novel MEMS pressure and temperature sensors fabricated on optical fibers,” J. Micromech. Microeng. 12(3), 229–235 (2002).
[CrossRef]

Jones, J. D. C.

S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45(22), 5590–5596 (2006).
[CrossRef] [PubMed]

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[CrossRef]

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbomachinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[CrossRef]

Jones, T. V.

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[CrossRef]

Kang, S.

B. Kim, M. Choi, H. Kim, J. Lim, and S. Kang, “Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination,” Opt. Express 17(20), 17916–17927 (2009).
[CrossRef] [PubMed]

J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of hybrid microoptics using UV imprinting process with shrinkage compensation method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008).
[CrossRef]

S. Ahn, M. Choi, H. Bae, J. Lim, H. Myung, H. Kim, and S. Kang, “Design and fabrication of micro optical film by ultraviolet roll imprinting,” Jpn. J. Appl. Phys. 46(8B), 5478–5484 (2007).
[CrossRef]

S. M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[CrossRef]

Kilpatrick, J. M.

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbomachinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[CrossRef]

Kim, B.

Kim, G.

J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed UV-nanoimprint lithography tool,” Microelectron. Eng. 85(5-6), 861–865 (2008).
[CrossRef]

Kim, H.

B. Kim, M. Choi, H. Kim, J. Lim, and S. Kang, “Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination,” Opt. Express 17(20), 17916–17927 (2009).
[CrossRef] [PubMed]

J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of hybrid microoptics using UV imprinting process with shrinkage compensation method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008).
[CrossRef]

S. Ahn, M. Choi, H. Bae, J. Lim, H. Myung, H. Kim, and S. Kang, “Design and fabrication of micro optical film by ultraviolet roll imprinting,” Jpn. J. Appl. Phys. 46(8B), 5478–5484 (2007).
[CrossRef]

Kim, S. M.

S. M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[CrossRef]

Klotzbuecher, T.

Kolodner, P.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Krehl, A.

P. Dannberg, L. Erdmann, A. Krehl, C. Wachter, and A. Brauer, “Integration of optical interconnects and optoelectronic elements on wafer-scale,” Mater. Sci. Semicond. Process. 3(5-6), 437–441 (2000).
[CrossRef]

Kunnavakkam, M. V.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Latifi, H.

S. Aref, H. Latifi, M. Zibaii, and M. Afshari, “Fiber optic Fabry–Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007).
[CrossRef]

Lee, J.

J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed UV-nanoimprint lithography tool,” Microelectron. Eng. 85(5-6), 861–865 (2008).
[CrossRef]

Leen, G.

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

Lewis, E.

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

Li, C.

Liang, D.

X. Hu, D. Liang, J. Zeng, and G. Lu, “A long period grating for simultaneous measurement of temperature and strain based on support vector regression,” J. Intell. Mater. Syst. Struct. 21(10), 955–959 (2010).
[CrossRef]

Liddle, J. A.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Lim, J.

B. Kim, M. Choi, H. Kim, J. Lim, and S. Kang, “Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination,” Opt. Express 17(20), 17916–17927 (2009).
[CrossRef] [PubMed]

J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of hybrid microoptics using UV imprinting process with shrinkage compensation method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008).
[CrossRef]

S. Ahn, M. Choi, H. Bae, J. Lim, H. Myung, H. Kim, and S. Kang, “Design and fabrication of micro optical film by ultraviolet roll imprinting,” Jpn. J. Appl. Phys. 46(8B), 5478–5484 (2007).
[CrossRef]

Liu, H.

Liu, T.

T. Liu, G. F. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fiber Bragg grating sensor and an extrinsic Fabry-Perot sensor,” Proc. SPIE 3042, 203–212 (1997).
[CrossRef]

Lochmann, S.

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

Lu, G.

X. Hu, D. Liang, J. Zeng, and G. Lu, “A long period grating for simultaneous measurement of temperature and strain based on support vector regression,” J. Intell. Mater. Syst. Struct. 21(10), 955–959 (2010).
[CrossRef]

Lu, L.

Lu, W.

Ma, J.

MacPherson, W. N.

S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45(22), 5590–5596 (2006).
[CrossRef] [PubMed]

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[CrossRef]

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbomachinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[CrossRef]

May, R. G.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[CrossRef]

Melamud, R.

G. Hill, R. Melamud, A. Davenport, F. Declercq, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[CrossRef]

Mitchell, G. L.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38(10), 974–981 (1991).
[CrossRef] [PubMed]

Moss, B.

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

Mueller, I.

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

Myung, H.

S. Ahn, M. Choi, H. Bae, J. Lim, H. Myung, H. Kim, and S. Kang, “Design and fabrication of micro optical film by ultraviolet roll imprinting,” Jpn. J. Appl. Phys. 46(8B), 5478–5484 (2007).
[CrossRef]

Nalamasu, O.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Nesson, S.

S. Nesson, M. Yu, X. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008).
[CrossRef] [PubMed]

Niezrecki, C.

Ogata, S.

M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, and K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1(11), 384–385 (1989).
[CrossRef]

Olson, E. S.

E. S. Olson, “Observing middle and inner ear mechanics with novel intracochlear pressure sensors,” J. Acoust. Soc. Am. 103(6), 3445–3463 (1998).
[CrossRef] [PubMed]

Ott, J.

Park, S.

J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed UV-nanoimprint lithography tool,” Microelectron. Eng. 85(5-6), 861–865 (2008).
[CrossRef]

Peng, W.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[CrossRef]

Pickrell, G. R.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry–Pérot fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 18(10), 1134–1136 (2006).
[CrossRef]

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[CrossRef]

Pruitt, B.

G. Hill, R. Melamud, A. Davenport, F. Declercq, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[CrossRef]

Qi, B.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[CrossRef]

Rao, Y.

Y. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Rao, Y. J.

T. Liu, G. F. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fiber Bragg grating sensor and an extrinsic Fabry-Perot sensor,” Proc. SPIE 3042, 203–212 (1997).
[CrossRef]

Ren, D.

Reuben, R. L.

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[CrossRef]

Rogers, J. A.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Saaski, E.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38(10), 974–981 (1991).
[CrossRef] [PubMed]

Schlax, M.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Schmitz, F.

Schreiber, P.

Shi, X.

Stevens, R.

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[CrossRef]

Sun, C.

Q. Wang, L. Zhang, C. Sun, and Q. Yu, “Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement,” IEEE Sens. J. 8(11), 1879–1883 (2008).
[CrossRef]

Tang, W.

Tanigami, M.

M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, and K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1(11), 384–385 (1989).
[CrossRef]

Tian, Y.

Totsu, K.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[CrossRef]

Tünnermann, A.

Wachter, C.

P. Dannberg, L. Erdmann, A. Krehl, C. Wachter, and A. Brauer, “Integration of optical interconnects and optoelectronic elements on wafer-scale,” Mater. Sci. Semicond. Process. 3(5-6), 437–441 (2000).
[CrossRef]

Wang, A.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry–Pérot fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 18(10), 1134–1136 (2006).
[CrossRef]

J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
[CrossRef] [PubMed]

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[CrossRef]

Wang, Q.

Q. Wang, L. Zhang, C. Sun, and Q. Yu, “Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement,” IEEE Sens. J. 8(11), 1879–1883 (2008).
[CrossRef]

Wang, W.

Wang, X.

Watson, S.

Wolthuis, R. A.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38(10), 974–981 (1991).
[CrossRef] [PubMed]

Wu, N.

Xiao, H.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[CrossRef]

Xu, F.

Xu, J.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry–Pérot fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 18(10), 1134–1136 (2006).
[CrossRef]

J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
[CrossRef] [PubMed]

Xu, J. C.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[CrossRef]

Yamashita, T.

M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, and K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1(11), 384–385 (1989).
[CrossRef]

Yu, B.

Yu, M.

H. Bae, X. M. Zhang, H. Liu, and M. Yu, “Miniature surface-mountable Fabry-Perot pressure sensor constructed with a 45 ° angled fiber,” Opt. Lett. 35(10), 1701–1703 (2010).
[CrossRef] [PubMed]

S. Nesson, M. Yu, X. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008).
[CrossRef] [PubMed]

Yu, Q.

Q. Wang, L. Zhang, C. Sun, and Q. Yu, “Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement,” IEEE Sens. J. 8(11), 1879–1883 (2008).
[CrossRef]

Zeng, J.

X. Hu, D. Liang, J. Zeng, and G. Lu, “A long period grating for simultaneous measurement of temperature and strain based on support vector regression,” J. Intell. Mater. Syst. Struct. 21(10), 955–959 (2010).
[CrossRef]

Zhang, L.

Q. Wang, L. Zhang, C. Sun, and Q. Yu, “Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement,” IEEE Sens. J. 8(11), 1879–1883 (2008).
[CrossRef]

T. Liu, G. F. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fiber Bragg grating sensor and an extrinsic Fabry-Perot sensor,” Proc. SPIE 3042, 203–212 (1997).
[CrossRef]

Zhang, P.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[CrossRef]

Zhang, X.

S. Nesson, M. Yu, X. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008).
[CrossRef] [PubMed]

Zhang, X. M.

Zhou, W.

Zibaii, M.

S. Aref, H. Latifi, M. Zibaii, and M. Afshari, “Fiber optic Fabry–Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Miniature temperature-insensitive Fabry–Pérot fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 18(10), 1134–1136 (2006).
[CrossRef]

M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, and K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1(11), 384–385 (1989).
[CrossRef]

IEEE Sens. J.

Q. Wang, L. Zhang, C. Sun, and Q. Yu, “Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement,” IEEE Sens. J. 8(11), 1879–1883 (2008).
[CrossRef]

M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE Sens. J. 3(1), 102–107 (2003).
[CrossRef]

IEEE Trans. Biomed. Eng.

R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38(10), 974–981 (1991).
[CrossRef] [PubMed]

J. Acoust. Soc. Am.

E. S. Olson, “Observing middle and inner ear mechanics with novel intracochlear pressure sensors,” J. Acoust. Soc. Am. 103(6), 3445–3463 (1998).
[CrossRef] [PubMed]

J. Biomed. Opt.

S. Nesson, M. Yu, X. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008).
[CrossRef] [PubMed]

J. Intell. Mater. Syst. Struct.

X. Hu, D. Liang, J. Zeng, and G. Lu, “A long period grating for simultaneous measurement of temperature and strain based on support vector regression,” J. Intell. Mater. Syst. Struct. 21(10), 955–959 (2010).
[CrossRef]

J. Micromech. Microeng.

D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, “Novel MEMS pressure and temperature sensors fabricated on optical fibers,” J. Micromech. Microeng. 12(3), 229–235 (2002).
[CrossRef]

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[CrossRef]

J. Phys. Conf. Ser.

K. Bremer, E. Lewis, B. Moss, G. Leen, S. Lochmann, and I. Mueller, “Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature,” J. Phys. Conf. Ser. 178, 012016 (2009).
[CrossRef]

J. Phys. D Appl. Phys.

S. M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

S. Ahn, M. Choi, H. Bae, J. Lim, H. Myung, H. Kim, and S. Kang, “Design and fabrication of micro optical film by ultraviolet roll imprinting,” Jpn. J. Appl. Phys. 46(8B), 5478–5484 (2007).
[CrossRef]

J. Lim, M. Choi, H. Kim, and S. Kang, “Fabrication of hybrid microoptics using UV imprinting process with shrinkage compensation method,” Jpn. J. Appl. Phys. 47(8), 6719–6722 (2008).
[CrossRef]

Mater. Sci. Semicond. Process.

P. Dannberg, L. Erdmann, A. Krehl, C. Wachter, and A. Brauer, “Integration of optical interconnects and optoelectronic elements on wafer-scale,” Mater. Sci. Semicond. Process. 3(5-6), 437–441 (2000).
[CrossRef]

Microelectron. Eng.

J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed UV-nanoimprint lithography tool,” Microelectron. Eng. 85(5-6), 861–865 (2008).
[CrossRef]

Opt. Commun.

S. Aref, H. Latifi, M. Zibaii, and M. Afshari, “Fiber optic Fabry–Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007).
[CrossRef]

Opt. Eng.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

Y. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Opt. Lett.

Proc. SPIE

T. Liu, G. F. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fiber Bragg grating sensor and an extrinsic Fabry-Perot sensor,” Proc. SPIE 3042, 203–212 (1997).
[CrossRef]

Rev. Sci. Instrum.

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. C. Jones, “Miniature fiber optic pressure sensor for turbomachinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[CrossRef]

Sens. Actuators A Phys.

G. Hill, R. Melamud, A. Davenport, F. Declercq, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of UV-molded FP pressure sensor with temperature compensation.

Fig. 2
Fig. 2

Fabrication process of the mold for creating FP cavity.

Fig. 3
Fig. 3

(a) Microscopic image of the fabricated mold. (b) Scanning electron micrograph (SEM) of a molded optical cavity.

Fig. 4
Fig. 4

Fabrication process of the UV-molded pressure sensor.

Fig. 5
Fig. 5

Coupled intensity as a function of the misalignment between the sensing fiber and the fiber in the mold during the alignment process. The results were obtained experimentally with a movement step of 0.5 μm from the stage.

Fig. 6
Fig. 6

3D surface topology of (a) the mold and (b) molded cavity.

Fig. 7
Fig. 7

Topology comparison of the mold and the replicated cavity.

Figure 8
Figure 8

SEM images of (a) the fabricated sensor and (b) the diaphragm close-up.

Fig. 9
Fig. 9

(a) A representative interference spectrum obtained by using the fabricated sensor with a built-in Bragg grating. (b) Schematic of the experimental arrangement for pressure measurement.

Fig. 10
Fig. 10

(a) Calibration curve of the sensor at room temperature (24 °C), (b) calibration curves of the sensor at three difference temperatures (30, 40, and 50 °C).

Fig. 11
Fig. 11

(a) Temperature sensitivity of the pressure sensor. (b) Temperature sensitivity of the FBG embedded in the pressure sensor.

Tables (1)

Tables Icon

Table 1 Parameters of two representative sensors fabricated by UV molding process

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L= λ 1 λ 2 2FSR
[ Δ λ FBG ΔL ]=[ 0 0.0120nm/K 10.6nm/psi 15.8nm/K ][ ΔP ΔT ] =S[ ΔP ΔT ],
[ ΔP ΔT ]= S 1 [ Δ λ FBG ΔL ].

Metrics