Abstract

Tandem organic light emitting diodes (OLEDs) are ideal for lighting applications due to their low working current density at high brightness. In this work, we have studied an efficient electron transporting layer of KBH4 doped 9,10-bis(3-(pyridin-3-yl)phenyl)anthracene (DPyPA) which is located adjacent to charge generation layer of MoO3/NPB. The excellent transporting property of the DPyPA:KBH4 layer helps the tandem OLED to achieve a lower voltage than the tandem device with the widely used tris-(8-hydroxyquinoline)aluminum:Li. For the tandem white OLED with a fluorescent blue unit and a phosphorescent yellow unit, we’ve achieved a high current efficiency of 75 cd/A, which can be further improved to 120 cd/A by attaching a diffuser layer.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. S. Liao and K. P. Klubek, “Power efficiency improvement in a tandem organic light-emitting diode,” Appl. Phys. Lett. 92(22), 223311 (2008).
    [CrossRef]
  2. Q. Wang, J. Q. Ding, Z. Q. Zhang, D. G. Ma, Y. X. Cheng, L. X. Wang, and F. S. Wang, “A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer,” J. Appl. Phys. 105(7), 076101 (2009).
    [CrossRef]
  3. H.-D. Lee, S. J. Lee, K. Y. Lee, B. S. Kim, S. H. Lee, H. D. Bae, and Y. H. Tak, “High Efficiency Tandem Organic Light-Emitting Diodes Using Interconnecting Layer,” Jpn. J. Appl. Phys. 48(8), 082101 (2009).
    [CrossRef]
  4. T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, and J. Kido, “Multiphoton organic EL device having charge generation layer,” SID Symposium Digest of Technical Papers 34, 979–981 (2003).
  5. M. Terai and T. Tsutsui, “Electric-field-assisted bipolar charge generation from internal charge separation zone composed of doped organic bilayer,” Appl. Phys. Lett. 90(8), 083502 (2007).
    [CrossRef]
  6. M. Ho, T. M. Chen, P. C. Yeh, S. W. Hwang, and C. H. Chen, “Highly efficient p-i-n white organic light emitting devices with tandem structure,” Appl. Phys. Lett. 91(23), 233507 (2007).
    [CrossRef]
  7. S. Hamwi, J. Meyer, M. Kröger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, “The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes,” Adv. Funct. Mater. 20(11), 1762–1766 (2010).
    [CrossRef]
  8. T. Chiba, Y.-J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe, and J. Kido, “Ultra-high efficiency by multiple emission from stacked organic light-emitting devices,” Org. Electron. 12(4), 710–715 (2011).
    [CrossRef]
  9. L. S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks, and D. L. Comfort, “Tandem organic light-emitting mode using hexaazatriphenylene hexacarbonitrile in the intermediate connector,” Adv. Mater. (Deerfield Beach Fla.) 20(2), 324–329 (2008).
    [CrossRef]
  10. M. Yokoyama, S. H. Su, C. C. Hou, C. T. Wu, and C. H. Kung, “Highly efficient white organic light-emitting diodes with a p-i-n tandem structure,” Jpn. J. Appl. Phys. 50(4), 04DK06 (2011).
    [CrossRef]
  11. M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of connecting unit architecture on the performance of tandem organic light-emitting devices,” Adv. Funct. Mater. 17(14), 2509–2514 (2007).
    [CrossRef]
  12. L. Duan, D. Zhang, Y. Li, G. Zhang, and Y. Qiu, “Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host,” Opt. Express 19(S6Suppl 6), A1265–A1271 (2011).
    [CrossRef] [PubMed]
  13. T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett. 76(10), 1243–1245 (2000).
    [CrossRef]
  14. S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324 (2002).
    [CrossRef]
  15. H. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys. 96(3), 1649–1651 (2004).
    [CrossRef]
  16. T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, “Improvement of coupling-out efficiency in organic electroluminescent devices by addition of a diffusive layer,” J. Appl. Phys. 96(11), 6016 (2004).
    [CrossRef]
  17. Y. H. Cheng, J. L. Wu, C. H. Cheng, K. C. Syao, and M. C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett. 90(9), 091102 (2007).
    [CrossRef]
  18. T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, “Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1149–1152 (2001).
    [CrossRef]
  19. Q. Liu, D. Zhang, L. Duan, G. Zhang, L. Wang, Y. Cao, and Y. Qiu, “Thermally decomposable kbh4 as an efficient electron injection material for organic light-emitting diodes,” Jpn. J. Appl. Phys. 48(8), 080205 (2009).
    [CrossRef]
  20. Y. Sun, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “A pyridine-containing anthracene derivative with high electron and hole mobilities for highly efficient and stable fluorescent organic light-emitting diodes,” Adv. Funct. Mater. 21(10), 1881–1886 (2011).
    [CrossRef]
  21. J. H. Lee, M. H. Wu, C. C. Chao, H. L. Chen, and M. K. Leung, “High efficiency and long lifetime OLED based on a metal-doped electron transport layer,” Chem. Phys. Lett. 416(4-6), 234–237 (2005).
    [CrossRef]
  22. W. Brütting, S. Berleb, and A. G. Mückl, “Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices,” Synth. Met. 122(1), 99–104 (2001).
    [CrossRef]
  23. T. Tsuboi, S.-W. Liu, M.-F. Wu, and C.-T. Chen, “Spectroscopic and electrical characteristics of highly efficient tetraphenylsilane-carbazole organic compound as host material for blue organic light emitting diodes,” Org. Electron. 10(7), 1372–1377 (2009).
    [CrossRef]
  24. G. Paasch, A. Nesterov, and S. Scheinert, “Simulation of organic light emitting diodes: influence of charges localized near the electrodes,” Synth. Met. 139(2), 425–432 (2003).
    [CrossRef]
  25. C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics,” Appl. Phys. Lett. 94(10), 103302 (2009).
    [CrossRef]

2011

T. Chiba, Y.-J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe, and J. Kido, “Ultra-high efficiency by multiple emission from stacked organic light-emitting devices,” Org. Electron. 12(4), 710–715 (2011).
[CrossRef]

M. Yokoyama, S. H. Su, C. C. Hou, C. T. Wu, and C. H. Kung, “Highly efficient white organic light-emitting diodes with a p-i-n tandem structure,” Jpn. J. Appl. Phys. 50(4), 04DK06 (2011).
[CrossRef]

L. Duan, D. Zhang, Y. Li, G. Zhang, and Y. Qiu, “Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host,” Opt. Express 19(S6Suppl 6), A1265–A1271 (2011).
[CrossRef] [PubMed]

Y. Sun, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “A pyridine-containing anthracene derivative with high electron and hole mobilities for highly efficient and stable fluorescent organic light-emitting diodes,” Adv. Funct. Mater. 21(10), 1881–1886 (2011).
[CrossRef]

2010

S. Hamwi, J. Meyer, M. Kröger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, “The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes,” Adv. Funct. Mater. 20(11), 1762–1766 (2010).
[CrossRef]

2009

Q. Wang, J. Q. Ding, Z. Q. Zhang, D. G. Ma, Y. X. Cheng, L. X. Wang, and F. S. Wang, “A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer,” J. Appl. Phys. 105(7), 076101 (2009).
[CrossRef]

H.-D. Lee, S. J. Lee, K. Y. Lee, B. S. Kim, S. H. Lee, H. D. Bae, and Y. H. Tak, “High Efficiency Tandem Organic Light-Emitting Diodes Using Interconnecting Layer,” Jpn. J. Appl. Phys. 48(8), 082101 (2009).
[CrossRef]

Q. Liu, D. Zhang, L. Duan, G. Zhang, L. Wang, Y. Cao, and Y. Qiu, “Thermally decomposable kbh4 as an efficient electron injection material for organic light-emitting diodes,” Jpn. J. Appl. Phys. 48(8), 080205 (2009).
[CrossRef]

T. Tsuboi, S.-W. Liu, M.-F. Wu, and C.-T. Chen, “Spectroscopic and electrical characteristics of highly efficient tetraphenylsilane-carbazole organic compound as host material for blue organic light emitting diodes,” Org. Electron. 10(7), 1372–1377 (2009).
[CrossRef]

C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics,” Appl. Phys. Lett. 94(10), 103302 (2009).
[CrossRef]

2008

L. S. Liao and K. P. Klubek, “Power efficiency improvement in a tandem organic light-emitting diode,” Appl. Phys. Lett. 92(22), 223311 (2008).
[CrossRef]

L. S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks, and D. L. Comfort, “Tandem organic light-emitting mode using hexaazatriphenylene hexacarbonitrile in the intermediate connector,” Adv. Mater. (Deerfield Beach Fla.) 20(2), 324–329 (2008).
[CrossRef]

2007

M. Terai and T. Tsutsui, “Electric-field-assisted bipolar charge generation from internal charge separation zone composed of doped organic bilayer,” Appl. Phys. Lett. 90(8), 083502 (2007).
[CrossRef]

M. Ho, T. M. Chen, P. C. Yeh, S. W. Hwang, and C. H. Chen, “Highly efficient p-i-n white organic light emitting devices with tandem structure,” Appl. Phys. Lett. 91(23), 233507 (2007).
[CrossRef]

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of connecting unit architecture on the performance of tandem organic light-emitting devices,” Adv. Funct. Mater. 17(14), 2509–2514 (2007).
[CrossRef]

Y. H. Cheng, J. L. Wu, C. H. Cheng, K. C. Syao, and M. C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett. 90(9), 091102 (2007).
[CrossRef]

2005

J. H. Lee, M. H. Wu, C. C. Chao, H. L. Chen, and M. K. Leung, “High efficiency and long lifetime OLED based on a metal-doped electron transport layer,” Chem. Phys. Lett. 416(4-6), 234–237 (2005).
[CrossRef]

2004

H. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys. 96(3), 1649–1651 (2004).
[CrossRef]

T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, “Improvement of coupling-out efficiency in organic electroluminescent devices by addition of a diffusive layer,” J. Appl. Phys. 96(11), 6016 (2004).
[CrossRef]

2003

G. Paasch, A. Nesterov, and S. Scheinert, “Simulation of organic light emitting diodes: influence of charges localized near the electrodes,” Synth. Met. 139(2), 425–432 (2003).
[CrossRef]

2002

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324 (2002).
[CrossRef]

2001

W. Brütting, S. Berleb, and A. G. Mückl, “Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices,” Synth. Met. 122(1), 99–104 (2001).
[CrossRef]

T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, “Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1149–1152 (2001).
[CrossRef]

2000

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett. 76(10), 1243–1245 (2000).
[CrossRef]

Bae, H. D.

H.-D. Lee, S. J. Lee, K. Y. Lee, B. S. Kim, S. H. Lee, H. D. Bae, and Y. H. Tak, “High Efficiency Tandem Organic Light-Emitting Diodes Using Interconnecting Layer,” Jpn. J. Appl. Phys. 48(8), 082101 (2009).
[CrossRef]

Berleb, S.

W. Brütting, S. Berleb, and A. G. Mückl, “Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices,” Synth. Met. 122(1), 99–104 (2001).
[CrossRef]

Brütting, W.

W. Brütting, S. Berleb, and A. G. Mückl, “Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices,” Synth. Met. 122(1), 99–104 (2001).
[CrossRef]

Cao, Y.

Q. Liu, D. Zhang, L. Duan, G. Zhang, L. Wang, Y. Cao, and Y. Qiu, “Thermally decomposable kbh4 as an efficient electron injection material for organic light-emitting diodes,” Jpn. J. Appl. Phys. 48(8), 080205 (2009).
[CrossRef]

Chan, M. Y.

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of connecting unit architecture on the performance of tandem organic light-emitting devices,” Adv. Funct. Mater. 17(14), 2509–2514 (2007).
[CrossRef]

Chang, C.-K.

C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics,” Appl. Phys. Lett. 94(10), 103302 (2009).
[CrossRef]

Chang, H.-W.

C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics,” Appl. Phys. Lett. 94(10), 103302 (2009).
[CrossRef]

Chao, C. C.

J. H. Lee, M. H. Wu, C. C. Chao, H. L. Chen, and M. K. Leung, “High efficiency and long lifetime OLED based on a metal-doped electron transport layer,” Chem. Phys. Lett. 416(4-6), 234–237 (2005).
[CrossRef]

Chen, C. H.

M. Ho, T. M. Chen, P. C. Yeh, S. W. Hwang, and C. H. Chen, “Highly efficient p-i-n white organic light emitting devices with tandem structure,” Appl. Phys. Lett. 91(23), 233507 (2007).
[CrossRef]

Chen, C.-T.

T. Tsuboi, S.-W. Liu, M.-F. Wu, and C.-T. Chen, “Spectroscopic and electrical characteristics of highly efficient tetraphenylsilane-carbazole organic compound as host material for blue organic light emitting diodes,” Org. Electron. 10(7), 1372–1377 (2009).
[CrossRef]

Chen, H. L.

J. H. Lee, M. H. Wu, C. C. Chao, H. L. Chen, and M. K. Leung, “High efficiency and long lifetime OLED based on a metal-doped electron transport layer,” Chem. Phys. Lett. 416(4-6), 234–237 (2005).
[CrossRef]

Chen, T. M.

M. Ho, T. M. Chen, P. C. Yeh, S. W. Hwang, and C. H. Chen, “Highly efficient p-i-n white organic light emitting devices with tandem structure,” Appl. Phys. Lett. 91(23), 233507 (2007).
[CrossRef]

Cheng, C. H.

Y. H. Cheng, J. L. Wu, C. H. Cheng, K. C. Syao, and M. C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett. 90(9), 091102 (2007).
[CrossRef]

Cheng, Y. H.

Y. H. Cheng, J. L. Wu, C. H. Cheng, K. C. Syao, and M. C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett. 90(9), 091102 (2007).
[CrossRef]

Cheng, Y. X.

Q. Wang, J. Q. Ding, Z. Q. Zhang, D. G. Ma, Y. X. Cheng, L. X. Wang, and F. S. Wang, “A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer,” J. Appl. Phys. 105(7), 076101 (2009).
[CrossRef]

Chiba, T.

T. Chiba, Y.-J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe, and J. Kido, “Ultra-high efficiency by multiple emission from stacked organic light-emitting devices,” Org. Electron. 12(4), 710–715 (2011).
[CrossRef]

Comfort, D. L.

L. S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks, and D. L. Comfort, “Tandem organic light-emitting mode using hexaazatriphenylene hexacarbonitrile in the intermediate connector,” Adv. Mater. (Deerfield Beach Fla.) 20(2), 324–329 (2008).
[CrossRef]

Ding, J. Q.

Q. Wang, J. Q. Ding, Z. Q. Zhang, D. G. Ma, Y. X. Cheng, L. X. Wang, and F. S. Wang, “A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer,” J. Appl. Phys. 105(7), 076101 (2009).
[CrossRef]

Dong, G.

Y. Sun, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “A pyridine-containing anthracene derivative with high electron and hole mobilities for highly efficient and stable fluorescent organic light-emitting diodes,” Adv. Funct. Mater. 21(10), 1881–1886 (2011).
[CrossRef]

Duan, L.

Y. Sun, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “A pyridine-containing anthracene derivative with high electron and hole mobilities for highly efficient and stable fluorescent organic light-emitting diodes,” Adv. Funct. Mater. 21(10), 1881–1886 (2011).
[CrossRef]

L. Duan, D. Zhang, Y. Li, G. Zhang, and Y. Qiu, “Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host,” Opt. Express 19(S6Suppl 6), A1265–A1271 (2011).
[CrossRef] [PubMed]

Q. Liu, D. Zhang, L. Duan, G. Zhang, L. Wang, Y. Cao, and Y. Qiu, “Thermally decomposable kbh4 as an efficient electron injection material for organic light-emitting diodes,” Jpn. J. Appl. Phys. 48(8), 080205 (2009).
[CrossRef]

Forrest, S. R.

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324 (2002).
[CrossRef]

Fujii, H.

T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, “Improvement of coupling-out efficiency in organic electroluminescent devices by addition of a diffusive layer,” J. Appl. Phys. 96(11), 6016 (2004).
[CrossRef]

Fung, M. K.

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of connecting unit architecture on the performance of tandem organic light-emitting devices,” Adv. Funct. Mater. 17(14), 2509–2514 (2007).
[CrossRef]

Hamwi, S.

S. Hamwi, J. Meyer, M. Kröger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, “The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes,” Adv. Funct. Mater. 20(11), 1762–1766 (2010).
[CrossRef]

Hatwar, T. K.

L. S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks, and D. L. Comfort, “Tandem organic light-emitting mode using hexaazatriphenylene hexacarbonitrile in the intermediate connector,” Adv. Mater. (Deerfield Beach Fla.) 20(2), 324–329 (2008).
[CrossRef]

Ho, M.

M. Ho, T. M. Chen, P. C. Yeh, S. W. Hwang, and C. H. Chen, “Highly efficient p-i-n white organic light emitting devices with tandem structure,” Appl. Phys. Lett. 91(23), 233507 (2007).
[CrossRef]

Ho, Y. L.

H. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys. 96(3), 1649–1651 (2004).
[CrossRef]

Hou, C. C.

M. Yokoyama, S. H. Su, C. C. Hou, C. T. Wu, and C. H. Kung, “Highly efficient white organic light-emitting diodes with a p-i-n tandem structure,” Jpn. J. Appl. Phys. 50(4), 04DK06 (2011).
[CrossRef]

Hsu, M.-H.

C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics,” Appl. Phys. Lett. 94(10), 103302 (2009).
[CrossRef]

Hwang, S. W.

M. Ho, T. M. Chen, P. C. Yeh, S. W. Hwang, and C. H. Chen, “Highly efficient p-i-n white organic light emitting devices with tandem structure,” Appl. Phys. Lett. 91(23), 233507 (2007).
[CrossRef]

Juni, N.

T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, “Improvement of coupling-out efficiency in organic electroluminescent devices by addition of a diffusive layer,” J. Appl. Phys. 96(11), 6016 (2004).
[CrossRef]

Kahn, A.

S. Hamwi, J. Meyer, M. Kröger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, “The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes,” Adv. Funct. Mater. 20(11), 1762–1766 (2010).
[CrossRef]

Kawano, K.

T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, “Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1149–1152 (2001).
[CrossRef]

Kido, J.

T. Chiba, Y.-J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe, and J. Kido, “Ultra-high efficiency by multiple emission from stacked organic light-emitting devices,” Org. Electron. 12(4), 710–715 (2011).
[CrossRef]

Kim, B. S.

H.-D. Lee, S. J. Lee, K. Y. Lee, B. S. Kim, S. H. Lee, H. D. Bae, and Y. H. Tak, “High Efficiency Tandem Organic Light-Emitting Diodes Using Interconnecting Layer,” Jpn. J. Appl. Phys. 48(8), 082101 (2009).
[CrossRef]

Klubek, K. P.

L. S. Liao and K. P. Klubek, “Power efficiency improvement in a tandem organic light-emitting diode,” Appl. Phys. Lett. 92(22), 223311 (2008).
[CrossRef]

Kowalsky, W.

S. Hamwi, J. Meyer, M. Kröger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, “The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes,” Adv. Funct. Mater. 20(11), 1762–1766 (2010).
[CrossRef]

Kröger, M.

S. Hamwi, J. Meyer, M. Kröger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, “The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes,” Adv. Funct. Mater. 20(11), 1762–1766 (2010).
[CrossRef]

Kung, C. H.

M. Yokoyama, S. H. Su, C. C. Hou, C. T. Wu, and C. H. Kung, “Highly efficient white organic light-emitting diodes with a p-i-n tandem structure,” Jpn. J. Appl. Phys. 50(4), 04DK06 (2011).
[CrossRef]

Kwok, H. S.

H. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys. 96(3), 1649–1651 (2004).
[CrossRef]

Lai, S. L.

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of connecting unit architecture on the performance of tandem organic light-emitting devices,” Adv. Funct. Mater. 17(14), 2509–2514 (2007).
[CrossRef]

Lau, K. M.

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of connecting unit architecture on the performance of tandem organic light-emitting devices,” Adv. Funct. Mater. 17(14), 2509–2514 (2007).
[CrossRef]

Lee, C. S.

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of connecting unit architecture on the performance of tandem organic light-emitting devices,” Adv. Funct. Mater. 17(14), 2509–2514 (2007).
[CrossRef]

Lee, H.-D.

H.-D. Lee, S. J. Lee, K. Y. Lee, B. S. Kim, S. H. Lee, H. D. Bae, and Y. H. Tak, “High Efficiency Tandem Organic Light-Emitting Diodes Using Interconnecting Layer,” Jpn. J. Appl. Phys. 48(8), 082101 (2009).
[CrossRef]

Lee, J. H.

J. H. Lee, M. H. Wu, C. C. Chao, H. L. Chen, and M. K. Leung, “High efficiency and long lifetime OLED based on a metal-doped electron transport layer,” Chem. Phys. Lett. 416(4-6), 234–237 (2005).
[CrossRef]

Lee, K. Y.

H.-D. Lee, S. J. Lee, K. Y. Lee, B. S. Kim, S. H. Lee, H. D. Bae, and Y. H. Tak, “High Efficiency Tandem Organic Light-Emitting Diodes Using Interconnecting Layer,” Jpn. J. Appl. Phys. 48(8), 082101 (2009).
[CrossRef]

Lee, M. C. M.

Y. H. Cheng, J. L. Wu, C. H. Cheng, K. C. Syao, and M. C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett. 90(9), 091102 (2007).
[CrossRef]

Lee, S. H.

H.-D. Lee, S. J. Lee, K. Y. Lee, B. S. Kim, S. H. Lee, H. D. Bae, and Y. H. Tak, “High Efficiency Tandem Organic Light-Emitting Diodes Using Interconnecting Layer,” Jpn. J. Appl. Phys. 48(8), 082101 (2009).
[CrossRef]

Lee, S. J.

H.-D. Lee, S. J. Lee, K. Y. Lee, B. S. Kim, S. H. Lee, H. D. Bae, and Y. H. Tak, “High Efficiency Tandem Organic Light-Emitting Diodes Using Interconnecting Layer,” Jpn. J. Appl. Phys. 48(8), 082101 (2009).
[CrossRef]

Lee, S. T.

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of connecting unit architecture on the performance of tandem organic light-emitting devices,” Adv. Funct. Mater. 17(14), 2509–2514 (2007).
[CrossRef]

Leung, M. K.

J. H. Lee, M. H. Wu, C. C. Chao, H. L. Chen, and M. K. Leung, “High efficiency and long lifetime OLED based on a metal-doped electron transport layer,” Chem. Phys. Lett. 416(4-6), 234–237 (2005).
[CrossRef]

Li, Y.

Liao, L. S.

L. S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks, and D. L. Comfort, “Tandem organic light-emitting mode using hexaazatriphenylene hexacarbonitrile in the intermediate connector,” Adv. Mater. (Deerfield Beach Fla.) 20(2), 324–329 (2008).
[CrossRef]

L. S. Liao and K. P. Klubek, “Power efficiency improvement in a tandem organic light-emitting diode,” Appl. Phys. Lett. 92(22), 223311 (2008).
[CrossRef]

Liu, C.-C.

C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics,” Appl. Phys. Lett. 94(10), 103302 (2009).
[CrossRef]

Liu, Q.

Q. Liu, D. Zhang, L. Duan, G. Zhang, L. Wang, Y. Cao, and Y. Qiu, “Thermally decomposable kbh4 as an efficient electron injection material for organic light-emitting diodes,” Jpn. J. Appl. Phys. 48(8), 080205 (2009).
[CrossRef]

Liu, S.-H.

C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics,” Appl. Phys. Lett. 94(10), 103302 (2009).
[CrossRef]

Liu, S.-W.

T. Tsuboi, S.-W. Liu, M.-F. Wu, and C.-T. Chen, “Spectroscopic and electrical characteristics of highly efficient tetraphenylsilane-carbazole organic compound as host material for blue organic light emitting diodes,” Org. Electron. 10(7), 1372–1377 (2009).
[CrossRef]

Ma, D. G.

Q. Wang, J. Q. Ding, Z. Q. Zhang, D. G. Ma, Y. X. Cheng, L. X. Wang, and F. S. Wang, “A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer,” J. Appl. Phys. 105(7), 076101 (2009).
[CrossRef]

Meyer, J.

S. Hamwi, J. Meyer, M. Kröger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, “The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes,” Adv. Funct. Mater. 20(11), 1762–1766 (2010).
[CrossRef]

Miyazaki, R.

T. Chiba, Y.-J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe, and J. Kido, “Ultra-high efficiency by multiple emission from stacked organic light-emitting devices,” Org. Electron. 12(4), 710–715 (2011).
[CrossRef]

Möller, S.

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324 (2002).
[CrossRef]

Mückl, A. G.

W. Brütting, S. Berleb, and A. G. Mückl, “Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices,” Synth. Met. 122(1), 99–104 (2001).
[CrossRef]

Nakamura, T.

T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, “Improvement of coupling-out efficiency in organic electroluminescent devices by addition of a diffusive layer,” J. Appl. Phys. 96(11), 6016 (2004).
[CrossRef]

Nakayama, K.

T. Chiba, Y.-J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe, and J. Kido, “Ultra-high efficiency by multiple emission from stacked organic light-emitting devices,” Org. Electron. 12(4), 710–715 (2011).
[CrossRef]

Nesterov, A.

G. Paasch, A. Nesterov, and S. Scheinert, “Simulation of organic light emitting diodes: influence of charges localized near the electrodes,” Synth. Met. 139(2), 425–432 (2003).
[CrossRef]

Paasch, G.

G. Paasch, A. Nesterov, and S. Scheinert, “Simulation of organic light emitting diodes: influence of charges localized near the electrodes,” Synth. Met. 139(2), 425–432 (2003).
[CrossRef]

Peng, H.

H. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys. 96(3), 1649–1651 (2004).
[CrossRef]

Pu, Y.-J.

T. Chiba, Y.-J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe, and J. Kido, “Ultra-high efficiency by multiple emission from stacked organic light-emitting devices,” Org. Electron. 12(4), 710–715 (2011).
[CrossRef]

Qiao, J.

Y. Sun, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “A pyridine-containing anthracene derivative with high electron and hole mobilities for highly efficient and stable fluorescent organic light-emitting diodes,” Adv. Funct. Mater. 21(10), 1881–1886 (2011).
[CrossRef]

Qiu, Y.

Y. Sun, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “A pyridine-containing anthracene derivative with high electron and hole mobilities for highly efficient and stable fluorescent organic light-emitting diodes,” Adv. Funct. Mater. 21(10), 1881–1886 (2011).
[CrossRef]

L. Duan, D. Zhang, Y. Li, G. Zhang, and Y. Qiu, “Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host,” Opt. Express 19(S6Suppl 6), A1265–A1271 (2011).
[CrossRef] [PubMed]

Q. Liu, D. Zhang, L. Duan, G. Zhang, L. Wang, Y. Cao, and Y. Qiu, “Thermally decomposable kbh4 as an efficient electron injection material for organic light-emitting diodes,” Jpn. J. Appl. Phys. 48(8), 080205 (2009).
[CrossRef]

Ricks, M. L.

L. S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks, and D. L. Comfort, “Tandem organic light-emitting mode using hexaazatriphenylene hexacarbonitrile in the intermediate connector,” Adv. Mater. (Deerfield Beach Fla.) 20(2), 324–329 (2008).
[CrossRef]

Riedl, T.

S. Hamwi, J. Meyer, M. Kröger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, “The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes,” Adv. Funct. Mater. 20(11), 1762–1766 (2010).
[CrossRef]

Sasabe, H.

T. Chiba, Y.-J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe, and J. Kido, “Ultra-high efficiency by multiple emission from stacked organic light-emitting devices,” Org. Electron. 12(4), 710–715 (2011).
[CrossRef]

Scheinert, S.

G. Paasch, A. Nesterov, and S. Scheinert, “Simulation of organic light emitting diodes: influence of charges localized near the electrodes,” Synth. Met. 139(2), 425–432 (2003).
[CrossRef]

Slusarek, W. K.

L. S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks, and D. L. Comfort, “Tandem organic light-emitting mode using hexaazatriphenylene hexacarbonitrile in the intermediate connector,” Adv. Mater. (Deerfield Beach Fla.) 20(2), 324–329 (2008).
[CrossRef]

Su, S. H.

M. Yokoyama, S. H. Su, C. C. Hou, C. T. Wu, and C. H. Kung, “Highly efficient white organic light-emitting diodes with a p-i-n tandem structure,” Jpn. J. Appl. Phys. 50(4), 04DK06 (2011).
[CrossRef]

Sumioka, K.

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett. 76(10), 1243–1245 (2000).
[CrossRef]

Sun, Y.

Y. Sun, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “A pyridine-containing anthracene derivative with high electron and hole mobilities for highly efficient and stable fluorescent organic light-emitting diodes,” Adv. Funct. Mater. 21(10), 1881–1886 (2011).
[CrossRef]

Syao, K. C.

Y. H. Cheng, J. L. Wu, C. H. Cheng, K. C. Syao, and M. C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett. 90(9), 091102 (2007).
[CrossRef]

Tak, Y. H.

H.-D. Lee, S. J. Lee, K. Y. Lee, B. S. Kim, S. H. Lee, H. D. Bae, and Y. H. Tak, “High Efficiency Tandem Organic Light-Emitting Diodes Using Interconnecting Layer,” Jpn. J. Appl. Phys. 48(8), 082101 (2009).
[CrossRef]

Terai, M.

M. Terai and T. Tsutsui, “Electric-field-assisted bipolar charge generation from internal charge separation zone composed of doped organic bilayer,” Appl. Phys. Lett. 90(8), 083502 (2007).
[CrossRef]

Tien, K.-C.

C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics,” Appl. Phys. Lett. 94(10), 103302 (2009).
[CrossRef]

Tsuboi, T.

T. Tsuboi, S.-W. Liu, M.-F. Wu, and C.-T. Chen, “Spectroscopic and electrical characteristics of highly efficient tetraphenylsilane-carbazole organic compound as host material for blue organic light emitting diodes,” Org. Electron. 10(7), 1372–1377 (2009).
[CrossRef]

Tsutsui, T.

M. Terai and T. Tsutsui, “Electric-field-assisted bipolar charge generation from internal charge separation zone composed of doped organic bilayer,” Appl. Phys. Lett. 90(8), 083502 (2007).
[CrossRef]

T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, “Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1149–1152 (2001).
[CrossRef]

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett. 76(10), 1243–1245 (2000).
[CrossRef]

Tsutsumi, N.

T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, “Improvement of coupling-out efficiency in organic electroluminescent devices by addition of a diffusive layer,” J. Appl. Phys. 96(11), 6016 (2004).
[CrossRef]

Wang, F. S.

Q. Wang, J. Q. Ding, Z. Q. Zhang, D. G. Ma, Y. X. Cheng, L. X. Wang, and F. S. Wang, “A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer,” J. Appl. Phys. 105(7), 076101 (2009).
[CrossRef]

Wang, L.

Y. Sun, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “A pyridine-containing anthracene derivative with high electron and hole mobilities for highly efficient and stable fluorescent organic light-emitting diodes,” Adv. Funct. Mater. 21(10), 1881–1886 (2011).
[CrossRef]

Q. Liu, D. Zhang, L. Duan, G. Zhang, L. Wang, Y. Cao, and Y. Qiu, “Thermally decomposable kbh4 as an efficient electron injection material for organic light-emitting diodes,” Jpn. J. Appl. Phys. 48(8), 080205 (2009).
[CrossRef]

Wang, L. X.

Q. Wang, J. Q. Ding, Z. Q. Zhang, D. G. Ma, Y. X. Cheng, L. X. Wang, and F. S. Wang, “A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer,” J. Appl. Phys. 105(7), 076101 (2009).
[CrossRef]

Wang, Q.

Q. Wang, J. Q. Ding, Z. Q. Zhang, D. G. Ma, Y. X. Cheng, L. X. Wang, and F. S. Wang, “A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer,” J. Appl. Phys. 105(7), 076101 (2009).
[CrossRef]

Winkler, T.

S. Hamwi, J. Meyer, M. Kröger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, “The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes,” Adv. Funct. Mater. 20(11), 1762–1766 (2010).
[CrossRef]

Witte, M.

S. Hamwi, J. Meyer, M. Kröger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, “The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes,” Adv. Funct. Mater. 20(11), 1762–1766 (2010).
[CrossRef]

Wu, C. T.

M. Yokoyama, S. H. Su, C. C. Hou, C. T. Wu, and C. H. Kung, “Highly efficient white organic light-emitting diodes with a p-i-n tandem structure,” Jpn. J. Appl. Phys. 50(4), 04DK06 (2011).
[CrossRef]

Wu, C.-C.

C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics,” Appl. Phys. Lett. 94(10), 103302 (2009).
[CrossRef]

Wu, J. L.

Y. H. Cheng, J. L. Wu, C. H. Cheng, K. C. Syao, and M. C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett. 90(9), 091102 (2007).
[CrossRef]

Wu, M. H.

J. H. Lee, M. H. Wu, C. C. Chao, H. L. Chen, and M. K. Leung, “High efficiency and long lifetime OLED based on a metal-doped electron transport layer,” Chem. Phys. Lett. 416(4-6), 234–237 (2005).
[CrossRef]

Wu, M.-F.

T. Tsuboi, S.-W. Liu, M.-F. Wu, and C.-T. Chen, “Spectroscopic and electrical characteristics of highly efficient tetraphenylsilane-carbazole organic compound as host material for blue organic light emitting diodes,” Org. Electron. 10(7), 1372–1377 (2009).
[CrossRef]

Yahiro, M.

T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, “Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1149–1152 (2001).
[CrossRef]

Yamasaki, T.

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett. 76(10), 1243–1245 (2000).
[CrossRef]

Yang, C.-J.

C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics,” Appl. Phys. Lett. 94(10), 103302 (2009).
[CrossRef]

Yeh, P. C.

M. Ho, T. M. Chen, P. C. Yeh, S. W. Hwang, and C. H. Chen, “Highly efficient p-i-n white organic light emitting devices with tandem structure,” Appl. Phys. Lett. 91(23), 233507 (2007).
[CrossRef]

Yokogawa, H.

T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, “Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1149–1152 (2001).
[CrossRef]

Yokoyama, M.

M. Yokoyama, S. H. Su, C. C. Hou, C. T. Wu, and C. H. Kung, “Highly efficient white organic light-emitting diodes with a p-i-n tandem structure,” Jpn. J. Appl. Phys. 50(4), 04DK06 (2011).
[CrossRef]

T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, “Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1149–1152 (2001).
[CrossRef]

Yu, X. J.

H. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys. 96(3), 1649–1651 (2004).
[CrossRef]

Zhang, D.

L. Duan, D. Zhang, Y. Li, G. Zhang, and Y. Qiu, “Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host,” Opt. Express 19(S6Suppl 6), A1265–A1271 (2011).
[CrossRef] [PubMed]

Y. Sun, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “A pyridine-containing anthracene derivative with high electron and hole mobilities for highly efficient and stable fluorescent organic light-emitting diodes,” Adv. Funct. Mater. 21(10), 1881–1886 (2011).
[CrossRef]

Q. Liu, D. Zhang, L. Duan, G. Zhang, L. Wang, Y. Cao, and Y. Qiu, “Thermally decomposable kbh4 as an efficient electron injection material for organic light-emitting diodes,” Jpn. J. Appl. Phys. 48(8), 080205 (2009).
[CrossRef]

Zhang, G.

L. Duan, D. Zhang, Y. Li, G. Zhang, and Y. Qiu, “Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host,” Opt. Express 19(S6Suppl 6), A1265–A1271 (2011).
[CrossRef] [PubMed]

Q. Liu, D. Zhang, L. Duan, G. Zhang, L. Wang, Y. Cao, and Y. Qiu, “Thermally decomposable kbh4 as an efficient electron injection material for organic light-emitting diodes,” Jpn. J. Appl. Phys. 48(8), 080205 (2009).
[CrossRef]

Zhang, Z. Q.

Q. Wang, J. Q. Ding, Z. Q. Zhang, D. G. Ma, Y. X. Cheng, L. X. Wang, and F. S. Wang, “A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer,” J. Appl. Phys. 105(7), 076101 (2009).
[CrossRef]

Adv. Funct. Mater.

S. Hamwi, J. Meyer, M. Kröger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, “The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes,” Adv. Funct. Mater. 20(11), 1762–1766 (2010).
[CrossRef]

M. Y. Chan, S. L. Lai, K. M. Lau, M. K. Fung, C. S. Lee, and S. T. Lee, “Influences of connecting unit architecture on the performance of tandem organic light-emitting devices,” Adv. Funct. Mater. 17(14), 2509–2514 (2007).
[CrossRef]

Y. Sun, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “A pyridine-containing anthracene derivative with high electron and hole mobilities for highly efficient and stable fluorescent organic light-emitting diodes,” Adv. Funct. Mater. 21(10), 1881–1886 (2011).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, “Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer,” Adv. Mater. (Deerfield Beach Fla.) 13(15), 1149–1152 (2001).
[CrossRef]

L. S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks, and D. L. Comfort, “Tandem organic light-emitting mode using hexaazatriphenylene hexacarbonitrile in the intermediate connector,” Adv. Mater. (Deerfield Beach Fla.) 20(2), 324–329 (2008).
[CrossRef]

Appl. Phys. Lett.

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett. 76(10), 1243–1245 (2000).
[CrossRef]

M. Terai and T. Tsutsui, “Electric-field-assisted bipolar charge generation from internal charge separation zone composed of doped organic bilayer,” Appl. Phys. Lett. 90(8), 083502 (2007).
[CrossRef]

M. Ho, T. M. Chen, P. C. Yeh, S. W. Hwang, and C. H. Chen, “Highly efficient p-i-n white organic light emitting devices with tandem structure,” Appl. Phys. Lett. 91(23), 233507 (2007).
[CrossRef]

L. S. Liao and K. P. Klubek, “Power efficiency improvement in a tandem organic light-emitting diode,” Appl. Phys. Lett. 92(22), 223311 (2008).
[CrossRef]

Y. H. Cheng, J. L. Wu, C. H. Cheng, K. C. Syao, and M. C. M. Lee, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” Appl. Phys. Lett. 90(9), 091102 (2007).
[CrossRef]

C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang, and C.-C. Wu, “Microcavity top-emitting organic light-emitting devices integrated with diffusers for simultaneous enhancement of efficiencies and viewing characteristics,” Appl. Phys. Lett. 94(10), 103302 (2009).
[CrossRef]

Chem. Phys. Lett.

J. H. Lee, M. H. Wu, C. C. Chao, H. L. Chen, and M. K. Leung, “High efficiency and long lifetime OLED based on a metal-doped electron transport layer,” Chem. Phys. Lett. 416(4-6), 234–237 (2005).
[CrossRef]

J. Appl. Phys.

Q. Wang, J. Q. Ding, Z. Q. Zhang, D. G. Ma, Y. X. Cheng, L. X. Wang, and F. S. Wang, “A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer,” J. Appl. Phys. 105(7), 076101 (2009).
[CrossRef]

S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324 (2002).
[CrossRef]

H. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys. 96(3), 1649–1651 (2004).
[CrossRef]

T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, “Improvement of coupling-out efficiency in organic electroluminescent devices by addition of a diffusive layer,” J. Appl. Phys. 96(11), 6016 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

M. Yokoyama, S. H. Su, C. C. Hou, C. T. Wu, and C. H. Kung, “Highly efficient white organic light-emitting diodes with a p-i-n tandem structure,” Jpn. J. Appl. Phys. 50(4), 04DK06 (2011).
[CrossRef]

H.-D. Lee, S. J. Lee, K. Y. Lee, B. S. Kim, S. H. Lee, H. D. Bae, and Y. H. Tak, “High Efficiency Tandem Organic Light-Emitting Diodes Using Interconnecting Layer,” Jpn. J. Appl. Phys. 48(8), 082101 (2009).
[CrossRef]

Q. Liu, D. Zhang, L. Duan, G. Zhang, L. Wang, Y. Cao, and Y. Qiu, “Thermally decomposable kbh4 as an efficient electron injection material for organic light-emitting diodes,” Jpn. J. Appl. Phys. 48(8), 080205 (2009).
[CrossRef]

Opt. Express

Org. Electron.

T. Chiba, Y.-J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe, and J. Kido, “Ultra-high efficiency by multiple emission from stacked organic light-emitting devices,” Org. Electron. 12(4), 710–715 (2011).
[CrossRef]

T. Tsuboi, S.-W. Liu, M.-F. Wu, and C.-T. Chen, “Spectroscopic and electrical characteristics of highly efficient tetraphenylsilane-carbazole organic compound as host material for blue organic light emitting diodes,” Org. Electron. 10(7), 1372–1377 (2009).
[CrossRef]

Synth. Met.

G. Paasch, A. Nesterov, and S. Scheinert, “Simulation of organic light emitting diodes: influence of charges localized near the electrodes,” Synth. Met. 139(2), 425–432 (2003).
[CrossRef]

W. Brütting, S. Berleb, and A. G. Mückl, “Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices,” Synth. Met. 122(1), 99–104 (2001).
[CrossRef]

Other

T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, and J. Kido, “Multiphoton organic EL device having charge generation layer,” SID Symposium Digest of Technical Papers 34, 979–981 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Luminance-voltage curves and (b) current efficiency-current density curves of the tandem OLED-A1 with Alq3: Li and OLED-A2 with DPyPA: 20% KBH4.

Fig. 2
Fig. 2

Operational lifetime comparison of the tandem OLED-A1 with Alq3: Li and OLED-A2 with DPyPA: 20% KBH4. I is luminance and I0 is the initial luminance.

Fig. 3
Fig. 3

The luminance plotted against voltage for OLED-B1 and OLED-B2. The inset of Fig. 3 depicts a type B OLED half covered by the diffuser film at a voltage of 7 V.

Fig. 4
Fig. 4

EL spectra of OLED-B1 at 5.6 and 9.5 V.

Fig. 5
Fig. 5

The ratio of the blue 459 nm EL intensity to the yellow 564 nm EL intensity plotted against voltage for OLED-B1 and OLED-B2.

Fig. 6
Fig. 6

Angular dependence of the EL spectra of the white tandem OLEDs: (a) for OLED-B1; and (b) for OLED-B2. (c) is the polar plots of emission intensities of the two OLEDs.

Fig. 7
Fig. 7

The CIE chromaticity diagram of OLED-B1 and OLED-B2 at various applied voltages.

Metrics