Abstract

Inspired by a recently experiment by M. Lettner et al. [Phys. Rev. Lett. 106, 210503 (2011)], we propose a robust scheme to prepare three-dimensional entanglement state between a single atom and a Bose-Einstein condensate (BEC) via stimulated Raman adiabatic passage (STIRAP) technique. The atomic spontaneous radiation, the cavity decay, and the fiber loss are efficiently suppressed by the engineering adiabatic passage. Our strictly numerical simulation shows our proposal is good enough to demonstrate the generation of three-dimensional entanglement with high fidelity and within the current experimental technology.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
    [CrossRef] [PubMed]
  2. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69(20), 2881–2884 (1992).
    [CrossRef] [PubMed]
  3. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
    [CrossRef] [PubMed]
  4. T. Durt, D. Kaszlikowski, J. -L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69(3), 032313 (2004).
    [CrossRef]
  5. D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85(21), 4418–4421 (2000).
    [CrossRef] [PubMed]
  6. D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
    [CrossRef] [PubMed]
  7. M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90(16), 167906 (2003).
    [CrossRef] [PubMed]
  8. A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra, “Qutrit quantum computer with trapped ions,” Phys. Rev. A 67(6), 062313 (2003).
    [CrossRef]
  9. I. E. Linington and N. V. Vitanov, “Robust creation of arbitrary-sized Dicke states of trapped ions by global addressing,” Phys. Rev. A 77(1), 010302(R) (2008).
    [CrossRef]
  10. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
    [CrossRef] [PubMed]
  11. B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist, and A. G. White, “Manipulating biphotonic qutrits,” Phys. Rev. Lett. 100(6), 060504 (2008).
    [CrossRef] [PubMed]
  12. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
    [CrossRef]
  13. X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67(4), 044301 (2003).
    [CrossRef]
  14. G. W. Lin, M. Y. Ye, L. B. Chen, Q. H. Du, and X. M. Lin, “Generation of the singlet state for three atoms in cavity QED,” Phys. Rev. A 76(1), 014308 (2007).
    [CrossRef]
  15. S. Y. Ye, Z. R. Zhong, and S. B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77(1), 014303 (2008).
    [CrossRef]
  16. L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284(20), 5020–5023 (2011).
    [CrossRef]
  17. C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
    [CrossRef] [PubMed]
  18. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [CrossRef] [PubMed]
  19. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
    [CrossRef]
  20. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79(26), 5242–5245 (1997).
    [CrossRef]
  21. S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59(4), 2659–2664 (1999).
    [CrossRef]
  22. S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91(17), 177901 (2003).
    [CrossRef] [PubMed]
  23. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96(1), 010503 (2006).
    [CrossRef] [PubMed]
  24. Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75(1), 012324 (2007).
    [CrossRef]
  25. X. Y. Lü, J. B. Liu, C. L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78(3), 032305 (2008).
    [CrossRef]
  26. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298(5597), 1372–1377 (2002).
    [CrossRef] [PubMed]
  27. J. Oreg, F. T. Hioe, and J. H. Eberly, “Adiabatic following in multilevel systems,” Phys. Rev. A 29(2), 690–697 (1984).
    [CrossRef]
  28. U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149(5–6), 463–468 (1988).
    [CrossRef]
  29. U. Gaubatz, P. Rudecki, S. Sciemann, and K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results,” J. Chem. Phys. 92(9), 5363–5376 (1990).
    [CrossRef]
  30. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
    [CrossRef]
  31. J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40(11), 6741–6744 (1989).
    [CrossRef] [PubMed]
  32. R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155(1–3), 144–154 (1998)
    [CrossRef]
  33. H. Theuer, R. G. Unanyan, C. Habscheid, K. Klein, and K. Bergmann, “Novel laser controlled variable matter wave beamsplitter,” Opt. Express 4(2), 77–83 (1999).
    [CrossRef] [PubMed]
  34. X. L. Song, L. Wang, R. Z. Lin, Z. H. Kang, X. Li, Y. Jiang, and J. Y. Gao, “Observation of CARS signal via maximal atomic coherence prepared by F-STIRAP in a three-level atomic system,” Opt. Express 15(12), 7499–7505 (2007).
    [CrossRef] [PubMed]
  35. R. G. Unanyan, N. V. Vitanov, and K. Bergmann, “Preparation of entangled states by adiabatic passage,” Phys. Rev. Lett. 87(13), 137902 (2001).
    [CrossRef] [PubMed]
  36. R. G. Unanyan, M. Fleischhauer, N. V. Vitanov, and Klaas Bergmann, “Entanglement generation by adiabatic navigation in the space of symmetric multiparticle states,” Phys. Rev. A 66(4), 042101 (2002).
    [CrossRef]
  37. M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71(2), 023805 (2005).
    [CrossRef]
  38. M. Amniat-Talab, S. Guérin, and H. R. Jauslin, “Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage,” Phys. Rev. A 72(1), 012339 (2005).
    [CrossRef]
  39. N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32(18), 4535–4546 (1999).
    [CrossRef]
  40. Z. Kis and E. Paspalakis, “Arbitrary rotation and entanglement of flux SQUID qubits,” Phys. Rev. B 69(2), 024510 (2004).
    [CrossRef]
  41. J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40(23), 4503–4512 (2007).
    [CrossRef]
  42. J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated raman adiabatic passage in a Pr3+ : Y2SiO5 crystal,” Phys. Rev. Lett. 99(11), 113003 (2007).
    [CrossRef] [PubMed]
  43. L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76(6), 062304 (2007).
    [CrossRef]
  44. Y. Yoshikawa, K. Nakayama, Y. Torii, and T. Kuga, “Long storage time of collective coherence in an optically trapped Bose-Einstein condensate,” Phys. Rev. A 79(2), 025601 (2009).
    [CrossRef]
  45. S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “A Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 022318 (2012).
    [CrossRef]
  46. M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett. 106(21), 210503 (2011).
    [CrossRef] [PubMed]
  47. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450(7167), 268–271 (2007).
    [CrossRef] [PubMed]
  48. J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, “Bose-Einstein condensation of photons in an optical microcavity,” Nature 468(7323), 545–548 (2010).
    [CrossRef] [PubMed]
  49. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
    [CrossRef] [PubMed]
  50. B. Weber, H. P. Specht, T. Mueller, J. Bochmann, M. Muecke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped Atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
    [CrossRef] [PubMed]
  51. S. B. Zheng, “Multi-atom entanglement engineering and phase-covariant cloning via adiabatic passage,” J. Opt. B: Quantum Semiclass. Opt. 7(5), 139–141 (2005).
    [CrossRef]
  52. P. Král, I. Thanopulos, and M. Shapiro, “Colloquium: Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79(1), 53–77 (2007).
    [CrossRef]
  53. H. Goto and K. Ichimura, “Multiqubit controlled unitary gate by adiabatic passage with an optical cavity,” Phys. Rev. A 70(1), 012305 (2004).
    [CrossRef]
  54. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photon. 6(1), 56–61 (2012).
    [CrossRef]
  55. S. Leslie, N. Shenvi, K. R. Brown, D. M. Stamper-Kurn, and K. B. Whaley, “Transmission spectrum of an optical cavity containing N atoms,” Phys. Rev. A 69(4), 043805 (2004).
    [CrossRef]
  56. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
    [CrossRef] [PubMed]

2012 (2)

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “A Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 022318 (2012).
[CrossRef]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photon. 6(1), 56–61 (2012).
[CrossRef]

2011 (3)

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett. 106(21), 210503 (2011).
[CrossRef] [PubMed]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[CrossRef]

L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284(20), 5020–5023 (2011).
[CrossRef]

2010 (1)

J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, “Bose-Einstein condensation of photons in an optical microcavity,” Nature 468(7323), 545–548 (2010).
[CrossRef] [PubMed]

2009 (2)

B. Weber, H. P. Specht, T. Mueller, J. Bochmann, M. Muecke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped Atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[CrossRef] [PubMed]

Y. Yoshikawa, K. Nakayama, Y. Torii, and T. Kuga, “Long storage time of collective coherence in an optically trapped Bose-Einstein condensate,” Phys. Rev. A 79(2), 025601 (2009).
[CrossRef]

2008 (5)

S. Y. Ye, Z. R. Zhong, and S. B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77(1), 014303 (2008).
[CrossRef]

B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist, and A. G. White, “Manipulating biphotonic qutrits,” Phys. Rev. Lett. 100(6), 060504 (2008).
[CrossRef] [PubMed]

I. E. Linington and N. V. Vitanov, “Robust creation of arbitrary-sized Dicke states of trapped ions by global addressing,” Phys. Rev. A 77(1), 010302(R) (2008).
[CrossRef]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[CrossRef] [PubMed]

X. Y. Lü, J. B. Liu, C. L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78(3), 032305 (2008).
[CrossRef]

2007 (10)

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75(1), 012324 (2007).
[CrossRef]

G. W. Lin, M. Y. Ye, L. B. Chen, Q. H. Du, and X. M. Lin, “Generation of the singlet state for three atoms in cavity QED,” Phys. Rev. A 76(1), 014308 (2007).
[CrossRef]

X. L. Song, L. Wang, R. Z. Lin, Z. H. Kang, X. Li, Y. Jiang, and J. Y. Gao, “Observation of CARS signal via maximal atomic coherence prepared by F-STIRAP in a three-level atomic system,” Opt. Express 15(12), 7499–7505 (2007).
[CrossRef] [PubMed]

P. Král, I. Thanopulos, and M. Shapiro, “Colloquium: Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79(1), 53–77 (2007).
[CrossRef]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[CrossRef] [PubMed]

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450(7167), 268–271 (2007).
[CrossRef] [PubMed]

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40(23), 4503–4512 (2007).
[CrossRef]

J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated raman adiabatic passage in a Pr3+ : Y2SiO5 crystal,” Phys. Rev. Lett. 99(11), 113003 (2007).
[CrossRef] [PubMed]

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76(6), 062304 (2007).
[CrossRef]

2006 (1)

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96(1), 010503 (2006).
[CrossRef] [PubMed]

2005 (3)

M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71(2), 023805 (2005).
[CrossRef]

M. Amniat-Talab, S. Guérin, and H. R. Jauslin, “Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage,” Phys. Rev. A 72(1), 012339 (2005).
[CrossRef]

S. B. Zheng, “Multi-atom entanglement engineering and phase-covariant cloning via adiabatic passage,” J. Opt. B: Quantum Semiclass. Opt. 7(5), 139–141 (2005).
[CrossRef]

2004 (4)

H. Goto and K. Ichimura, “Multiqubit controlled unitary gate by adiabatic passage with an optical cavity,” Phys. Rev. A 70(1), 012305 (2004).
[CrossRef]

S. Leslie, N. Shenvi, K. R. Brown, D. M. Stamper-Kurn, and K. B. Whaley, “Transmission spectrum of an optical cavity containing N atoms,” Phys. Rev. A 69(4), 043805 (2004).
[CrossRef]

Z. Kis and E. Paspalakis, “Arbitrary rotation and entanglement of flux SQUID qubits,” Phys. Rev. B 69(2), 024510 (2004).
[CrossRef]

T. Durt, D. Kaszlikowski, J. -L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69(3), 032313 (2004).
[CrossRef]

2003 (4)

M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90(16), 167906 (2003).
[CrossRef] [PubMed]

A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra, “Qutrit quantum computer with trapped ions,” Phys. Rev. A 67(6), 062313 (2003).
[CrossRef]

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67(4), 044301 (2003).
[CrossRef]

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91(17), 177901 (2003).
[CrossRef] [PubMed]

2002 (4)

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298(5597), 1372–1377 (2002).
[CrossRef] [PubMed]

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
[CrossRef] [PubMed]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[CrossRef] [PubMed]

R. G. Unanyan, M. Fleischhauer, N. V. Vitanov, and Klaas Bergmann, “Entanglement generation by adiabatic navigation in the space of symmetric multiparticle states,” Phys. Rev. A 66(4), 042101 (2002).
[CrossRef]

2001 (1)

R. G. Unanyan, N. V. Vitanov, and K. Bergmann, “Preparation of entangled states by adiabatic passage,” Phys. Rev. Lett. 87(13), 137902 (2001).
[CrossRef] [PubMed]

2000 (2)

D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85(21), 4418–4421 (2000).
[CrossRef] [PubMed]

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
[CrossRef] [PubMed]

1999 (3)

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32(18), 4535–4546 (1999).
[CrossRef]

S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59(4), 2659–2664 (1999).
[CrossRef]

H. Theuer, R. G. Unanyan, C. Habscheid, K. Klein, and K. Bergmann, “Novel laser controlled variable matter wave beamsplitter,” Opt. Express 4(2), 77–83 (1999).
[CrossRef] [PubMed]

1998 (2)

R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155(1–3), 144–154 (1998)
[CrossRef]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[CrossRef]

1997 (2)

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[CrossRef]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79(26), 5242–5245 (1997).
[CrossRef]

1993 (1)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

1992 (1)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69(20), 2881–2884 (1992).
[CrossRef] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[CrossRef] [PubMed]

1990 (1)

U. Gaubatz, P. Rudecki, S. Sciemann, and K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results,” J. Chem. Phys. 92(9), 5363–5376 (1990).
[CrossRef]

1989 (1)

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40(11), 6741–6744 (1989).
[CrossRef] [PubMed]

1988 (1)

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149(5–6), 463–468 (1988).
[CrossRef]

1984 (1)

J. Oreg, F. T. Hioe, and J. H. Eberly, “Adiabatic following in multilevel systems,” Phys. Rev. A 29(2), 690–697 (1984).
[CrossRef]

Amniat-Talab, M.

M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71(2), 023805 (2005).
[CrossRef]

M. Amniat-Talab, S. Guérin, and H. R. Jauslin, “Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage,” Phys. Rev. A 72(1), 012339 (2005).
[CrossRef]

Andersson, E.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[CrossRef]

Asano, T.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photon. 6(1), 56–61 (2012).
[CrossRef]

Baur, S.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “A Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 022318 (2012).
[CrossRef]

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett. 106(21), 210503 (2011).
[CrossRef] [PubMed]

Becker, M.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149(5–6), 463–468 (1988).
[CrossRef]

Beil, F.

J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated raman adiabatic passage in a Pr3+ : Y2SiO5 crystal,” Phys. Rev. Lett. 99(11), 113003 (2007).
[CrossRef] [PubMed]

Bennett, C. H.

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69(20), 2881–2884 (1992).
[CrossRef] [PubMed]

Bergmann, K.

R. G. Unanyan, N. V. Vitanov, and K. Bergmann, “Preparation of entangled states by adiabatic passage,” Phys. Rev. Lett. 87(13), 137902 (2001).
[CrossRef] [PubMed]

H. Theuer, R. G. Unanyan, C. Habscheid, K. Klein, and K. Bergmann, “Novel laser controlled variable matter wave beamsplitter,” Opt. Express 4(2), 77–83 (1999).
[CrossRef] [PubMed]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[CrossRef]

R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155(1–3), 144–154 (1998)
[CrossRef]

U. Gaubatz, P. Rudecki, S. Sciemann, and K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results,” J. Chem. Phys. 92(9), 5363–5376 (1990).
[CrossRef]

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40(11), 6741–6744 (1989).
[CrossRef] [PubMed]

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149(5–6), 463–468 (1988).
[CrossRef]

Bergmann, Klaas

R. G. Unanyan, M. Fleischhauer, N. V. Vitanov, and Klaas Bergmann, “Entanglement generation by adiabatic navigation in the space of symmetric multiparticle states,” Phys. Rev. A 66(4), 042101 (2002).
[CrossRef]

Bochmann, J.

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett. 106(21), 210503 (2011).
[CrossRef] [PubMed]

B. Weber, H. P. Specht, T. Mueller, J. Bochmann, M. Muecke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped Atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[CrossRef] [PubMed]

Bose, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96(1), 010503 (2006).
[CrossRef] [PubMed]

Bourdel, T.

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450(7167), 268–271 (2007).
[CrossRef] [PubMed]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

Brennecke, F.

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450(7167), 268–271 (2007).
[CrossRef] [PubMed]

Brown, K. R.

S. Leslie, N. Shenvi, K. R. Brown, D. M. Stamper-Kurn, and K. B. Whaley, “Transmission spectrum of an optical cavity containing N atoms,” Phys. Rev. A 69(4), 043805 (2004).
[CrossRef]

Buller, G. S.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[CrossRef]

Chen, J. -L.

T. Durt, D. Kaszlikowski, J. -L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69(3), 032313 (2004).
[CrossRef]

Chen, L. B.

L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284(20), 5020–5023 (2011).
[CrossRef]

G. W. Lin, M. Y. Ye, L. B. Chen, Q. H. Du, and X. M. Lin, “Generation of the singlet state for three atoms in cavity QED,” Phys. Rev. A 76(1), 014308 (2007).
[CrossRef]

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76(6), 062304 (2007).
[CrossRef]

Cirac, J. I.

S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59(4), 2659–2664 (1999).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[CrossRef]

Clark, S.

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91(17), 177901 (2003).
[CrossRef] [PubMed]

Collins, D.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
[CrossRef] [PubMed]

Colombe, Y.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

Dada, A. C.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[CrossRef]

Ding, C. L.

X. Y. Lü, J. B. Liu, C. L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78(3), 032305 (2008).
[CrossRef]

DiVincenzo, D. P.

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
[CrossRef] [PubMed]

Doherty, A. C.

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298(5597), 1372–1377 (2002).
[CrossRef] [PubMed]

Donner, T.

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450(7167), 268–271 (2007).
[CrossRef] [PubMed]

Du, Q. H.

G. W. Lin, M. Y. Ye, L. B. Chen, Q. H. Du, and X. M. Lin, “Generation of the singlet state for three atoms in cavity QED,” Phys. Rev. A 76(1), 014308 (2007).
[CrossRef]

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76(6), 062304 (2007).
[CrossRef]

Dubois, G.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Dürr, S.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “A Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 022318 (2012).
[CrossRef]

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett. 106(21), 210503 (2011).
[CrossRef] [PubMed]

Durt, T.

T. Durt, D. Kaszlikowski, J. -L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69(3), 032313 (2004).
[CrossRef]

Eberly, J. H.

J. Oreg, F. T. Hioe, and J. H. Eberly, “Adiabatic following in multilevel systems,” Phys. Rev. A 29(2), 690–697 (1984).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[CrossRef] [PubMed]

Esslinger, T.

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450(7167), 268–271 (2007).
[CrossRef] [PubMed]

Fleischhauer, M.

R. G. Unanyan, M. Fleischhauer, N. V. Vitanov, and Klaas Bergmann, “Entanglement generation by adiabatic navigation in the space of symmetric multiparticle states,” Phys. Rev. A 66(4), 042101 (2002).
[CrossRef]

R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155(1–3), 144–154 (1998)
[CrossRef]

Fujiwara, M.

M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90(16), 167906 (2003).
[CrossRef] [PubMed]

Gao, J. Y.

Gaubatz, U.

U. Gaubatz, P. Rudecki, S. Sciemann, and K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results,” J. Chem. Phys. 92(9), 5363–5376 (1990).
[CrossRef]

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40(11), 6741–6744 (1989).
[CrossRef] [PubMed]

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149(5–6), 463–468 (1988).
[CrossRef]

Gilchrist, A.

B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist, and A. G. White, “Manipulating biphotonic qutrits,” Phys. Rev. Lett. 100(6), 060504 (2008).
[CrossRef] [PubMed]

Gisin, N.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
[CrossRef] [PubMed]

Gnacinski, P.

D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85(21), 4418–4421 (2000).
[CrossRef] [PubMed]

Goto, H.

H. Goto and K. Ichimura, “Multiqubit controlled unitary gate by adiabatic passage with an optical cavity,” Phys. Rev. A 70(1), 012305 (2004).
[CrossRef]

Gu, M.

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91(17), 177901 (2003).
[CrossRef] [PubMed]

Gu, Y. J.

L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284(20), 5020–5023 (2011).
[CrossRef]

Guérin, S.

M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71(2), 023805 (2005).
[CrossRef]

M. Amniat-Talab, S. Guérin, and H. R. Jauslin, “Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage,” Phys. Rev. A 72(1), 012339 (2005).
[CrossRef]

Guzmán, R.

A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra, “Qutrit quantum computer with trapped ions,” Phys. Rev. A 67(6), 062313 (2003).
[CrossRef]

Habscheid, C.

Hahn, C.

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett. 106(21), 210503 (2011).
[CrossRef] [PubMed]

Halfmann, T.

J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated raman adiabatic passage in a Pr3+ : Y2SiO5 crystal,” Phys. Rev. Lett. 99(11), 113003 (2007).
[CrossRef] [PubMed]

Hioe, F. T.

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40(11), 6741–6744 (1989).
[CrossRef] [PubMed]

J. Oreg, F. T. Hioe, and J. H. Eberly, “Adiabatic following in multilevel systems,” Phys. Rev. A 29(2), 690–697 (1984).
[CrossRef]

Hunger, D.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Ichimura, K.

H. Goto and K. Ichimura, “Multiqubit controlled unitary gate by adiabatic passage with an optical cavity,” Phys. Rev. A 70(1), 012305 (2004).
[CrossRef]

Jauslin, H. R.

M. Amniat-Talab, S. Guérin, and H. R. Jauslin, “Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage,” Phys. Rev. A 72(1), 012339 (2005).
[CrossRef]

M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71(2), 023805 (2005).
[CrossRef]

Jiang, Y.

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

Kang, Z. H.

Kaszlikowski, D.

T. Durt, D. Kaszlikowski, J. -L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69(3), 032313 (2004).
[CrossRef]

D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85(21), 4418–4421 (2000).
[CrossRef] [PubMed]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[CrossRef] [PubMed]

S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59(4), 2659–2664 (1999).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[CrossRef]

Kis, Z.

Z. Kis and E. Paspalakis, “Arbitrary rotation and entanglement of flux SQUID qubits,” Phys. Rev. B 69(2), 024510 (2004).
[CrossRef]

Klaers, J.

J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, “Bose-Einstein condensation of photons in an optical microcavity,” Nature 468(7323), 545–548 (2010).
[CrossRef] [PubMed]

Klein, J.

J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated raman adiabatic passage in a Pr3+ : Y2SiO5 crystal,” Phys. Rev. Lett. 99(11), 113003 (2007).
[CrossRef] [PubMed]

Klein, K.

Klimov, A. B.

A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra, “Qutrit quantum computer with trapped ions,” Phys. Rev. A 67(6), 062313 (2003).
[CrossRef]

Köhl, M.

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450(7167), 268–271 (2007).
[CrossRef] [PubMed]

Král, P.

P. Král, I. Thanopulos, and M. Shapiro, “Colloquium: Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79(1), 53–77 (2007).
[CrossRef]

Kuga, T.

Y. Yoshikawa, K. Nakayama, Y. Torii, and T. Kuga, “Long storage time of collective coherence in an optically trapped Bose-Einstein condensate,” Phys. Rev. A 79(2), 025601 (2009).
[CrossRef]

Kuhn, A.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[CrossRef] [PubMed]

Kuklinski, J. R.

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40(11), 6741–6744 (1989).
[CrossRef] [PubMed]

Külz, M.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149(5–6), 463–468 (1988).
[CrossRef]

Kwek, L. C.

T. Durt, D. Kaszlikowski, J. -L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69(3), 032313 (2004).
[CrossRef]

Langford, N. K.

B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist, and A. G. White, “Manipulating biphotonic qutrits,” Phys. Rev. Lett. 100(6), 060504 (2008).
[CrossRef] [PubMed]

Lanyon, B. P.

B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist, and A. G. White, “Manipulating biphotonic qutrits,” Phys. Rev. Lett. 100(6), 060504 (2008).
[CrossRef] [PubMed]

Leach, J.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[CrossRef]

Leslie, S.

S. Leslie, N. Shenvi, K. R. Brown, D. M. Stamper-Kurn, and K. B. Whaley, “Transmission spectrum of an optical cavity containing N atoms,” Phys. Rev. A 69(4), 043805 (2004).
[CrossRef]

Lettner, M.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “A Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 022318 (2012).
[CrossRef]

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett. 106(21), 210503 (2011).
[CrossRef] [PubMed]

Li, F. L.

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75(1), 012324 (2007).
[CrossRef]

Li, J.-H.

X. Y. Lü, J. B. Liu, C. L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78(3), 032305 (2008).
[CrossRef]

Li, X.

Lin, G. W.

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76(6), 062304 (2007).
[CrossRef]

G. W. Lin, M. Y. Ye, L. B. Chen, Q. H. Du, and X. M. Lin, “Generation of the singlet state for three atoms in cavity QED,” Phys. Rev. A 76(1), 014308 (2007).
[CrossRef]

Lin, R. Z.

Lin, X. M.

G. W. Lin, M. Y. Ye, L. B. Chen, Q. H. Du, and X. M. Lin, “Generation of the singlet state for three atoms in cavity QED,” Phys. Rev. A 76(1), 014308 (2007).
[CrossRef]

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76(6), 062304 (2007).
[CrossRef]

Linden, N.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
[CrossRef] [PubMed]

Linington, I. E.

I. E. Linington and N. V. Vitanov, “Robust creation of arbitrary-sized Dicke states of trapped ions by global addressing,” Phys. Rev. A 77(1), 010302(R) (2008).
[CrossRef]

Linke, F.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Liu, J. B.

X. Y. Lü, J. B. Liu, C. L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78(3), 032305 (2008).
[CrossRef]

Lü, X. Y.

X. Y. Lü, J. B. Liu, C. L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78(3), 032305 (2008).
[CrossRef]

Ma, L. Z.

L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284(20), 5020–5023 (2011).
[CrossRef]

Mabuchi, H.

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298(5597), 1372–1377 (2002).
[CrossRef] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[CrossRef]

Mancini, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96(1), 010503 (2006).
[CrossRef] [PubMed]

Massar, S.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
[CrossRef] [PubMed]

Mathis, W.

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67(4), 044301 (2003).
[CrossRef]

Miklaszewski, W.

D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85(21), 4418–4421 (2000).
[CrossRef] [PubMed]

Mizuno, J.

M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90(16), 167906 (2003).
[CrossRef] [PubMed]

Moehring, D. L.

B. Weber, H. P. Specht, T. Mueller, J. Bochmann, M. Muecke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped Atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[CrossRef] [PubMed]

Mücke, M.

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett. 106(21), 210503 (2011).
[CrossRef] [PubMed]

Muecke, M.

B. Weber, H. P. Specht, T. Mueller, J. Bochmann, M. Muecke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped Atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[CrossRef] [PubMed]

Mueller, T.

B. Weber, H. P. Specht, T. Mueller, J. Bochmann, M. Muecke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped Atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[CrossRef] [PubMed]

Nakayama, K.

Y. Yoshikawa, K. Nakayama, Y. Torii, and T. Kuga, “Long storage time of collective coherence in an optically trapped Bose-Einstein condensate,” Phys. Rev. A 79(2), 025601 (2009).
[CrossRef]

Noda, S.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photon. 6(1), 56–61 (2012).
[CrossRef]

O’Brien, J. L.

B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist, and A. G. White, “Manipulating biphotonic qutrits,” Phys. Rev. Lett. 100(6), 060504 (2008).
[CrossRef] [PubMed]

Oreg, J.

J. Oreg, F. T. Hioe, and J. H. Eberly, “Adiabatic following in multilevel systems,” Phys. Rev. A 29(2), 690–697 (1984).
[CrossRef]

Padgett, M. J.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[CrossRef]

Pahlke, K.

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67(4), 044301 (2003).
[CrossRef]

Parkins, S.

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91(17), 177901 (2003).
[CrossRef] [PubMed]

Paspalakis, E.

Z. Kis and E. Paspalakis, “Arbitrary rotation and entanglement of flux SQUID qubits,” Phys. Rev. B 69(2), 024510 (2004).
[CrossRef]

Pellizzari, T.

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79(26), 5242–5245 (1997).
[CrossRef]

Peng, A.

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91(17), 177901 (2003).
[CrossRef] [PubMed]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

Popescu, S.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
[CrossRef] [PubMed]

Reichel, J.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Rempe, G.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “A Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 022318 (2012).
[CrossRef]

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett. 106(21), 210503 (2011).
[CrossRef] [PubMed]

B. Weber, H. P. Specht, T. Mueller, J. Bochmann, M. Muecke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped Atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[CrossRef] [PubMed]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[CrossRef] [PubMed]

Resch, K. J.

B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist, and A. G. White, “Manipulating biphotonic qutrits,” Phys. Rev. Lett. 100(6), 060504 (2008).
[CrossRef] [PubMed]

Retamal, J. C.

A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra, “Qutrit quantum computer with trapped ions,” Phys. Rev. A 67(6), 062313 (2003).
[CrossRef]

Riedl, S.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “A Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 022318 (2012).
[CrossRef]

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett. 106(21), 210503 (2011).
[CrossRef] [PubMed]

Ritter, S.

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett. 106(21), 210503 (2011).
[CrossRef] [PubMed]

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450(7167), 268–271 (2007).
[CrossRef] [PubMed]

Rudecki, P.

U. Gaubatz, P. Rudecki, S. Sciemann, and K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results,” J. Chem. Phys. 92(9), 5363–5376 (1990).
[CrossRef]

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149(5–6), 463–468 (1988).
[CrossRef]

Saavedra, C.

A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra, “Qutrit quantum computer with trapped ions,” Phys. Rev. A 67(6), 062313 (2003).
[CrossRef]

Sangouard, N.

M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71(2), 023805 (2005).
[CrossRef]

Sasaki, M.

M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90(16), 167906 (2003).
[CrossRef] [PubMed]

Sato, Y.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photon. 6(1), 56–61 (2012).
[CrossRef]

Schiemann, S.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149(5–6), 463–468 (1988).
[CrossRef]

Schmitt, J.

J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, “Bose-Einstein condensation of photons in an optical microcavity,” Nature 468(7323), 545–548 (2010).
[CrossRef] [PubMed]

Sciemann, S.

U. Gaubatz, P. Rudecki, S. Sciemann, and K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results,” J. Chem. Phys. 92(9), 5363–5376 (1990).
[CrossRef]

Serafini, A.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96(1), 010503 (2006).
[CrossRef] [PubMed]

Shapiro, M.

P. Král, I. Thanopulos, and M. Shapiro, “Colloquium: Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79(1), 53–77 (2007).
[CrossRef]

Shenvi, N.

S. Leslie, N. Shenvi, K. R. Brown, D. M. Stamper-Kurn, and K. B. Whaley, “Transmission spectrum of an optical cavity containing N atoms,” Phys. Rev. A 69(4), 043805 (2004).
[CrossRef]

Shi, P.

L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284(20), 5020–5023 (2011).
[CrossRef]

Shore, B. W.

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32(18), 4535–4546 (1999).
[CrossRef]

R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155(1–3), 144–154 (1998)
[CrossRef]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[CrossRef]

Song, H. S.

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40(23), 4503–4512 (2007).
[CrossRef]

Song, J.

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40(23), 4503–4512 (2007).
[CrossRef]

Song, X. L.

Specht, H. P.

B. Weber, H. P. Specht, T. Mueller, J. Bochmann, M. Muecke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped Atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[CrossRef] [PubMed]

Stamper-Kurn, D. M.

S. Leslie, N. Shenvi, K. R. Brown, D. M. Stamper-Kurn, and K. B. Whaley, “Transmission spectrum of an optical cavity containing N atoms,” Phys. Rev. A 69(4), 043805 (2004).
[CrossRef]

Steinmetz, T.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Suominen, K. A.

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32(18), 4535–4546 (1999).
[CrossRef]

Takahashi, Y.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photon. 6(1), 56–61 (2012).
[CrossRef]

Takeoka, M.

M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90(16), 167906 (2003).
[CrossRef] [PubMed]

Tanaka, Y.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photon. 6(1), 56–61 (2012).
[CrossRef]

Thanopulos, I.

P. Král, I. Thanopulos, and M. Shapiro, “Colloquium: Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79(1), 53–77 (2007).
[CrossRef]

Theuer, H.

H. Theuer, R. G. Unanyan, C. Habscheid, K. Klein, and K. Bergmann, “Novel laser controlled variable matter wave beamsplitter,” Opt. Express 4(2), 77–83 (1999).
[CrossRef] [PubMed]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[CrossRef]

Torii, Y.

Y. Yoshikawa, K. Nakayama, Y. Torii, and T. Kuga, “Long storage time of collective coherence in an optically trapped Bose-Einstein condensate,” Phys. Rev. A 79(2), 025601 (2009).
[CrossRef]

Unanyan, R. G.

R. G. Unanyan, M. Fleischhauer, N. V. Vitanov, and Klaas Bergmann, “Entanglement generation by adiabatic navigation in the space of symmetric multiparticle states,” Phys. Rev. A 66(4), 042101 (2002).
[CrossRef]

R. G. Unanyan, N. V. Vitanov, and K. Bergmann, “Preparation of entangled states by adiabatic passage,” Phys. Rev. Lett. 87(13), 137902 (2001).
[CrossRef] [PubMed]

H. Theuer, R. G. Unanyan, C. Habscheid, K. Klein, and K. Bergmann, “Novel laser controlled variable matter wave beamsplitter,” Opt. Express 4(2), 77–83 (1999).
[CrossRef] [PubMed]

R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155(1–3), 144–154 (1998)
[CrossRef]

Upham, J.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photon. 6(1), 56–61 (2012).
[CrossRef]

van Enk, S. J.

S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59(4), 2659–2664 (1999).
[CrossRef]

Vaziri, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[CrossRef] [PubMed]

Vewinger, F.

J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, “Bose-Einstein condensation of photons in an optical microcavity,” Nature 468(7323), 545–548 (2010).
[CrossRef] [PubMed]

Vitanov, N. V.

I. E. Linington and N. V. Vitanov, “Robust creation of arbitrary-sized Dicke states of trapped ions by global addressing,” Phys. Rev. A 77(1), 010302(R) (2008).
[CrossRef]

R. G. Unanyan, M. Fleischhauer, N. V. Vitanov, and Klaas Bergmann, “Entanglement generation by adiabatic navigation in the space of symmetric multiparticle states,” Phys. Rev. A 66(4), 042101 (2002).
[CrossRef]

R. G. Unanyan, N. V. Vitanov, and K. Bergmann, “Preparation of entangled states by adiabatic passage,” Phys. Rev. Lett. 87(13), 137902 (2001).
[CrossRef] [PubMed]

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32(18), 4535–4546 (1999).
[CrossRef]

Vo, C.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “A Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 022318 (2012).
[CrossRef]

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett. 106(21), 210503 (2011).
[CrossRef] [PubMed]

Wang, L.

Weber, B.

B. Weber, H. P. Specht, T. Mueller, J. Bochmann, M. Muecke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped Atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[CrossRef] [PubMed]

Webster, S. C.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[CrossRef] [PubMed]

Weihs, G.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[CrossRef] [PubMed]

Weinhold, T. J.

B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist, and A. G. White, “Manipulating biphotonic qutrits,” Phys. Rev. Lett. 100(6), 060504 (2008).
[CrossRef] [PubMed]

Weitz, M.

J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, “Bose-Einstein condensation of photons in an optical microcavity,” Nature 468(7323), 545–548 (2010).
[CrossRef] [PubMed]

Whaley, K. B.

S. Leslie, N. Shenvi, K. R. Brown, D. M. Stamper-Kurn, and K. B. Whaley, “Transmission spectrum of an optical cavity containing N atoms,” Phys. Rev. A 69(4), 043805 (2004).
[CrossRef]

White, A. G.

B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist, and A. G. White, “Manipulating biphotonic qutrits,” Phys. Rev. Lett. 100(6), 060504 (2008).
[CrossRef] [PubMed]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69(20), 2881–2884 (1992).
[CrossRef] [PubMed]

Wilk, T.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[CrossRef] [PubMed]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

Xia, Y.

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40(23), 4503–4512 (2007).
[CrossRef]

Xie, L.

L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284(20), 5020–5023 (2011).
[CrossRef]

Ye, M. Y.

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76(6), 062304 (2007).
[CrossRef]

G. W. Lin, M. Y. Ye, L. B. Chen, Q. H. Du, and X. M. Lin, “Generation of the singlet state for three atoms in cavity QED,” Phys. Rev. A 76(1), 014308 (2007).
[CrossRef]

Ye, S. Y.

S. Y. Ye, Z. R. Zhong, and S. B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77(1), 014303 (2008).
[CrossRef]

Yin, Z. Q.

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75(1), 012324 (2007).
[CrossRef]

Yoshikawa, Y.

Y. Yoshikawa, K. Nakayama, Y. Torii, and T. Kuga, “Long storage time of collective coherence in an optically trapped Bose-Einstein condensate,” Phys. Rev. A 79(2), 025601 (2009).
[CrossRef]

Zeilinger, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[CrossRef] [PubMed]

D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85(21), 4418–4421 (2000).
[CrossRef] [PubMed]

Zheng, S. B.

S. Y. Ye, Z. R. Zhong, and S. B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77(1), 014303 (2008).
[CrossRef]

S. B. Zheng, “Multi-atom entanglement engineering and phase-covariant cloning via adiabatic passage,” J. Opt. B: Quantum Semiclass. Opt. 7(5), 139–141 (2005).
[CrossRef]

Zhong, Z. R.

S. Y. Ye, Z. R. Zhong, and S. B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77(1), 014303 (2008).
[CrossRef]

Zoller, P.

S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59(4), 2659–2664 (1999).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[CrossRef]

Zou, X. B.

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67(4), 044301 (2003).
[CrossRef]

Zukowski, M.

D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85(21), 4418–4421 (2000).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149(5–6), 463–468 (1988).
[CrossRef]

J. Chem. Phys. (1)

U. Gaubatz, P. Rudecki, S. Sciemann, and K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results,” J. Chem. Phys. 92(9), 5363–5376 (1990).
[CrossRef]

J. Opt. B: Quantum Semiclass. Opt. (1)

S. B. Zheng, “Multi-atom entanglement engineering and phase-covariant cloning via adiabatic passage,” J. Opt. B: Quantum Semiclass. Opt. 7(5), 139–141 (2005).
[CrossRef]

J. Phys. B (2)

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32(18), 4535–4546 (1999).
[CrossRef]

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40(23), 4503–4512 (2007).
[CrossRef]

Nat. Photon. (1)

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photon. 6(1), 56–61 (2012).
[CrossRef]

Nat. Phys. (1)

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[CrossRef]

Nature (5)

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
[CrossRef] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[CrossRef] [PubMed]

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, “Cavity QED with a Bose-Einstein condensate,” Nature 450(7167), 268–271 (2007).
[CrossRef] [PubMed]

J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, “Bose-Einstein condensation of photons in an optical microcavity,” Nature 468(7323), 545–548 (2010).
[CrossRef] [PubMed]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Opt. Commun. (2)

R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155(1–3), 144–154 (1998)
[CrossRef]

L. B. Chen, P. Shi, Y. J. Gu, L. Xie, and L. Z. Ma, “Generation of atomic entangled states in a bi-mode cavity via adiabatic passage,” Opt. Commun. 284(20), 5020–5023 (2011).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (19)

R. G. Unanyan, M. Fleischhauer, N. V. Vitanov, and Klaas Bergmann, “Entanglement generation by adiabatic navigation in the space of symmetric multiparticle states,” Phys. Rev. A 66(4), 042101 (2002).
[CrossRef]

M. Amniat-Talab, S. Guérin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71(2), 023805 (2005).
[CrossRef]

M. Amniat-Talab, S. Guérin, and H. R. Jauslin, “Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage,” Phys. Rev. A 72(1), 012339 (2005).
[CrossRef]

J. Oreg, F. T. Hioe, and J. H. Eberly, “Adiabatic following in multilevel systems,” Phys. Rev. A 29(2), 690–697 (1984).
[CrossRef]

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75(1), 012324 (2007).
[CrossRef]

X. Y. Lü, J. B. Liu, C. L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78(3), 032305 (2008).
[CrossRef]

S. J. van Enk, H. J. Kimble, J. I. Cirac, and P. Zoller, “Quantum communication with dark photons,” Phys. Rev. A 59(4), 2659–2664 (1999).
[CrossRef]

X. B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67(4), 044301 (2003).
[CrossRef]

G. W. Lin, M. Y. Ye, L. B. Chen, Q. H. Du, and X. M. Lin, “Generation of the singlet state for three atoms in cavity QED,” Phys. Rev. A 76(1), 014308 (2007).
[CrossRef]

S. Y. Ye, Z. R. Zhong, and S. B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77(1), 014303 (2008).
[CrossRef]

T. Durt, D. Kaszlikowski, J. -L. Chen, and L. C. Kwek, “Security of quantum key distributions with entangled qudits,” Phys. Rev. A 69(3), 032313 (2004).
[CrossRef]

A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra, “Qutrit quantum computer with trapped ions,” Phys. Rev. A 67(6), 062313 (2003).
[CrossRef]

I. E. Linington and N. V. Vitanov, “Robust creation of arbitrary-sized Dicke states of trapped ions by global addressing,” Phys. Rev. A 77(1), 010302(R) (2008).
[CrossRef]

H. Goto and K. Ichimura, “Multiqubit controlled unitary gate by adiabatic passage with an optical cavity,” Phys. Rev. A 70(1), 012305 (2004).
[CrossRef]

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40(11), 6741–6744 (1989).
[CrossRef] [PubMed]

S. Leslie, N. Shenvi, K. R. Brown, D. M. Stamper-Kurn, and K. B. Whaley, “Transmission spectrum of an optical cavity containing N atoms,” Phys. Rev. A 69(4), 043805 (2004).
[CrossRef]

L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76(6), 062304 (2007).
[CrossRef]

Y. Yoshikawa, K. Nakayama, Y. Torii, and T. Kuga, “Long storage time of collective coherence in an optically trapped Bose-Einstein condensate,” Phys. Rev. A 79(2), 025601 (2009).
[CrossRef]

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “A Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85(2), 022318 (2012).
[CrossRef]

Phys. Rev. B (1)

Z. Kis and E. Paspalakis, “Arbitrary rotation and entanglement of flux SQUID qubits,” Phys. Rev. B 69(2), 024510 (2004).
[CrossRef]

Phys. Rev. Lett. (16)

J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated raman adiabatic passage in a Pr3+ : Y2SiO5 crystal,” Phys. Rev. Lett. 99(11), 113003 (2007).
[CrossRef] [PubMed]

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, “Remote entanglement between a single atom and a Bose-Einstein condensate,” Phys. Rev. Lett. 106(21), 210503 (2011).
[CrossRef] [PubMed]

B. Weber, H. P. Specht, T. Mueller, J. Bochmann, M. Muecke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped Atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[CrossRef] [PubMed]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89(24), 240401 (2002).
[CrossRef] [PubMed]

B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist, and A. G. White, “Manipulating biphotonic qutrits,” Phys. Rev. Lett. 100(6), 060504 (2008).
[CrossRef] [PubMed]

D. Kaszlikowski, P. Gnacinski, M. Zukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits,” Phys. Rev. Lett. 85(21), 4418–4421 (2000).
[CrossRef] [PubMed]

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88(4), 040404 (2002).
[CrossRef] [PubMed]

M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, “Exceeding the classical capacity limit in a quantum optical channel,” Phys. Rev. Lett. 90(16), 167906 (2003).
[CrossRef] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[CrossRef]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79(26), 5242–5245 (1997).
[CrossRef]

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91(17), 177901 (2003).
[CrossRef] [PubMed]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96(1), 010503 (2006).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69(20), 2881–2884 (1992).
[CrossRef] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[CrossRef] [PubMed]

R. G. Unanyan, N. V. Vitanov, and K. Bergmann, “Preparation of entangled states by adiabatic passage,” Phys. Rev. Lett. 87(13), 137902 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (2)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[CrossRef]

P. Král, I. Thanopulos, and M. Shapiro, “Colloquium: Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79(1), 53–77 (2007).
[CrossRef]

Science (2)

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[CrossRef] [PubMed]

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298(5597), 1372–1377 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A single 87Rb atom and a 87Rb BEC are trapped in two distant double-mode optical cavities, which are connected by an optical fiber. The states |gL〉, |g0〉, |gR〉 and |ga〉 correspond to |F = 1, mF = −1〉, |F = 1, mF = 0〉, |F = 1, mF = 1〉 of 5S1/2 and |F = 2, mF = 0〉 of 5S1/2, while |eL〉, |e0〉 and |eR〉 correspond to |F = 1, mF = −1〉, |F = 1, mF = 0〉 and |F = 1, mF = 1〉 of 5P3/2. The atomic transition |ga〉 ↔ |e0〉 of atom in cavity A is driven resonantly by a π-polarized classical field with Rabi frequency ΩA; |e0A ↔ |gLA (|e0A ↔ |gRA) is resonantly coupled to the cavity mode aA,L (aA,R) with coupling constant gA. The atomic transition |gLB ↔ |eLB (|gRB ↔ |eRB) of BEC in cavity B is driven resonantly by a π-polarized classical field with Rabi frequency ΩB; |eRB ↔ |g0B (|eLB ↔ |g0B) is resonantly coupled to the cavity mode aB,L (aB,R) with coupling constant gB.

Fig. 2
Fig. 2

The numerical simulation of Hamiltonian (3) in the entanglement generation process, where we choose g = 5Ω0, τ = Ω 0 1. (a): the Rabi frequency of ΩA(t), ΩB(t). (b): the time evolution of populations of the states |ϕ1〉, |ϕ11〉, and |ϕ12〉 is denoted by P1, P11, and P12 respectively. (c): time evolution of populations of other states {|ϕ2〉, |ϕ3〉, |ϕ4〉, |ϕ5〉, |ϕ6〉, |ϕ7〉, |ϕ8〉, |ϕ9〉, |ϕ10〉}, which are almost zero during the whole dynamics. (d): error probability Pe (t) defined by Eq. (6).

Fig. 3
Fig. 3

Fidelity of the entanglement state (obtained by numerical simulation of master equation (8)) as a function of the photon leakage rate κ and for the atom spontaneous radiation rate γ = 0, 0.2g, 0.4g, 0.6g, 0.8g, 1.0g (from the top to the bottom).

Fig. 4
Fig. 4

Fidelity vs the atom number N of the BEC with the parameters γ = κ = 0.4g, and the other parameters same as in Fig. 2.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

H a c = k = L , R ( Ω A ( t ) | e 0 A g a | + g A ( t ) a A , k | e 0 A g k | + N Ω B ( t ) | E k B G k | ) + N g B ( t ) a B , L | E R B G 0 | + N g B ( t ) a B , R | E L B G 0 | + H . c . ,
H c f = k = L , R v k [ b k ( a A , k + + a B , k + ) + H . c . ] .
H I + H a c + H c f .
i t | ψ ( t ) = H I | ψ ( t ) .
| ϕ 1 = | g a A | G 0 B | 0000 c | 00 f , | ϕ 2 = | e 0 A | G 0 B | 0000 c | 00 f , | ϕ 3 = | g L A | G 0 B | 1000 c | 00 f , | ϕ 4 = | g R A | G 0 B | 0100 c | 00 f , | ϕ 5 = | g L A | G 0 B | 0000 c | 10 f , | ϕ 6 = | g R A | G 0 B | 0000 c | 01 f , | ϕ 7 = | g L A | G 0 B | 0010 c | 00 f , | ϕ 8 = | g R A | G 0 B | 0001 c | 00 f , | ϕ 9 = | g L A | E R B | 0000 c | 00 f , | ϕ 10 = | g R A | E L B | 0000 c | 00 f , | ϕ 11 = | g L A | G R B | 0000 c | 00 f , | ϕ 12 = | g R A | G L B | 0000 c | 00 f ,
| D ( t ) = K { 2 g A ( t ) Ω B ( t ) | ϕ 1 Ω A ( t ) Ω B ( t ) [ | ϕ 3 + | ϕ 4 | ϕ 7 | ϕ 8 ] g B ( t ) Ω A ( t ) [ | ϕ 11 + | ϕ 12 ] } ,
g A ( t ) , g B ( t ) Ω A ( t ) , Ω B ( t ) ,
| D ( t ) 2 g A ( t ) Ω B ( t ) | ϕ 1 g B ( t ) Ω A ( t ) [ | ϕ 11 + | ϕ 12 ] .
lim t g B ( t ) Ω A ( t ) g A ( t ) Ω B ( t ) = 0 , lim t + g A ( t ) Ω B ( t ) g B ( t ) Ω A ( t ) = 1 2 ,
P e ( t ) = 1 | D ( t ) | φ s ( t ) | 2 ,
d ρ d t = i [ H I , ρ ] k = L , R [ κ f k 2 ( b k + b k ρ 2 b k ρ b k + + ρ b k + b k ) i = A , B κ i k 2 ( a i k + a i k ρ 2 a i k + ρ a i k + ρ a i k + a i k ) ] j = a , L , R γ 0 j A 2 ( σ e 0 e 0 A ρ 2 σ g j e 0 A ρ σ e 0 g j A + ρ σ e 0 e 0 A ) h = 1 N k = L , R j = k , 0 γ k j B h 2 ( σ e k e k B h ρ 2 σ g j e k B h ρ σ e k g j B h + ρ σ e k e k B h ) ,

Metrics