Abstract

This paper suggests a force sensor array measuring contact force based on intensity change of light transmitted throughout optical waveguide. For transparency and flexibility of the sensor, two soft prepolymers with different refractive index have been developed. The optical waveguide consists of two cladding layers and a core layer. The top cladding layer is designed to allow light scattering at the specific area in response to finger contact. The force sensor shows a distinct tendency that output intensity decreases with input force and measurement range is from 0 to −13.2 dB.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Nashel and S. Razzaque, “Tactile virtual buttons for mobile devices,” in Proceedings of Conference on Human Factors in Computing Systems, (Fort Lauderdale, Florida, US, 2003), 854– 855.
  2. K. P. Yee, “Two-handed interaction on a tablet display,” in Proceedings of Conference on Human Factors in Computing Systems, (Vienna, Austria, 2004), 1493–1496.
  3. S. A. Brewster and M. Hughes, “Pressure-Based Text Entry for Mobile Devices,” in Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services (Bonn, Germany, 2009).
  4. S. Omata and Y. Terunuma, “New tactile sensor like the human hand and its applications,” Sens. Actuators A 35(1), 9–15 (1992).
    [CrossRef]
  5. O. Kerpa, K. Weiss, and H. Worn, “Development of a flexible tactile sensor system for a humanoid robot,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (Institute of Electrical and Electronics Engineers, Las Vegas, 2003), 1–6.
  6. T. V. Papakostas, J. Lima, and M. Lowe, “A large area force sensor for smart skin applications,” in Proceedings of IEEE Conference on Sensors (Institute of Electrical and Electronics Engineers, Las Vegas, 2002), 1620–1624.
  7. D. K. Kim, J. H. Kim, M. J. Kwon, and Y. H. Kwon, “A Touchpad for Force and Location Sensing,” ETRI J. 32(5), 722–728 (2010).
    [CrossRef]
  8. K. Nakamae, T. Nishino, and T. Kuroki, “Elastic modulus of the crystalline regions of p-hydroxybenzoic acid/poly(ethylene terephthalate) copolymers,” Polymer (Guildf.) 36(14), 2681–2684 (1995).
    [CrossRef]
  9. S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, “Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability,” Carbon 49(1), 198–205 (2011).
    [CrossRef]
  10. S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.- Kim, M.-H. Lee, and J. J. Ju, “High Fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
    [CrossRef]
  11. R. Okuno, M. Yokoe, K. Fukawa, S. Sakoda, and K. Akazawa, “Measurement system of finger-tapping contact force for quantitative diagnosis of Parkinson's disease,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, Lyon, 2007), 1354–1357.
  12. I. Shimoyama, T. Ninchoji, and K. Uemura, “The finger-tapping test. A quantitative analysis,” Arch. Neurol. 47(6), 681–684 (1990).
    [CrossRef] [PubMed]
  13. J. Z. Wu, R. G. Dong, S. Rakheja, A. W. Schopper, and W. P. Smutz, “A structural fingertip model for simulating of the biomechanics of tactile sensation,” Med. Eng. Phys. 26(2), 165–175 (2004).
    [CrossRef] [PubMed]

2011 (2)

S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, “Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability,” Carbon 49(1), 198–205 (2011).
[CrossRef]

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.- Kim, M.-H. Lee, and J. J. Ju, “High Fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[CrossRef]

2010 (1)

D. K. Kim, J. H. Kim, M. J. Kwon, and Y. H. Kwon, “A Touchpad for Force and Location Sensing,” ETRI J. 32(5), 722–728 (2010).
[CrossRef]

2004 (1)

J. Z. Wu, R. G. Dong, S. Rakheja, A. W. Schopper, and W. P. Smutz, “A structural fingertip model for simulating of the biomechanics of tactile sensation,” Med. Eng. Phys. 26(2), 165–175 (2004).
[CrossRef] [PubMed]

1995 (1)

K. Nakamae, T. Nishino, and T. Kuroki, “Elastic modulus of the crystalline regions of p-hydroxybenzoic acid/poly(ethylene terephthalate) copolymers,” Polymer (Guildf.) 36(14), 2681–2684 (1995).
[CrossRef]

1992 (1)

S. Omata and Y. Terunuma, “New tactile sensor like the human hand and its applications,” Sens. Actuators A 35(1), 9–15 (1992).
[CrossRef]

1990 (1)

I. Shimoyama, T. Ninchoji, and K. Uemura, “The finger-tapping test. A quantitative analysis,” Arch. Neurol. 47(6), 681–684 (1990).
[CrossRef] [PubMed]

Dong, R. G.

J. Z. Wu, R. G. Dong, S. Rakheja, A. W. Schopper, and W. P. Smutz, “A structural fingertip model for simulating of the biomechanics of tactile sensation,” Med. Eng. Phys. 26(2), 165–175 (2004).
[CrossRef] [PubMed]

Ju, J. J.

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.- Kim, M.-H. Lee, and J. J. Ju, “High Fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[CrossRef]

Kim, D. K.

D. K. Kim, J. H. Kim, M. J. Kwon, and Y. H. Kwon, “A Touchpad for Force and Location Sensing,” ETRI J. 32(5), 722–728 (2010).
[CrossRef]

Kim, J. H.

D. K. Kim, J. H. Kim, M. J. Kwon, and Y. H. Kwon, “A Touchpad for Force and Location Sensing,” ETRI J. 32(5), 722–728 (2010).
[CrossRef]

Kim, J. T.

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.- Kim, M.-H. Lee, and J. J. Ju, “High Fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[CrossRef]

Kim, M.-

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.- Kim, M.-H. Lee, and J. J. Ju, “High Fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[CrossRef]

Kuroki, T.

K. Nakamae, T. Nishino, and T. Kuroki, “Elastic modulus of the crystalline regions of p-hydroxybenzoic acid/poly(ethylene terephthalate) copolymers,” Polymer (Guildf.) 36(14), 2681–2684 (1995).
[CrossRef]

Kwon, M. J.

D. K. Kim, J. H. Kim, M. J. Kwon, and Y. H. Kwon, “A Touchpad for Force and Location Sensing,” ETRI J. 32(5), 722–728 (2010).
[CrossRef]

Kwon, Y. H.

D. K. Kim, J. H. Kim, M. J. Kwon, and Y. H. Kwon, “A Touchpad for Force and Location Sensing,” ETRI J. 32(5), 722–728 (2010).
[CrossRef]

Lee, J.-M.

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.- Kim, M.-H. Lee, and J. J. Ju, “High Fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[CrossRef]

Lee, M.-H.

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.- Kim, M.-H. Lee, and J. J. Ju, “High Fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[CrossRef]

Mahanta, N.

S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, “Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability,” Carbon 49(1), 198–205 (2011).
[CrossRef]

Nakamae, K.

K. Nakamae, T. Nishino, and T. Kuroki, “Elastic modulus of the crystalline regions of p-hydroxybenzoic acid/poly(ethylene terephthalate) copolymers,” Polymer (Guildf.) 36(14), 2681–2684 (1995).
[CrossRef]

Ninchoji, T.

I. Shimoyama, T. Ninchoji, and K. Uemura, “The finger-tapping test. A quantitative analysis,” Arch. Neurol. 47(6), 681–684 (1990).
[CrossRef] [PubMed]

Nishino, T.

K. Nakamae, T. Nishino, and T. Kuroki, “Elastic modulus of the crystalline regions of p-hydroxybenzoic acid/poly(ethylene terephthalate) copolymers,” Polymer (Guildf.) 36(14), 2681–2684 (1995).
[CrossRef]

Omata, S.

S. Omata and Y. Terunuma, “New tactile sensor like the human hand and its applications,” Sens. Actuators A 35(1), 9–15 (1992).
[CrossRef]

Park, S.

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.- Kim, M.-H. Lee, and J. J. Ju, “High Fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[CrossRef]

Park, S. K.

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.- Kim, M.-H. Lee, and J. J. Ju, “High Fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[CrossRef]

Paul, J.

S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, “Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability,” Carbon 49(1), 198–205 (2011).
[CrossRef]

Rakheja, S.

J. Z. Wu, R. G. Dong, S. Rakheja, A. W. Schopper, and W. P. Smutz, “A structural fingertip model for simulating of the biomechanics of tactile sensation,” Med. Eng. Phys. 26(2), 165–175 (2004).
[CrossRef] [PubMed]

Schopper, A. W.

J. Z. Wu, R. G. Dong, S. Rakheja, A. W. Schopper, and W. P. Smutz, “A structural fingertip model for simulating of the biomechanics of tactile sensation,” Med. Eng. Phys. 26(2), 165–175 (2004).
[CrossRef] [PubMed]

Shimoyama, I.

I. Shimoyama, T. Ninchoji, and K. Uemura, “The finger-tapping test. A quantitative analysis,” Arch. Neurol. 47(6), 681–684 (1990).
[CrossRef] [PubMed]

Smutz, W. P.

J. Z. Wu, R. G. Dong, S. Rakheja, A. W. Schopper, and W. P. Smutz, “A structural fingertip model for simulating of the biomechanics of tactile sensation,” Med. Eng. Phys. 26(2), 165–175 (2004).
[CrossRef] [PubMed]

Terunuma, Y.

S. Omata and Y. Terunuma, “New tactile sensor like the human hand and its applications,” Sens. Actuators A 35(1), 9–15 (1992).
[CrossRef]

Uemura, K.

I. Shimoyama, T. Ninchoji, and K. Uemura, “The finger-tapping test. A quantitative analysis,” Arch. Neurol. 47(6), 681–684 (1990).
[CrossRef] [PubMed]

Vadukumpully, S.

S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, “Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability,” Carbon 49(1), 198–205 (2011).
[CrossRef]

Valiyaveettil, S.

S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, “Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability,” Carbon 49(1), 198–205 (2011).
[CrossRef]

Wu, J. Z.

J. Z. Wu, R. G. Dong, S. Rakheja, A. W. Schopper, and W. P. Smutz, “A structural fingertip model for simulating of the biomechanics of tactile sensation,” Med. Eng. Phys. 26(2), 165–175 (2004).
[CrossRef] [PubMed]

Arch. Neurol. (1)

I. Shimoyama, T. Ninchoji, and K. Uemura, “The finger-tapping test. A quantitative analysis,” Arch. Neurol. 47(6), 681–684 (1990).
[CrossRef] [PubMed]

Carbon (1)

S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, “Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability,” Carbon 49(1), 198–205 (2011).
[CrossRef]

ETRI J. (1)

D. K. Kim, J. H. Kim, M. J. Kwon, and Y. H. Kwon, “A Touchpad for Force and Location Sensing,” ETRI J. 32(5), 722–728 (2010).
[CrossRef]

J. Mater. Chem. (1)

S. K. Park, J.-M. Lee, S. Park, J. T. Kim, M.- Kim, M.-H. Lee, and J. J. Ju, “High Fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides,” J. Mater. Chem. 21(6), 1755–1761 (2011).
[CrossRef]

Med. Eng. Phys. (1)

J. Z. Wu, R. G. Dong, S. Rakheja, A. W. Schopper, and W. P. Smutz, “A structural fingertip model for simulating of the biomechanics of tactile sensation,” Med. Eng. Phys. 26(2), 165–175 (2004).
[CrossRef] [PubMed]

Polymer (Guildf.) (1)

K. Nakamae, T. Nishino, and T. Kuroki, “Elastic modulus of the crystalline regions of p-hydroxybenzoic acid/poly(ethylene terephthalate) copolymers,” Polymer (Guildf.) 36(14), 2681–2684 (1995).
[CrossRef]

Sens. Actuators A (1)

S. Omata and Y. Terunuma, “New tactile sensor like the human hand and its applications,” Sens. Actuators A 35(1), 9–15 (1992).
[CrossRef]

Other (6)

O. Kerpa, K. Weiss, and H. Worn, “Development of a flexible tactile sensor system for a humanoid robot,” in Proceedings of IEEE Conference on Intelligent Robots and Systems (Institute of Electrical and Electronics Engineers, Las Vegas, 2003), 1–6.

T. V. Papakostas, J. Lima, and M. Lowe, “A large area force sensor for smart skin applications,” in Proceedings of IEEE Conference on Sensors (Institute of Electrical and Electronics Engineers, Las Vegas, 2002), 1620–1624.

A. Nashel and S. Razzaque, “Tactile virtual buttons for mobile devices,” in Proceedings of Conference on Human Factors in Computing Systems, (Fort Lauderdale, Florida, US, 2003), 854– 855.

K. P. Yee, “Two-handed interaction on a tablet display,” in Proceedings of Conference on Human Factors in Computing Systems, (Vienna, Austria, 2004), 1493–1496.

S. A. Brewster and M. Hughes, “Pressure-Based Text Entry for Mobile Devices,” in Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services (Bonn, Germany, 2009).

R. Okuno, M. Yokoe, K. Fukawa, S. Sakoda, and K. Akazawa, “Measurement system of finger-tapping contact force for quantitative diagnosis of Parkinson's disease,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, Lyon, 2007), 1354–1357.

Supplementary Material (1)

» Media 1: AVI (3997 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Microfabrication process for force sensor.

Fig. 2
Fig. 2

A configuration of sensor based on optical waveguide.

Fig. 3
Fig. 3

Working principle of desired force sensor.

Fig. 4
Fig. 4

Schematic overview for measurement.

Fig. 5
Fig. 5

Contact force versus sensor output intensity according to time.

Fig. 6
Fig. 6

Sensor output according to input force.

Fig. 7
Fig. 7

Demonstration of the sensor (Media 1).

Tables (1)

Tables Icon

Table 1 Characteristics of the fluorinated prepolymers

Metrics