Abstract

High optical quality LiREF4 (RE = Tb3+, Dy3+, Ho3+, Er3+ and Yb3+), PrF3 and CeF3 single crystals have been grown by the Czochralski technique. Their magneto-optical properties have been measured and analyzed in detail in the ultraviolet-visible wavelength region, and their figures of merit as Faraday rotators have been determined. CeF3 presents superior properties above 300 nm, showing a figure of merit higher than that of the reference material, terbium-gallium-garnet, which is nowadays used in the visible-near infrared. PrF3 is the best rotator for the 220-300 nm range. Towards shorter wavelength and in the vacuum ultraviolet, it is shown that the LiREF4 crystals are unique rotators. Overall, the rare-earth fluoride single crystals studied here exhibit better properties than other materials considered so far, and therefore they have potential to cover the increasing demand for new and improved Faraday rotators in the ultraviolet-visible wavelength region.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Weber, Faraday Rotator Materials (Lawrence Livermore National Laboratory, University of California, Livermore, 1982).
  2. F. Mitschke, Fiber Optics, Physics and Technology (Springer, 2009).
  3. E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
    [CrossRef]
  4. K. Ueda and H. Takuma, “A novel spectrometric technique based on Fourier transformation of transmission signal of Faraday rotator,” Rev. Laser Eng. 12(11), 652–659 (1984).
    [CrossRef]
  5. K. Ueda, H. Nishioka, H. Hisano, T. Kaminaga, and H. Takuma, “UV Faraday rotator and its application on KrF laser technology,” Rev. Laser Eng. 13(10), 805–813 (1985).
    [CrossRef]
  6. S. Ramaseshan, “Determination of the magneto-optical anomaly of some glasses,” Proc. of Indian Acad. Phys Sci A. 24, 426–432 (1946).
  7. M. J. Weber, Handbook of Optical Materials (CRC Press LLC, 2003).
  8. C. B. Rubinstein, S. B. Berger, L. G. Vanuitert, and W. A. Bonner, “Faraday rotation of rare-earth (III) borate glasses,” J. Appl. Phys. 35(8), 2338–2340 (1964).
    [CrossRef]
  9. K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D Appl. Phys. 31(19), 2622–2627 (1998).
    [CrossRef]
  10. V. Letellier, A. Seignac, A. Lefloch, and M. Matecki, “Magneto-optical properties of heavily rare-earth doped non-crystalline fluorophosphates,” J. Non-Cryst. Solids 111(1), 55–62 (1989).
    [CrossRef]
  11. T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday rotation effect of highly Tb2O3/Dy2O3-concentrated B2O3-Ga2O3-SiO2-P2O5 glasses,” Chem. Mater. 14(8), 3223–3225 (2002).
    [CrossRef]
  12. G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, and M. Y. Ivanov, “Faraday-effect and spectral properties of high-concentrated rare-earth-oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130(1), 35–40 (1991).
    [CrossRef]
  13. J. R. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213, 193–198 (1997).
    [CrossRef]
  14. M. Koralewski, “Dispersion of the Faraday-rotation in KDP-type crystals by pulse high magnetic-field,” Phys. Status Solidi A 65(1), K49–K53 (1981).
    [CrossRef]
  15. J. L. Dexter, J. Landry, D. G. Cooper, and J. Reintjes, “Ultraviolet optical isolators utilizing KDP-isomorphs,” Opt. Commun. 80(2), 115–118 (1990).
    [CrossRef]
  16. P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
    [CrossRef] [PubMed]
  17. V. Vasyliev, P. Molina, M. Nakamura, E. G. Villora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
    [CrossRef]
  18. B. P. Sobolev, The Rare Earth Trifluorides. Pt.1. The high temperature chemistry of the rare earth trifluorides (Institut d'Estudis Catalanas, per a aquesta edicio Carrer del Carme, Barcelona, 2000).
  19. B. P. Sobolev, P. P. Fedorov, K. B. Seiranian, and N. L. Tkachenko, “Problem of polymorphism and fusion of lanthanide trifluorides. 2. Interaction of LnF3 with MF2 (M=Ca, Sr, Ba), change in structural type in LnF3 series, and thermal characteristics,” J. Solid State Chem. 17(1-2), 201–212 (1976).
    [CrossRef]
  20. B. P. Sobolev, P. P. Fedorov, D. B. Shteynberg, B. V. Sinitsyn, and G. S. Shakhkalamian, “Problem of polymorphism and fusion of lanthanide trifluorides. 1. Influence of oxygen on phase-transition temperatures,” J. Solid State Chem. 17(1-2), 191–199 (1976).
    [CrossRef]
  21. K. Shimamura, E. G. Villora, S. Nakakita, M. Nikl, and N. Ichinose, “Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals,” J. Cryst. Growth 264(1-3), 208–215 (2004).
    [CrossRef]
  22. R. E. Thoma, H. Insley, C. F. Weaver, H. A. Friedman, L. A. Harris, and H. A. Yakel, “Phase equilibria in system LiF-YF3,” J. Phys. Chem.-Us. 65, 1096–1099 (1961).
  23. R. T. Wegh, A. Meijerink, R.-J. Lamminmäki, and Jorma Hölsä “Extending Dieke's diagram,” J. Lumin. 87–89, 1002–1004 (2000).
    [CrossRef]
  24. G. H. Dieke and H. M. Crosswhite, “The spectra of the doubly and triply ionized rare earths,” Appl. Opt. 2(7), 675–686 (1963).
    [CrossRef]
  25. J. Van Vleck and M. Hebb, “On the paramagnetic rotation of tysonite,” Phys. Rev. 46(1), 17–32 (1934).
    [CrossRef]
  26. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., New York).
  27. M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, “Magneto-optical properties of KTb3F10 and LiTbF4 crystals,” J. Appl. Phys. 49(6), 3464–3469 (1978).
    [CrossRef]

2011 (3)

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[CrossRef]

V. Vasyliev, P. Molina, M. Nakamura, E. G. Villora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
[CrossRef]

P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
[CrossRef] [PubMed]

2004 (1)

K. Shimamura, E. G. Villora, S. Nakakita, M. Nikl, and N. Ichinose, “Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals,” J. Cryst. Growth 264(1-3), 208–215 (2004).
[CrossRef]

2002 (1)

T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday rotation effect of highly Tb2O3/Dy2O3-concentrated B2O3-Ga2O3-SiO2-P2O5 glasses,” Chem. Mater. 14(8), 3223–3225 (2002).
[CrossRef]

2000 (1)

R. T. Wegh, A. Meijerink, R.-J. Lamminmäki, and Jorma Hölsä “Extending Dieke's diagram,” J. Lumin. 87–89, 1002–1004 (2000).
[CrossRef]

1998 (1)

K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D Appl. Phys. 31(19), 2622–2627 (1998).
[CrossRef]

1997 (1)

J. R. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213, 193–198 (1997).
[CrossRef]

1991 (1)

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, and M. Y. Ivanov, “Faraday-effect and spectral properties of high-concentrated rare-earth-oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130(1), 35–40 (1991).
[CrossRef]

1990 (1)

J. L. Dexter, J. Landry, D. G. Cooper, and J. Reintjes, “Ultraviolet optical isolators utilizing KDP-isomorphs,” Opt. Commun. 80(2), 115–118 (1990).
[CrossRef]

1989 (1)

V. Letellier, A. Seignac, A. Lefloch, and M. Matecki, “Magneto-optical properties of heavily rare-earth doped non-crystalline fluorophosphates,” J. Non-Cryst. Solids 111(1), 55–62 (1989).
[CrossRef]

1985 (1)

K. Ueda, H. Nishioka, H. Hisano, T. Kaminaga, and H. Takuma, “UV Faraday rotator and its application on KrF laser technology,” Rev. Laser Eng. 13(10), 805–813 (1985).
[CrossRef]

1984 (1)

K. Ueda and H. Takuma, “A novel spectrometric technique based on Fourier transformation of transmission signal of Faraday rotator,” Rev. Laser Eng. 12(11), 652–659 (1984).
[CrossRef]

1981 (1)

M. Koralewski, “Dispersion of the Faraday-rotation in KDP-type crystals by pulse high magnetic-field,” Phys. Status Solidi A 65(1), K49–K53 (1981).
[CrossRef]

1978 (1)

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, “Magneto-optical properties of KTb3F10 and LiTbF4 crystals,” J. Appl. Phys. 49(6), 3464–3469 (1978).
[CrossRef]

1976 (2)

B. P. Sobolev, P. P. Fedorov, K. B. Seiranian, and N. L. Tkachenko, “Problem of polymorphism and fusion of lanthanide trifluorides. 2. Interaction of LnF3 with MF2 (M=Ca, Sr, Ba), change in structural type in LnF3 series, and thermal characteristics,” J. Solid State Chem. 17(1-2), 201–212 (1976).
[CrossRef]

B. P. Sobolev, P. P. Fedorov, D. B. Shteynberg, B. V. Sinitsyn, and G. S. Shakhkalamian, “Problem of polymorphism and fusion of lanthanide trifluorides. 1. Influence of oxygen on phase-transition temperatures,” J. Solid State Chem. 17(1-2), 191–199 (1976).
[CrossRef]

1964 (1)

C. B. Rubinstein, S. B. Berger, L. G. Vanuitert, and W. A. Bonner, “Faraday rotation of rare-earth (III) borate glasses,” J. Appl. Phys. 35(8), 2338–2340 (1964).
[CrossRef]

1963 (1)

1961 (1)

R. E. Thoma, H. Insley, C. F. Weaver, H. A. Friedman, L. A. Harris, and H. A. Yakel, “Phase equilibria in system LiF-YF3,” J. Phys. Chem.-Us. 65, 1096–1099 (1961).

1946 (1)

S. Ramaseshan, “Determination of the magneto-optical anomaly of some glasses,” Proc. of Indian Acad. Phys Sci A. 24, 426–432 (1946).

1934 (1)

J. Van Vleck and M. Hebb, “On the paramagnetic rotation of tysonite,” Phys. Rev. 46(1), 17–32 (1934).
[CrossRef]

Berger, S. B.

C. B. Rubinstein, S. B. Berger, L. G. Vanuitert, and W. A. Bonner, “Faraday rotation of rare-earth (III) borate glasses,” J. Appl. Phys. 35(8), 2338–2340 (1964).
[CrossRef]

Bonner, W. A.

C. B. Rubinstein, S. B. Berger, L. G. Vanuitert, and W. A. Bonner, “Faraday rotation of rare-earth (III) borate glasses,” J. Appl. Phys. 35(8), 2338–2340 (1964).
[CrossRef]

Cooper, D. G.

J. L. Dexter, J. Landry, D. G. Cooper, and J. Reintjes, “Ultraviolet optical isolators utilizing KDP-isomorphs,” Opt. Commun. 80(2), 115–118 (1990).
[CrossRef]

Crosswhite, H. M.

Dexter, J. L.

J. L. Dexter, J. Landry, D. G. Cooper, and J. Reintjes, “Ultraviolet optical isolators utilizing KDP-isomorphs,” Opt. Commun. 80(2), 115–118 (1990).
[CrossRef]

Dieke, G. H.

Edelman, I. S.

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, and M. Y. Ivanov, “Faraday-effect and spectral properties of high-concentrated rare-earth-oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130(1), 35–40 (1991).
[CrossRef]

Fedorov, P. P.

B. P. Sobolev, P. P. Fedorov, D. B. Shteynberg, B. V. Sinitsyn, and G. S. Shakhkalamian, “Problem of polymorphism and fusion of lanthanide trifluorides. 1. Influence of oxygen on phase-transition temperatures,” J. Solid State Chem. 17(1-2), 191–199 (1976).
[CrossRef]

B. P. Sobolev, P. P. Fedorov, K. B. Seiranian, and N. L. Tkachenko, “Problem of polymorphism and fusion of lanthanide trifluorides. 2. Interaction of LnF3 with MF2 (M=Ca, Sr, Ba), change in structural type in LnF3 series, and thermal characteristics,” J. Solid State Chem. 17(1-2), 201–212 (1976).
[CrossRef]

Friedman, H. A.

R. E. Thoma, H. Insley, C. F. Weaver, H. A. Friedman, L. A. Harris, and H. A. Yakel, “Phase equilibria in system LiF-YF3,” J. Phys. Chem.-Us. 65, 1096–1099 (1961).

Fujita, K.

K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D Appl. Phys. 31(19), 2622–2627 (1998).
[CrossRef]

Funaki, A.

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[CrossRef]

Gabbe, D.

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, “Magneto-optical properties of KTb3F10 and LiTbF4 crystals,” J. Appl. Phys. 49(6), 3464–3469 (1978).
[CrossRef]

Griffin, J. A.

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, “Magneto-optical properties of KTb3F10 and LiTbF4 crystals,” J. Appl. Phys. 49(6), 3464–3469 (1978).
[CrossRef]

Harris, L. A.

R. E. Thoma, H. Insley, C. F. Weaver, H. A. Friedman, L. A. Harris, and H. A. Yakel, “Phase equilibria in system LiF-YF3,” J. Phys. Chem.-Us. 65, 1096–1099 (1961).

Hatanaka, T.

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[CrossRef]

Hayakawa, T.

T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday rotation effect of highly Tb2O3/Dy2O3-concentrated B2O3-Ga2O3-SiO2-P2O5 glasses,” Chem. Mater. 14(8), 3223–3225 (2002).
[CrossRef]

Hebb, M.

J. Van Vleck and M. Hebb, “On the paramagnetic rotation of tysonite,” Phys. Rev. 46(1), 17–32 (1934).
[CrossRef]

Hirao, K.

K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D Appl. Phys. 31(19), 2622–2627 (1998).
[CrossRef]

J. R. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213, 193–198 (1997).
[CrossRef]

Hisano, H.

K. Ueda, H. Nishioka, H. Hisano, T. Kaminaga, and H. Takuma, “UV Faraday rotator and its application on KrF laser technology,” Rev. Laser Eng. 13(10), 805–813 (1985).
[CrossRef]

Ichinose, N.

K. Shimamura, E. G. Villora, S. Nakakita, M. Nikl, and N. Ichinose, “Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals,” J. Cryst. Growth 264(1-3), 208–215 (2004).
[CrossRef]

Insley, H.

R. E. Thoma, H. Insley, C. F. Weaver, H. A. Friedman, L. A. Harris, and H. A. Yakel, “Phase equilibria in system LiF-YF3,” J. Phys. Chem.-Us. 65, 1096–1099 (1961).

Ivanov, M. Y.

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, and M. Y. Ivanov, “Faraday-effect and spectral properties of high-concentrated rare-earth-oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130(1), 35–40 (1991).
[CrossRef]

Jorma Hölsä,

R. T. Wegh, A. Meijerink, R.-J. Lamminmäki, and Jorma Hölsä “Extending Dieke's diagram,” J. Lumin. 87–89, 1002–1004 (2000).
[CrossRef]

Kaminaga, T.

K. Ueda, H. Nishioka, H. Hisano, T. Kaminaga, and H. Takuma, “UV Faraday rotator and its application on KrF laser technology,” Rev. Laser Eng. 13(10), 805–813 (1985).
[CrossRef]

Koralewski, M.

M. Koralewski, “Dispersion of the Faraday-rotation in KDP-type crystals by pulse high magnetic-field,” Phys. Status Solidi A 65(1), K49–K53 (1981).
[CrossRef]

Lamminmäki, R.-J.

R. T. Wegh, A. Meijerink, R.-J. Lamminmäki, and Jorma Hölsä “Extending Dieke's diagram,” J. Lumin. 87–89, 1002–1004 (2000).
[CrossRef]

Landry, J.

J. L. Dexter, J. Landry, D. G. Cooper, and J. Reintjes, “Ultraviolet optical isolators utilizing KDP-isomorphs,” Opt. Commun. 80(2), 115–118 (1990).
[CrossRef]

Lefloch, A.

V. Letellier, A. Seignac, A. Lefloch, and M. Matecki, “Magneto-optical properties of heavily rare-earth doped non-crystalline fluorophosphates,” J. Non-Cryst. Solids 111(1), 55–62 (1989).
[CrossRef]

Letellier, V.

V. Letellier, A. Seignac, A. Lefloch, and M. Matecki, “Magneto-optical properties of heavily rare-earth doped non-crystalline fluorophosphates,” J. Non-Cryst. Solids 111(1), 55–62 (1989).
[CrossRef]

Leung, S. Y.

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, “Magneto-optical properties of KTb3F10 and LiTbF4 crystals,” J. Appl. Phys. 49(6), 3464–3469 (1978).
[CrossRef]

Linz, A.

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, “Magneto-optical properties of KTb3F10 and LiTbF4 crystals,” J. Appl. Phys. 49(6), 3464–3469 (1978).
[CrossRef]

Malakhovskii, A. V.

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, and M. Y. Ivanov, “Faraday-effect and spectral properties of high-concentrated rare-earth-oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130(1), 35–40 (1991).
[CrossRef]

Matecki, M.

V. Letellier, A. Seignac, A. Lefloch, and M. Matecki, “Magneto-optical properties of heavily rare-earth doped non-crystalline fluorophosphates,” J. Non-Cryst. Solids 111(1), 55–62 (1989).
[CrossRef]

Meijerink, A.

R. T. Wegh, A. Meijerink, R.-J. Lamminmäki, and Jorma Hölsä “Extending Dieke's diagram,” J. Lumin. 87–89, 1002–1004 (2000).
[CrossRef]

Molina, P.

P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
[CrossRef] [PubMed]

V. Vasyliev, P. Molina, M. Nakamura, E. G. Villora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
[CrossRef]

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[CrossRef]

Morgret, R.

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, “Magneto-optical properties of KTb3F10 and LiTbF4 crystals,” J. Appl. Phys. 49(6), 3464–3469 (1978).
[CrossRef]

Nakakita, S.

K. Shimamura, E. G. Villora, S. Nakakita, M. Nikl, and N. Ichinose, “Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals,” J. Cryst. Growth 264(1-3), 208–215 (2004).
[CrossRef]

Nakamura, M.

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[CrossRef]

V. Vasyliev, P. Molina, M. Nakamura, E. G. Villora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
[CrossRef]

Naoe, K.

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[CrossRef]

Nikl, M.

K. Shimamura, E. G. Villora, S. Nakakita, M. Nikl, and N. Ichinose, “Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals,” J. Cryst. Growth 264(1-3), 208–215 (2004).
[CrossRef]

Nishi, N.

T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday rotation effect of highly Tb2O3/Dy2O3-concentrated B2O3-Ga2O3-SiO2-P2O5 glasses,” Chem. Mater. 14(8), 3223–3225 (2002).
[CrossRef]

Nishioka, H.

K. Ueda, H. Nishioka, H. Hisano, T. Kaminaga, and H. Takuma, “UV Faraday rotator and its application on KrF laser technology,” Rev. Laser Eng. 13(10), 805–813 (1985).
[CrossRef]

Nogami, M.

T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday rotation effect of highly Tb2O3/Dy2O3-concentrated B2O3-Ga2O3-SiO2-P2O5 glasses,” Chem. Mater. 14(8), 3223–3225 (2002).
[CrossRef]

Petrovskii, G. T.

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, and M. Y. Ivanov, “Faraday-effect and spectral properties of high-concentrated rare-earth-oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130(1), 35–40 (1991).
[CrossRef]

Qiu, J. R.

J. R. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213, 193–198 (1997).
[CrossRef]

Ramaseshan, S.

S. Ramaseshan, “Determination of the magneto-optical anomaly of some glasses,” Proc. of Indian Acad. Phys Sci A. 24, 426–432 (1946).

Reintjes, J.

J. L. Dexter, J. Landry, D. G. Cooper, and J. Reintjes, “Ultraviolet optical isolators utilizing KDP-isomorphs,” Opt. Commun. 80(2), 115–118 (1990).
[CrossRef]

Rubinstein, C. B.

C. B. Rubinstein, S. B. Berger, L. G. Vanuitert, and W. A. Bonner, “Faraday rotation of rare-earth (III) borate glasses,” J. Appl. Phys. 35(8), 2338–2340 (1964).
[CrossRef]

Sawanobori, N.

T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday rotation effect of highly Tb2O3/Dy2O3-concentrated B2O3-Ga2O3-SiO2-P2O5 glasses,” Chem. Mater. 14(8), 3223–3225 (2002).
[CrossRef]

Seignac, A.

V. Letellier, A. Seignac, A. Lefloch, and M. Matecki, “Magneto-optical properties of heavily rare-earth doped non-crystalline fluorophosphates,” J. Non-Cryst. Solids 111(1), 55–62 (1989).
[CrossRef]

Seiranian, K. B.

B. P. Sobolev, P. P. Fedorov, K. B. Seiranian, and N. L. Tkachenko, “Problem of polymorphism and fusion of lanthanide trifluorides. 2. Interaction of LnF3 with MF2 (M=Ca, Sr, Ba), change in structural type in LnF3 series, and thermal characteristics,” J. Solid State Chem. 17(1-2), 201–212 (1976).
[CrossRef]

Shakhkalamian, G. S.

B. P. Sobolev, P. P. Fedorov, D. B. Shteynberg, B. V. Sinitsyn, and G. S. Shakhkalamian, “Problem of polymorphism and fusion of lanthanide trifluorides. 1. Influence of oxygen on phase-transition temperatures,” J. Solid State Chem. 17(1-2), 191–199 (1976).
[CrossRef]

Shimamura, K.

P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
[CrossRef] [PubMed]

V. Vasyliev, P. Molina, M. Nakamura, E. G. Villora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
[CrossRef]

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[CrossRef]

K. Shimamura, E. G. Villora, S. Nakakita, M. Nikl, and N. Ichinose, “Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals,” J. Cryst. Growth 264(1-3), 208–215 (2004).
[CrossRef]

Shteynberg, D. B.

B. P. Sobolev, P. P. Fedorov, D. B. Shteynberg, B. V. Sinitsyn, and G. S. Shakhkalamian, “Problem of polymorphism and fusion of lanthanide trifluorides. 1. Influence of oxygen on phase-transition temperatures,” J. Solid State Chem. 17(1-2), 191–199 (1976).
[CrossRef]

Sinitsyn, B. V.

B. P. Sobolev, P. P. Fedorov, D. B. Shteynberg, B. V. Sinitsyn, and G. S. Shakhkalamian, “Problem of polymorphism and fusion of lanthanide trifluorides. 1. Influence of oxygen on phase-transition temperatures,” J. Solid State Chem. 17(1-2), 191–199 (1976).
[CrossRef]

Sobolev, B. P.

B. P. Sobolev, P. P. Fedorov, D. B. Shteynberg, B. V. Sinitsyn, and G. S. Shakhkalamian, “Problem of polymorphism and fusion of lanthanide trifluorides. 1. Influence of oxygen on phase-transition temperatures,” J. Solid State Chem. 17(1-2), 191–199 (1976).
[CrossRef]

B. P. Sobolev, P. P. Fedorov, K. B. Seiranian, and N. L. Tkachenko, “Problem of polymorphism and fusion of lanthanide trifluorides. 2. Interaction of LnF3 with MF2 (M=Ca, Sr, Ba), change in structural type in LnF3 series, and thermal characteristics,” J. Solid State Chem. 17(1-2), 201–212 (1976).
[CrossRef]

Soga, N.

K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D Appl. Phys. 31(19), 2622–2627 (1998).
[CrossRef]

Sugimoto, N.

J. R. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213, 193–198 (1997).
[CrossRef]

Takuma, H.

K. Ueda, H. Nishioka, H. Hisano, T. Kaminaga, and H. Takuma, “UV Faraday rotator and its application on KrF laser technology,” Rev. Laser Eng. 13(10), 805–813 (1985).
[CrossRef]

K. Ueda and H. Takuma, “A novel spectrometric technique based on Fourier transformation of transmission signal of Faraday rotator,” Rev. Laser Eng. 12(11), 652–659 (1984).
[CrossRef]

Tanaka, K.

K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D Appl. Phys. 31(19), 2622–2627 (1998).
[CrossRef]

J. R. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213, 193–198 (1997).
[CrossRef]

Tatehata, N.

K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D Appl. Phys. 31(19), 2622–2627 (1998).
[CrossRef]

Thoma, R. E.

R. E. Thoma, H. Insley, C. F. Weaver, H. A. Friedman, L. A. Harris, and H. A. Yakel, “Phase equilibria in system LiF-YF3,” J. Phys. Chem.-Us. 65, 1096–1099 (1961).

Tkachenko, N. L.

B. P. Sobolev, P. P. Fedorov, K. B. Seiranian, and N. L. Tkachenko, “Problem of polymorphism and fusion of lanthanide trifluorides. 2. Interaction of LnF3 with MF2 (M=Ca, Sr, Ba), change in structural type in LnF3 series, and thermal characteristics,” J. Solid State Chem. 17(1-2), 201–212 (1976).
[CrossRef]

Ueda, K.

K. Ueda, H. Nishioka, H. Hisano, T. Kaminaga, and H. Takuma, “UV Faraday rotator and its application on KrF laser technology,” Rev. Laser Eng. 13(10), 805–813 (1985).
[CrossRef]

K. Ueda and H. Takuma, “A novel spectrometric technique based on Fourier transformation of transmission signal of Faraday rotator,” Rev. Laser Eng. 12(11), 652–659 (1984).
[CrossRef]

Van Vleck, J.

J. Van Vleck and M. Hebb, “On the paramagnetic rotation of tysonite,” Phys. Rev. 46(1), 17–32 (1934).
[CrossRef]

Vanuitert, L. G.

C. B. Rubinstein, S. B. Berger, L. G. Vanuitert, and W. A. Bonner, “Faraday rotation of rare-earth (III) borate glasses,” J. Appl. Phys. 35(8), 2338–2340 (1964).
[CrossRef]

Vasyliev, V.

P. Molina, V. Vasyliev, E. G. Víllora, and K. Shimamura, “CeF3 and PrF3 as UV-visible Faraday rotators,” Opt. Express 19(12), 11786–11791 (2011).
[CrossRef] [PubMed]

V. Vasyliev, P. Molina, M. Nakamura, E. G. Villora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
[CrossRef]

Villora, E. G.

V. Vasyliev, P. Molina, M. Nakamura, E. G. Villora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
[CrossRef]

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[CrossRef]

K. Shimamura, E. G. Villora, S. Nakakita, M. Nikl, and N. Ichinose, “Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals,” J. Cryst. Growth 264(1-3), 208–215 (2004).
[CrossRef]

Víllora, E. G.

Weaver, C. F.

R. E. Thoma, H. Insley, C. F. Weaver, H. A. Friedman, L. A. Harris, and H. A. Yakel, “Phase equilibria in system LiF-YF3,” J. Phys. Chem.-Us. 65, 1096–1099 (1961).

Weber, M. J.

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, “Magneto-optical properties of KTb3F10 and LiTbF4 crystals,” J. Appl. Phys. 49(6), 3464–3469 (1978).
[CrossRef]

Wegh, R. T.

R. T. Wegh, A. Meijerink, R.-J. Lamminmäki, and Jorma Hölsä “Extending Dieke's diagram,” J. Lumin. 87–89, 1002–1004 (2000).
[CrossRef]

Yakel, H. A.

R. E. Thoma, H. Insley, C. F. Weaver, H. A. Friedman, L. A. Harris, and H. A. Yakel, “Phase equilibria in system LiF-YF3,” J. Phys. Chem.-Us. 65, 1096–1099 (1961).

Zabluda, V. N.

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, and M. Y. Ivanov, “Faraday-effect and spectral properties of high-concentrated rare-earth-oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130(1), 35–40 (1991).
[CrossRef]

Zarubina, T. V.

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, and M. Y. Ivanov, “Faraday-effect and spectral properties of high-concentrated rare-earth-oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130(1), 35–40 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett. 99(1), 011111 (2011).
[CrossRef]

Chem. Mater. (1)

T. Hayakawa, M. Nogami, N. Nishi, and N. Sawanobori, “Faraday rotation effect of highly Tb2O3/Dy2O3-concentrated B2O3-Ga2O3-SiO2-P2O5 glasses,” Chem. Mater. 14(8), 3223–3225 (2002).
[CrossRef]

J. Appl. Phys. (2)

C. B. Rubinstein, S. B. Berger, L. G. Vanuitert, and W. A. Bonner, “Faraday rotation of rare-earth (III) borate glasses,” J. Appl. Phys. 35(8), 2338–2340 (1964).
[CrossRef]

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, “Magneto-optical properties of KTb3F10 and LiTbF4 crystals,” J. Appl. Phys. 49(6), 3464–3469 (1978).
[CrossRef]

J. Cryst. Growth (1)

K. Shimamura, E. G. Villora, S. Nakakita, M. Nikl, and N. Ichinose, “Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals,” J. Cryst. Growth 264(1-3), 208–215 (2004).
[CrossRef]

J. Lumin. (1)

R. T. Wegh, A. Meijerink, R.-J. Lamminmäki, and Jorma Hölsä “Extending Dieke's diagram,” J. Lumin. 87–89, 1002–1004 (2000).
[CrossRef]

J. Non-Cryst. Solids (3)

V. Letellier, A. Seignac, A. Lefloch, and M. Matecki, “Magneto-optical properties of heavily rare-earth doped non-crystalline fluorophosphates,” J. Non-Cryst. Solids 111(1), 55–62 (1989).
[CrossRef]

G. T. Petrovskii, I. S. Edelman, T. V. Zarubina, A. V. Malakhovskii, V. N. Zabluda, and M. Y. Ivanov, “Faraday-effect and spectral properties of high-concentrated rare-earth-oxide glasses in visible and near UV region,” J. Non-Cryst. Solids 130(1), 35–40 (1991).
[CrossRef]

J. R. Qiu, K. Tanaka, N. Sugimoto, and K. Hirao, “Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 213, 193–198 (1997).
[CrossRef]

J. Phys. D Appl. Phys. (1)

K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D Appl. Phys. 31(19), 2622–2627 (1998).
[CrossRef]

J. Solid State Chem. (2)

B. P. Sobolev, P. P. Fedorov, K. B. Seiranian, and N. L. Tkachenko, “Problem of polymorphism and fusion of lanthanide trifluorides. 2. Interaction of LnF3 with MF2 (M=Ca, Sr, Ba), change in structural type in LnF3 series, and thermal characteristics,” J. Solid State Chem. 17(1-2), 201–212 (1976).
[CrossRef]

B. P. Sobolev, P. P. Fedorov, D. B. Shteynberg, B. V. Sinitsyn, and G. S. Shakhkalamian, “Problem of polymorphism and fusion of lanthanide trifluorides. 1. Influence of oxygen on phase-transition temperatures,” J. Solid State Chem. 17(1-2), 191–199 (1976).
[CrossRef]

Opt. Commun. (1)

J. L. Dexter, J. Landry, D. G. Cooper, and J. Reintjes, “Ultraviolet optical isolators utilizing KDP-isomorphs,” Opt. Commun. 80(2), 115–118 (1990).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

V. Vasyliev, P. Molina, M. Nakamura, E. G. Villora, and K. Shimamura, “Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 single crystals,” Opt. Mater. 33(11), 1710–1714 (2011).
[CrossRef]

Phys. Rev. (1)

J. Van Vleck and M. Hebb, “On the paramagnetic rotation of tysonite,” Phys. Rev. 46(1), 17–32 (1934).
[CrossRef]

Phys. Status Solidi A (1)

M. Koralewski, “Dispersion of the Faraday-rotation in KDP-type crystals by pulse high magnetic-field,” Phys. Status Solidi A 65(1), K49–K53 (1981).
[CrossRef]

Proc. of Indian Acad. Phys Sci A. (1)

S. Ramaseshan, “Determination of the magneto-optical anomaly of some glasses,” Proc. of Indian Acad. Phys Sci A. 24, 426–432 (1946).

Rev. Laser Eng. (2)

K. Ueda and H. Takuma, “A novel spectrometric technique based on Fourier transformation of transmission signal of Faraday rotator,” Rev. Laser Eng. 12(11), 652–659 (1984).
[CrossRef]

K. Ueda, H. Nishioka, H. Hisano, T. Kaminaga, and H. Takuma, “UV Faraday rotator and its application on KrF laser technology,” Rev. Laser Eng. 13(10), 805–813 (1985).
[CrossRef]

Other (6)

M. J. Weber, Faraday Rotator Materials (Lawrence Livermore National Laboratory, University of California, Livermore, 1982).

F. Mitschke, Fiber Optics, Physics and Technology (Springer, 2009).

M. J. Weber, Handbook of Optical Materials (CRC Press LLC, 2003).

B. P. Sobolev, The Rare Earth Trifluorides. Pt.1. The high temperature chemistry of the rare earth trifluorides (Institut d'Estudis Catalanas, per a aquesta edicio Carrer del Carme, Barcelona, 2000).

C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., New York).

R. E. Thoma, H. Insley, C. F. Weaver, H. A. Friedman, L. A. Harris, and H. A. Yakel, “Phase equilibria in system LiF-YF3,” J. Phys. Chem.-Us. 65, 1096–1099 (1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Grown RE fluoride single crystals, from left to right: CeF3, PrF3, LiTbF4, LiDyF4, LiHoF4, LiErF4, and LiYbF4 (10 mm long, with front and rear fine polished sides).

Fig. 2
Fig. 2

(a) UV-VIS-mid IR transmittance spectra of CeF3, PrF3, and LiREF4 single crystals without antireflection coating. (b) Measured and calculated reflectance spectra of LiErF4. (c) Schematic of the total reflectance R, approximated as the first reflections on the front and rear sides of a sample. Even though the arrows are drawn obliquely, a normal incident light is assumed.

Fig. 3
Fig. 3

FR measurements performed on a 20 mm long CeF3 sample. (a) Transmittance spectrum showing minima and maxima. (b) Inverse of measured minima and maxima rotation angles as a function of the wavelength square. The measured points are very well fitted by a single transition.

Fig. 4
Fig. 4

(a) Verdet constant dispersion of CeF3, PrF3, and LiREF4 crystals in comparison with that of TGG. All compounds are paramagnetic except LiYbF4, which is diamagnetic. For the sake of comparison the absolute V values of the paramagnetic compounds are plotted. The dotted intervals indicate the part of the fittings extrapolated in the VUV. (b) Inverse Verdet constant as a function of the wavelength square for LiREF4 crystals. The experimental points are fitted by a single transition.

Fig. 5
Fig. 5

Evaluation of the Verdet constant dispersion according to Eqs. (2)-(3). (a) Estimated transition wavelengths in comparison with absorption edge of crystals and 4fn-4fn-15d transition wavelengths of free RE ions. (b) Effective magnetic moments of the RE ions, and transition probabilities.

Fig. 6
Fig. 6

(a) Absorption and (b) magneto-optical figure of merit of CeF3, PrF3, and LiREF4.

Tables (4)

Tables Icon

Table 1 Measured ordinary (no) and extraordinary (ne) refractive indices of CeF3, PrF3 and LiREF4 single crystals

Tables Icon

Table 2 Sellmeier coefficients for the ordinary (no) and extraordinary (ne) refractive indices of CeF3, PrF3 and LiREF4 according to Eq. (1).

Tables Icon

Table 3 Analysis of Verdet constant dispersion of CeF3, PrF3, and LiREF4 in comparison with TGG according to Eqs. (2)-(4)

Tables Icon

Table 4 Verdet constants (rad T−1m−1) comparison of FR materials at different excimer laser wavelengths (in nm).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n 2 =A+ B ( λ 2 C) D λ 2 .
V= 4 π 2 ν 2 χ g μ B ch ij C ij ν 2 ν ij 2 .
χ= N RE μ 0 g 2 J(J+1) μ B 2 3 k B (T T C ) .
V= E λ 2 λ 0 2 .

Metrics