Abstract

The probability of two-photon transition (TPT) under a control field to inhibit the quantum interference and enhance the nonlinear optical cross section is observed. Essentially, this is a V-type electromagnetically induced transparency (EIT) with TPT instead of one photon transition. Numerical simulation based on solving the steady state density matrix can qualitatively fit the experimental data. A model of double-Lorentzian profile is used to fit the observed spectrum and give the de-convolution information of the inhibition of TPT spectrum due to EIT and enhancement on the wings of TPT. The frequency shift of the inhibit center is linear to the intensity of the control field (one-photon) and quadratic to the intensity of probe field (two-photon). Under the control field, a factor of 10 enhancements on the wings of the TPT is observed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [CrossRef] [PubMed]
  2. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [CrossRef] [PubMed]
  3. J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67(22), 3062–3065 (1991).
    [CrossRef] [PubMed]
  4. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61(7), 826–829 (1988).
    [CrossRef] [PubMed]
  5. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
    [CrossRef]
  6. M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat Laser-lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62(24), 2813–2816 (1989).
    [CrossRef] [PubMed]
  7. S. E. Harris, “Lasers without inversion-interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62(9), 1033–1036 (1989).
    [CrossRef] [PubMed]
  8. G. S. Agarwal, G. Vemuri, and T. W. Mossberg, “Lasing without Inversion-Gain Enhancement through Spectrally Colored Population Pumping,” Phys. Rev. A 48(6), R4055–R4058 (1993).
    [CrossRef]
  9. G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76(12), 2053–2056 (1996).
    [CrossRef] [PubMed]
  10. G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77(6), 1039–1042 (1996).
    [CrossRef] [PubMed]
  11. S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
    [CrossRef]
  12. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
    [CrossRef] [PubMed]
  13. C. J. Foot, Atomic Physics, Oxford master series in physics (Oxford University Press, 2005).
  14. Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, “Effects of light on cesium 6S-8S two-photon transition,” Opt. Commun. 283(9), 1788–1791 (2010).
    [CrossRef]
  15. J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
    [CrossRef]
  16. M. Yan, E. G. Rickey, and Y. F. Zhu, “Observations of absorptive photon switching and suppression of two-photon absorption in cold atoms,” J. Mod. Opt. 49(3-4), 675–685 (2002).
    [CrossRef]
  17. R. Y. Chang, Y. C. Lee, W. C. Fang, M. T. Lee, Z. S. He, B. C. Ke, and C. C. Tsai, “A narrow window of Rabi frequency for competition between electromagnetically induced transparency and Raman absorption,” J. Opt. Soc. Am. B 27(1), 85–91 (2010).
    [CrossRef]

2010 (2)

2003 (1)

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

2002 (1)

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observations of absorptive photon switching and suppression of two-photon absorption in cold atoms,” J. Mod. Opt. 49(3-4), 675–685 (2002).
[CrossRef]

2001 (1)

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

2000 (1)

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[CrossRef]

1998 (1)

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

1996 (2)

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76(12), 2053–2056 (1996).
[CrossRef] [PubMed]

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77(6), 1039–1042 (1996).
[CrossRef] [PubMed]

1993 (1)

G. S. Agarwal, G. Vemuri, and T. W. Mossberg, “Lasing without Inversion-Gain Enhancement through Spectrally Colored Population Pumping,” Phys. Rev. A 48(6), R4055–R4058 (1993).
[CrossRef]

1991 (2)

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67(22), 3062–3065 (1991).
[CrossRef] [PubMed]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

1989 (2)

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat Laser-lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62(24), 2813–2816 (1989).
[CrossRef] [PubMed]

S. E. Harris, “Lasers without inversion-interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62(9), 1033–1036 (1989).
[CrossRef] [PubMed]

1988 (1)

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61(7), 826–829 (1988).
[CrossRef] [PubMed]

Agarwal, G. S.

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77(6), 1039–1042 (1996).
[CrossRef] [PubMed]

G. S. Agarwal, G. Vemuri, and T. W. Mossberg, “Lasing without Inversion-Gain Enhancement through Spectrally Colored Population Pumping,” Phys. Rev. A 48(6), R4055–R4058 (1993).
[CrossRef]

Arimondo, E.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61(7), 826–829 (1988).
[CrossRef] [PubMed]

Aspect, A.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61(7), 826–829 (1988).
[CrossRef] [PubMed]

Boller, K. J.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Chang, R. Y.

Chang, Y. H.

Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, “Effects of light on cesium 6S-8S two-photon transition,” Opt. Commun. 283(9), 1788–1791 (2010).
[CrossRef]

Chen, K. X.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[CrossRef]

Chen, Y. Y.

Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, “Effects of light on cesium 6S-8S two-photon transition,” Opt. Commun. 283(9), 1788–1791 (2010).
[CrossRef]

Chui, H. C.

Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, “Effects of light on cesium 6S-8S two-photon transition,” Opt. Commun. 283(9), 1788–1791 (2010).
[CrossRef]

Cohen-Tannoudji, C.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61(7), 826–829 (1988).
[CrossRef] [PubMed]

Fang, W. C.

Field, J. E.

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67(22), 3062–3065 (1991).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

Fry, E. S.

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76(12), 2053–2056 (1996).
[CrossRef] [PubMed]

Gao, J. Y.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[CrossRef]

Gavrielides, A.

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat Laser-lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62(24), 2813–2816 (1989).
[CrossRef] [PubMed]

Goorskey, D.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

Guo, X. Z.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[CrossRef]

Hahn, K. H.

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67(22), 3062–3065 (1991).
[CrossRef] [PubMed]

Harris, S. E.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67(22), 3062–3065 (1991).
[CrossRef] [PubMed]

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

S. E. Harris, “Lasers without inversion-interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62(9), 1033–1036 (1989).
[CrossRef] [PubMed]

Harshawardhan, W.

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77(6), 1039–1042 (1996).
[CrossRef] [PubMed]

He, Z. S.

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

Imamolu, A.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Jiang, Y.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[CrossRef]

Kaiser, R.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61(7), 826–829 (1988).
[CrossRef] [PubMed]

Kash, M. M.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

Ke, B. C.

Lee, M. T.

Lee, Y. C.

Lukin, M. D.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76(12), 2053–2056 (1996).
[CrossRef] [PubMed]

Mossberg, T. W.

G. S. Agarwal, G. Vemuri, and T. W. Mossberg, “Lasing without Inversion-Gain Enhancement through Spectrally Colored Population Pumping,” Phys. Rev. A 48(6), R4055–R4058 (1993).
[CrossRef]

Nikonov, D. E.

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76(12), 2053–2056 (1996).
[CrossRef] [PubMed]

Padmabandu, G. G.

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76(12), 2053–2056 (1996).
[CrossRef] [PubMed]

Rickey, E. G.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observations of absorptive photon switching and suppression of two-photon absorption in cold atoms,” J. Mod. Opt. 49(3-4), 675–685 (2002).
[CrossRef]

Sautenkov, V. A.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

Scully, M. O.

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76(12), 2053–2056 (1996).
[CrossRef] [PubMed]

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat Laser-lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62(24), 2813–2816 (1989).
[CrossRef] [PubMed]

Shubin, I. N.

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76(12), 2053–2056 (1996).
[CrossRef] [PubMed]

Tsai, C. C.

Vansteenkiste, N.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61(7), 826–829 (1988).
[CrossRef] [PubMed]

Vemuri, G.

G. S. Agarwal, G. Vemuri, and T. W. Mossberg, “Lasing without Inversion-Gain Enhancement through Spectrally Colored Population Pumping,” Phys. Rev. A 48(6), R4055–R4058 (1993).
[CrossRef]

Wang, D.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[CrossRef]

Wang, H.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

Welch, G. R.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76(12), 2053–2056 (1996).
[CrossRef] [PubMed]

Xiao, M.

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

Yamamoto, Y.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

Yan, M.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observations of absorptive photon switching and suppression of two-photon absorption in cold atoms,” J. Mod. Opt. 49(3-4), 675–685 (2002).
[CrossRef]

Yang, S. H.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[CrossRef]

Yelin, S. F.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

Zhao, B.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[CrossRef]

Zhu, S. Y.

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat Laser-lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62(24), 2813–2816 (1989).
[CrossRef] [PubMed]

Zhu, Y. F.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observations of absorptive photon switching and suppression of two-photon absorption in cold atoms,” J. Mod. Opt. 49(3-4), 675–685 (2002).
[CrossRef]

J. Mod. Opt. (1)

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observations of absorptive photon switching and suppression of two-photon absorption in cold atoms,” J. Mod. Opt. 49(3-4), 675–685 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, “Effects of light on cesium 6S-8S two-photon transition,” Opt. Commun. 283(9), 1788–1791 (2010).
[CrossRef]

Phys. Rev. A (3)

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61(2), 023401 (2000).
[CrossRef]

G. S. Agarwal, G. Vemuri, and T. W. Mossberg, “Lasing without Inversion-Gain Enhancement through Spectrally Colored Population Pumping,” Phys. Rev. A 48(6), R4055–R4058 (1993).
[CrossRef]

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

Phys. Rev. Lett. (10)

H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87(7), 073601 (2001).
[CrossRef] [PubMed]

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76(12), 2053–2056 (1996).
[CrossRef] [PubMed]

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77(6), 1039–1042 (1996).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67(22), 3062–3065 (1991).
[CrossRef] [PubMed]

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61(7), 826–829 (1988).
[CrossRef] [PubMed]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat Laser-lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62(24), 2813–2816 (1989).
[CrossRef] [PubMed]

S. E. Harris, “Lasers without inversion-interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62(9), 1033–1036 (1989).
[CrossRef] [PubMed]

Other (1)

C. J. Foot, Atomic Physics, Oxford master series in physics (Oxford University Press, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Energy diagram of the TPT V-type EIT in cesium atomic system. The corresponding laser wavelengths of probe and control fields are labeled. Cascade fluorescence is collected to monitor the population of the 8S level.

Fig. 2
Fig. 2

The schematic diagram of the experimental setup for the suppression of the two-photon V-type EIT transition. HWP: Half-wave plate, PBS: polarizing beam splitter, BS: beam splitter and PMT: photomultiplier tube.

Fig. 3
Fig. 3

The simulation spectra of the probability of TPTs under the presence of control field. (a) The probability of TPTs as a function of the probe detuning under various Rabi frequencies of probe field. The Rabi frequency of the control field is fixed at 7.35 MHz. (b) The probability of TPTs as a function of the probe detuning under various Rabi frequencies of control field. The Rabi frequency of the probe field is fixed at 0.1 MHz. The heavy solid line is the recorded spectrum where the Rabi frequency Ωp and Ωc are the corresponding experimental conditions and peak height is normalized to the simulation.

Fig. 4
Fig. 4

Measured two-photon fluorescence intensity versus the probe detuning Δp with the presence of control field. (a) The suppression of TPT spectrum due to destructive interference is shown in black dots and the fitting results according to Eq. (3) in red. The Rabi frequency of the control laser (Ωc) is about 7.65 MHz. On the bottom showing in green is the typical TPT signal without the control field obtained from reference cell. (b) The subtraction using a double-Lorentzian model (black line) and their original Lorentzian profiles, TPT signal (blue line) with positive sign and inhibition dip (red line) with negative sign.

Fig. 5
Fig. 5

(a) The frequency shift Δf versus the intensity of the control field with the probe intensity fixed. Solid line is a linear fit. (b) The frequency shift Δf versus the probe field intensity. Solid line is a quadratic fit.

Fig. 6
Fig. 6

(a) The fitting linewidth (γ1, γ2) versus the probe intensity, and (b) the fitting linewidth (γ1, γ2) versus TPT intensity. Red: γ1, and Black: γ2.

Fig. 7
Fig. 7

Recorded spectrum with pure TPT (in black from reference cell) and the present of control field (in red from the main cell). The ratio of these two signals (in blue) shows the enhancement on the wings and the depletion on the center of the TPT affected by the control field.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i ρ ˙ = [H, ρ] - i 2 {Γ, ρ}
Im[ ρ 12 ]= - Ω p Γ 2 Γ 3 2 - Ω p Ω c 2 Γ 3 -4 Ω p Γ 2 ( Δ p + Δ c ) 2 Γ 2 2 Γ 3 2 + Ω c 4 +16 Δ p 2 ( Δ p + Δ c ) 2 +2 Γ 2 Γ 3 Ω c 2 8 Ω c 2 Δ p ( Δ p + Δ c )+4 Γ 3 2 Δ p 2 +4 Γ 2 2 ( Δ p + Δ c ) 2
y={ y a + 2 A 1 π γ 1 4 (x ω 1 ) 2 + γ 1 2 }{ y b + 2 A 2 π γ 2 4 (x ω 2 ) 2 + γ 2 2 }
Im[ ρ 12 ]= -4 Ω p Γ 2 Δ p 2 - Ω p Γ 2 Γ 3 2 - Ω p Ω c 2 Γ 3 16 Δ p 4 +4( Γ 3 2 +4 Γ 2 2 2 Ω c 2 ) Δ p 2 + Γ 2 2 Γ 3 2 + Ω c 4 +2 Γ 2 Γ 3 Ω c 2

Metrics