Abstract

A computationally efficient dispersion-folded (D-folded) digital backward propagation (DBP) method for nonlinearity compensation of dispersion-managed fiber links is proposed. At the optimum power level of long-haul fiber transmission, the optical waveform evolution along the fiber is dominated by the chromatic dispersion. The optical waveform and, consequently, the nonlinear behavior of the optical signal repeat at locations of identical accumulated dispersion. Hence the DBP steps can be folded according to the accumulated dispersion. Experimental results show that for 6,084 km single channel transmission, the D-folded DBP method reduces the computation by a factor of 43 with negligible penalty in performance. Simulation of inter-channel nonlinearity compensation for 13,000 km wavelength-division multiplexing (WDM) transmission shows that the D-folded DBP method can reduce the computation by a factor of 37.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Elsevier, 2001).
  2. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
    [CrossRef] [PubMed]
  3. B. C. Kurtzke, “Suppression of fiber nonlinearities by appropriate dispersion management,” IEEE Photon. Technol. Lett. 5(10), 1250–1253 (1993).
    [CrossRef]
  4. K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” J. Opt. Fiber Commun. Rep. 3(5), 292–339 (2006).
    [CrossRef]
  5. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  6. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
    [CrossRef] [PubMed]
  7. H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express 16(2), 873–879 (2008).
    [CrossRef] [PubMed]
  8. E. Yamazaki, S. Yamanaka, Y. Kisaka, T. Nakagawa, K. Murata, E. Yoshida, T. Sakano, M. Tomizawa, Y. Miyamoto, S. Matsuoka, J. Matsui, A. Shibayama, J. Abe, Y. Nakamura, H. Noguchi, K. Fukuchi, H. Onaka, K. Fukumitsu, K. Komaki, O. Takeuchi, Y. Sakamoto, H. Nakashima, T. Mizuochi, K. Kubo, Y. Miyata, H. Nishimoto, S. Hirano, and K. Onohara, “Fast optical channel recovery in field demonstration of 100-Gbit/s Ethernet over OTN using real-time DSP,” Opt. Express 19(14), 13179–13184 (2011).
    [CrossRef] [PubMed]
  9. J. M. Kahn and K.-P. Ho, “A bottleneck for optical fibres,” Nature 411(6841), 1007–1010 (2001).
    [CrossRef] [PubMed]
  10. E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006).
    [CrossRef]
  11. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
    [CrossRef]
  12. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [CrossRef]
  13. L. Li, Z. Tao, L. Liu, W. Yan, S. Oda, T. Hoshida, and J. C. Rasmussen, “XPM tolerant adaptive carrier phase recovery for coherent receiver based on phase noise statistics monitoring,” in Proc. ECOC’09, Paper P3.16 (2009).
  14. K.-P. Ho and J. M. Kahn, “Electronic compensation technique to mitigate nonlinear phase noise,” J. Lightwave Technol. 22(3), 779–783 (2004).
    [CrossRef]
  15. L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(5), 320–322 (2010).
    [CrossRef]
  16. K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
    [CrossRef]
  17. X. Li, X. Chen, G. Goldfarb, E. F. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
    [CrossRef] [PubMed]
  18. E. Ip and J. M. Kahn, “Fiber impairment compensation using coherent detection and digital signal processing,” J. Lightwave Technol. 28(4), 502–519 (2010).
    [CrossRef]
  19. D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
    [CrossRef]
  20. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21(1), 61–68 (2003).
    [CrossRef]
  21. S. Oda, T. Tanimura, T. Hoshida, C. Ohshima, H. Nakashima, Z. Tao, and J. C. Rasmussen, “112 Gb/s DP-QPSK transmission using a novel nonlinear compensator in digital coherent receiver.” in Proc. OFC’09, Paper OThR6 (2009).
  22. E. F. Mateo, L. Zhu, and G. Li, “Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation,” Opt. Express 16(20), 16124–16137 (2008).
    [CrossRef] [PubMed]
  23. E. F. Mateo, F. Yaman, and G. Li, “Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission,” Opt. Express 18(14), 15144–15154 (2010).
    [CrossRef] [PubMed]
  24. Q. Zhang and M. I. Hayee, “Symmetrized split-step Fourier scheme to control global simulation accuracy in fiber-optic communication systems,” J. Lightwave Technol. 26(2), 302–316 (2008).
    [CrossRef]
  25. L. B. Du and A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express 18(16), 17075–17088 (2010).
    [CrossRef] [PubMed]
  26. D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and A. D. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19(10), 9453–9460 (2011).
    [CrossRef] [PubMed]
  27. L. Zhu and G. Li, “Folded digital backward propagation for dispersion-managed fiber-optic transmission,” Opt. Express 19(7), 5953–5959 (2011).
    [CrossRef] [PubMed]
  28. L. Zhu, X. Li, E. F. Mateo, and G. Li, “Complementary FIR filter pair for distributed impairment compensation of WDM fiber transmission,” IEEE Photon. Technol. Lett. 21(5), 292–294 (2009).
    [CrossRef]
  29. J. K. Fischer, C.-A. Bunge, and K. Petermann, “Equivalent single-span model for dispersion-managed fiber-optic transmission systems,” J. Lightwave Technol. 27(16), 3425–3432 (2009).
    [CrossRef]
  30. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6), 4815–4823 (2009).
    [CrossRef] [PubMed]
  31. V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
    [CrossRef]
  32. T. Yoshida, T. Sugihara, H. Goto, T. Tokura, K. Ishida, and T. Mizuochi, “A study on statistical equalization of intra-channel fiber nonlinearity for digital coherent optical systems,” in Proc. ECOC’11, Tu.3.A. (2011).
  33. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
    [CrossRef] [PubMed]
  34. T. Tanimura, T. Hoshida, T. Tanaka, L. Li, S. Oda, H. Nakashima, Z. Tao, and J. C. Rasmussen, “Semi-blind nonlinear equalization in coherent multi-span transmission system with inhomogeneous span parameters,” in Proc. OFC’10, OMR6 (2010).
  35. L. Zhu, F. Yaman, and G. Li, “Experimental demonstration of XPM compensation for WDM fibre transmission,” Electron. Lett. 46(16), 1140–1141 (2010).
    [CrossRef]

2011

2010

A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
[CrossRef]

E. Ip and J. M. Kahn, “Fiber impairment compensation using coherent detection and digital signal processing,” J. Lightwave Technol. 28(4), 502–519 (2010).
[CrossRef]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[CrossRef]

E. F. Mateo, F. Yaman, and G. Li, “Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission,” Opt. Express 18(14), 15144–15154 (2010).
[CrossRef] [PubMed]

L. B. Du and A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express 18(16), 17075–17088 (2010).
[CrossRef] [PubMed]

L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(5), 320–322 (2010).
[CrossRef]

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

L. Zhu, F. Yaman, and G. Li, “Experimental demonstration of XPM compensation for WDM fibre transmission,” Electron. Lett. 46(16), 1140–1141 (2010).
[CrossRef]

2009

2008

2007

2006

E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006).
[CrossRef]

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” J. Opt. Fiber Commun. Rep. 3(5), 292–339 (2006).
[CrossRef]

2004

2003

2001

J. M. Kahn and K.-P. Ho, “A bottleneck for optical fibres,” Nature 411(6841), 1007–1010 (2001).
[CrossRef] [PubMed]

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

1993

B. C. Kurtzke, “Suppression of fiber nonlinearities by appropriate dispersion management,” IEEE Photon. Technol. Lett. 5(10), 1250–1253 (1993).
[CrossRef]

1990

Abe, J.

Barros, D. J. F.

Bayvel, P.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[CrossRef] [PubMed]

Behrens, C.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Bunge, C.-A.

Carena, A.

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

Chen, X.

Chugtai, M. N.

Cotter, D.

Curri, V.

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

Desurvire, E. B.

Du, L. B.

Ellis, A. D.

Essiambre, R.-J.

Fischer, J. K.

Forghieri, F.

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

Forzati, M.

Foschini, G. J.

Fukuchi, K.

Fukumitsu, K.

Gavioli, G.

Goebel, B.

Goldfarb, G.

Gordon, J. P.

Hardcastle, I.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Hayee, M. I.

Hellerbrand, S.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Hirano, S.

Ho, K.-P.

Holzlohner, R.

Imamura, K.

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” J. Opt. Fiber Commun. Rep. 3(5), 292–339 (2006).
[CrossRef]

Ip, E.

Kahn, J. M.

Killey, R. I.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[CrossRef] [PubMed]

Kim, I.

Kisaka, Y.

Kokura, K.

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” J. Opt. Fiber Commun. Rep. 3(5), 292–339 (2006).
[CrossRef]

Komaki, K.

Kramer, G.

Kubo, K.

Kurtzke, B. C.

B. C. Kurtzke, “Suppression of fiber nonlinearities by appropriate dispersion management,” IEEE Photon. Technol. Lett. 5(10), 1250–1253 (1993).
[CrossRef]

Lau, A. P. T.

Li, C.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Li, G.

Li, X.

L. Zhu, X. Li, E. F. Mateo, and G. Li, “Complementary FIR filter pair for distributed impairment compensation of WDM fiber transmission,” IEEE Photon. Technol. Lett. 21(5), 292–294 (2009).
[CrossRef]

X. Li, X. Chen, G. Goldfarb, E. F. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
[CrossRef] [PubMed]

Lowery, A. J.

Makovejs, S.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Mårtensson, J.

Mateo, E. F.

Matsui, J.

Matsuoka, S.

Menyuk, C. R.

Millar, D. S.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Mitra, P. P.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Miyamoto, Y.

Miyata, Y.

Mizuochi, T.

Mollenauer, L. F.

Mukasa, K.

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” J. Opt. Fiber Commun. Rep. 3(5), 292–339 (2006).
[CrossRef]

Murata, K.

Mussolin, M.

Nakagawa, T.

Nakamura, Y.

Nakashima, H.

Nishimoto, H.

Noguchi, H.

O’Sullivan, M.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Onaka, H.

Onohara, K.

Petermann, K.

Poggiolini, P.

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

Rafique, D.

Roberts, K.

H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express 16(2), 873–879 (2008).
[CrossRef] [PubMed]

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Sakamoto, Y.

Sakano, T.

Savory, S. J.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[CrossRef] [PubMed]

Shibayama, A.

Shimotakahara, I.

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” J. Opt. Fiber Commun. Rep. 3(5), 292–339 (2006).
[CrossRef]

Sinkin, O. V.

Stark, J. B.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Strawczynski, L.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Sun, H.

Takeuchi, O.

Tomizawa, M.

Winzer, P. J.

Wu, K.-T.

Xie, C.

Yagi, T.

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” J. Opt. Fiber Commun. Rep. 3(5), 292–339 (2006).
[CrossRef]

Yaman, F.

Yamanaka, S.

Yamazaki, E.

Yoshida, E.

Zhang, Q.

Zhao, J.

Zhu, L.

L. Zhu and G. Li, “Folded digital backward propagation for dispersion-managed fiber-optic transmission,” Opt. Express 19(7), 5953–5959 (2011).
[CrossRef] [PubMed]

L. Zhu, F. Yaman, and G. Li, “Experimental demonstration of XPM compensation for WDM fibre transmission,” Electron. Lett. 46(16), 1140–1141 (2010).
[CrossRef]

L. Zhu, X. Li, E. F. Mateo, and G. Li, “Complementary FIR filter pair for distributed impairment compensation of WDM fiber transmission,” IEEE Photon. Technol. Lett. 21(5), 292–294 (2009).
[CrossRef]

E. F. Mateo, L. Zhu, and G. Li, “Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation,” Opt. Express 16(20), 16124–16137 (2008).
[CrossRef] [PubMed]

Zweck, J.

Electron. Lett.

L. Zhu, F. Yaman, and G. Li, “Experimental demonstration of XPM compensation for WDM fibre transmission,” Electron. Lett. 46(16), 1140–1141 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Zhu, X. Li, E. F. Mateo, and G. Li, “Complementary FIR filter pair for distributed impairment compensation of WDM fiber transmission,” IEEE Photon. Technol. Lett. 21(5), 292–294 (2009).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

B. C. Kurtzke, “Suppression of fiber nonlinearities by appropriate dispersion management,” IEEE Photon. Technol. Lett. 5(10), 1250–1253 (1993).
[CrossRef]

L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(5), 320–322 (2010).
[CrossRef]

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Fiber Commun. Rep.

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” J. Opt. Fiber Commun. Rep. 3(5), 292–339 (2006).
[CrossRef]

Nature

J. M. Kahn and K.-P. Ho, “A bottleneck for optical fibres,” Nature 411(6841), 1007–1010 (2001).
[CrossRef] [PubMed]

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Opt. Express

E. F. Mateo, F. Yaman, and G. Li, “Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission,” Opt. Express 18(14), 15144–15154 (2010).
[CrossRef] [PubMed]

L. B. Du and A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express 18(16), 17075–17088 (2010).
[CrossRef] [PubMed]

L. Zhu and G. Li, “Folded digital backward propagation for dispersion-managed fiber-optic transmission,” Opt. Express 19(7), 5953–5959 (2011).
[CrossRef] [PubMed]

D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and A. D. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19(10), 9453–9460 (2011).
[CrossRef] [PubMed]

E. Yamazaki, S. Yamanaka, Y. Kisaka, T. Nakagawa, K. Murata, E. Yoshida, T. Sakano, M. Tomizawa, Y. Miyamoto, S. Matsuoka, J. Matsui, A. Shibayama, J. Abe, Y. Nakamura, H. Noguchi, K. Fukuchi, H. Onaka, K. Fukumitsu, K. Komaki, O. Takeuchi, Y. Sakamoto, H. Nakashima, T. Mizuochi, K. Kubo, Y. Miyata, H. Nishimoto, S. Hirano, and K. Onohara, “Fast optical channel recovery in field demonstration of 100-Gbit/s Ethernet over OTN using real-time DSP,” Opt. Express 19(14), 13179–13184 (2011).
[CrossRef] [PubMed]

E. F. Mateo, L. Zhu, and G. Li, “Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation,” Opt. Express 16(20), 16124–16137 (2008).
[CrossRef] [PubMed]

C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6), 4815–4823 (2009).
[CrossRef] [PubMed]

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[CrossRef] [PubMed]

E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
[CrossRef] [PubMed]

H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express 16(2), 873–879 (2008).
[CrossRef] [PubMed]

X. Li, X. Chen, G. Goldfarb, E. F. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Other

S. Oda, T. Tanimura, T. Hoshida, C. Ohshima, H. Nakashima, Z. Tao, and J. C. Rasmussen, “112 Gb/s DP-QPSK transmission using a novel nonlinear compensator in digital coherent receiver.” in Proc. OFC’09, Paper OThR6 (2009).

T. Yoshida, T. Sugihara, H. Goto, T. Tokura, K. Ishida, and T. Mizuochi, “A study on statistical equalization of intra-channel fiber nonlinearity for digital coherent optical systems,” in Proc. ECOC’11, Tu.3.A. (2011).

T. Tanimura, T. Hoshida, T. Tanaka, L. Li, S. Oda, H. Nakashima, Z. Tao, and J. C. Rasmussen, “Semi-blind nonlinear equalization in coherent multi-span transmission system with inhomogeneous span parameters,” in Proc. OFC’10, OMR6 (2010).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, Elsevier, 2001).

L. Li, Z. Tao, L. Liu, W. Yan, S. Oda, T. Hoshida, and J. C. Rasmussen, “XPM tolerant adaptive carrier phase recovery for coherent receiver based on phase noise statistics monitoring,” in Proc. ECOC’09, Paper P3.16 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Conventional DBP and D-folded DBP for a dispersion-managed coherent fiber link.

Fig. 2
Fig. 2

Experimental demonstration of D-folded DBP. (a) Experimental setup. Inset: constellations after back-to-back detection, EDC and DBP at the corresponding optimum power levels. (b) Q-value as a function of the number of steps using conventional DBP (green line) and D-folded DBP (blue line). (c) Q-value as a function of optical launching power after EDC (red line), 30-step D-folded DBP (blue line) and 1,300-step conventional DBP (green line).

Fig. 3
Fig. 3

Numerical demonstration of D-folded DBP for WDM transmission. (a) Block diagram of the dispersion-managed WDM system. (b) Q-value as a function of the number of steps using D-folded DBP and conventional DBP for SPM + XPM compensation. (c) Q-value as a function of the number of steps using D-folded DBP and conventional DBP for SPM compensation. (d) Q-value as a function of residual dispersion per span.

Tables (2)

Tables Icon

Table 1 Performance and complexity of conventional DBP and D-folded DBP for the single channel system

Tables Icon

Table 2 Performance and complexity of conventional DBP and D-folded DBP for the WDM system

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E(z,t) z =[D+εN( | E(z,t) | 2 )]E(z,t),
E(z,t)= E l (z,t)+ε E nl (z,t).
E l (z,t) z =D E l (z,t),
E nl (z,t) z =D E nl (z,t)+N( | E l (z,t) | 2 ) E l (z,t),

Metrics