Abstract

We observe a near-ideal high speed amplitude impulse response in an SOA-EAM-SOA configuration under optimum conditions. Full amplitude recovery times as low as 10ps with modulation depths of 70% were observed in pump-probe measurements. System behavior could be controlled by the choice of signal wavelength, SOA current biases and EAM reverse bias voltages. Experimental data and impulse response modelling indicated that the slow tail in the gain response of first SOA was negated by a combination of cross-absorption modulation between pump and modulated CW probe, and self-gain modulation of the modulated CW probe in both the EAM and second SOA.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
    [CrossRef] [PubMed]
  2. W. Mathlouthi, F. Vacondio, P. Lemieux, and L. A. Rusch, “SOA gain recovery wavelength dependence: simulation and measurement using a single-color pump-probe technique,” Opt. Express 16(25), 20656–20665 (2008).
    [CrossRef] [PubMed]
  3. L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
    [CrossRef]
  4. R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(9), 1061–1063 (2006).
    [CrossRef]
  5. F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
    [CrossRef]
  6. R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000).
    [CrossRef]
  7. L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
    [CrossRef]
  8. A. Uskov, J. Mork, and J. Mark, “Theory of short-pulse gain saturation in semiconductor laser amplifiers,” IEEE Photon. Technol. Lett. 4(5), 443–446 (1992).
    [CrossRef]
  9. M. Asghari, I. H. White, and R. V. Penty, “Wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol. 15(7), 1181–1190 (1997).
    [CrossRef]
  10. J. Leuthold, R. Ryf, D. N. Maywar, S. Cabot, J. Jaques, and S. S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
    [CrossRef]
  11. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
    [CrossRef]
  12. R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19(12), 889–991 (1994).
    [CrossRef] [PubMed]
  13. R. J. Manning, D. A. O. Davies, S. Cotter, and J. K. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994).
    [CrossRef]
  14. R. J. Runser, D. Zhou, C. Coldwell, B. C. Wang, P. Toliver, K. L. Deng, I. Glesk, and P. R. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
    [CrossRef]
  15. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
    [CrossRef]
  16. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Quantum Electron. 6(6), 1428–1435 (2000).
    [CrossRef]
  17. G. Talli and M. J. Adams, “Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam,” Opt. Commun. 245(1-6), 363–370 (2005).
    [CrossRef]
  18. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
    [CrossRef]
  19. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Significant reduction of recovery time in semiconductor optical amplifier using p-type modulation doped MQW,” in European Conference on Optical Communications (ECOC,2006), 1–2.
  20. Y. Yu, L. Huang, M. Xiong, L. Yan, and P. Tian, “An integrated circuit subsystem of quantum dot semiconductor optical amplifier coupled with electro-absorption modulator and its application in wavelength conversion,” Opt. Commun. 284(7), 1847–1854 (2011).
    [CrossRef]
  21. E. Zhou, F. Öhman, C. Cheng, X. Zhang, W. Hong, J. Mørk, and D. Huang, “Reduction of patterning effects in SOA-based wavelength converters by combining cross-gain and cross-absorption modulation,” Opt. Express 16(26), 21522–21528 (2008).
    [CrossRef] [PubMed]
  22. M. J. R. Heck, A. J. M. Bente, Y. Barbarin, D. Lenstra, and M. K. Smit, “Monolithic semiconductor waveguide device concept for picosecond pulse amplification, isolation, and spectral shaping,” IEEE J. Quantum Electron. 43(10), 910–922 (2007).
    [CrossRef]
  23. K. Inoue, “Technique to compensate waveform distortion in a gain-saturated semiconductor optical amplifier using a semiconductor saturable absorber,” Electron. Lett. 34(4), 376–378 (1998).
    [CrossRef]
  24. F. Ohman, R. Kjær, L. J. Christiansen, K. Yvind, and J. Mork, “Steep and adjustable transfer functions of monolithic SOA-EA 2R regenerators,” IEEE Photon. Technol. Lett. 18(9), 1067–1069 (2006).
    [CrossRef]
  25. T. Vivero, N. Calabretta, and I. T. Monroy, G. CarvalhoKassar, F. Ohman, K. Yvind, A. Gonzalez-Marcos, and J. Mork, “10 Gb/s-NRZ optical 2R-regeneration in two-section SOA-EA chip,” in IEEE conference on Lasers and Electro-Optics Society (LEOS,2007), 806–807.
  26. R. P. Giller, R. J. Manning, and D. Cotter, “Recovery dynamics of the turbo-switch,” in Optical Amplifiers and Their Applications, Technical Digest (Optical Society of America, 2006), paper OTuC2.
  27. E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, “Extended-reach PON employing 10Gb/s integrated reflective EAM-SOA,” in European Conference on Optical Communications (ECOC,2008), 1–3.
  28. G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol. 24(7), 2827–2834 (2006).
    [CrossRef]
  29. G. L. Li and P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol. 21(9), 2010–2030 (2003).
    [CrossRef]
  30. S. Hojfeldt and J. Mork, “Modeling of carrier dynamics in quantum-well electroabsorption modulators,” IEEE J. Quantum Electron. 8(6), 1265–1276 (2002).
    [CrossRef]
  31. A. V. Uskov, J. R. Karin, R. Nagarajan, and J. E. Bowers, “Dynamics of carrier heating and sweepout in waveguide saturable absorbers,” IEEE J. Quantum Electron. 1(2), 552–561 (1995).
    [CrossRef]
  32. J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field‐enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
    [CrossRef]
  33. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
    [CrossRef] [PubMed]

2011 (1)

Y. Yu, L. Huang, M. Xiong, L. Yan, and P. Tian, “An integrated circuit subsystem of quantum dot semiconductor optical amplifier coupled with electro-absorption modulator and its application in wavelength conversion,” Opt. Commun. 284(7), 1847–1854 (2011).
[CrossRef]

2008 (2)

2007 (2)

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[CrossRef]

M. J. R. Heck, A. J. M. Bente, Y. Barbarin, D. Lenstra, and M. K. Smit, “Monolithic semiconductor waveguide device concept for picosecond pulse amplification, isolation, and spectral shaping,” IEEE J. Quantum Electron. 43(10), 910–922 (2007).
[CrossRef]

2006 (4)

F. Ohman, R. Kjær, L. J. Christiansen, K. Yvind, and J. Mork, “Steep and adjustable transfer functions of monolithic SOA-EA 2R regenerators,” IEEE Photon. Technol. Lett. 18(9), 1067–1069 (2006).
[CrossRef]

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol. 24(7), 2827–2834 (2006).
[CrossRef]

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(9), 1061–1063 (2006).
[CrossRef]

2005 (2)

G. Talli and M. J. Adams, “Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam,” Opt. Commun. 245(1-6), 363–370 (2005).
[CrossRef]

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
[CrossRef] [PubMed]

2003 (3)

2002 (2)

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

S. Hojfeldt and J. Mork, “Modeling of carrier dynamics in quantum-well electroabsorption modulators,” IEEE J. Quantum Electron. 8(6), 1265–1276 (2002).
[CrossRef]

2001 (1)

R. J. Runser, D. Zhou, C. Coldwell, B. C. Wang, P. Toliver, K. L. Deng, I. Glesk, and P. R. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

2000 (2)

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Quantum Electron. 6(6), 1428–1435 (2000).
[CrossRef]

R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000).
[CrossRef]

1999 (1)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

1998 (2)

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

K. Inoue, “Technique to compensate waveform distortion in a gain-saturated semiconductor optical amplifier using a semiconductor saturable absorber,” Electron. Lett. 34(4), 376–378 (1998).
[CrossRef]

1997 (1)

M. Asghari, I. H. White, and R. V. Penty, “Wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol. 15(7), 1181–1190 (1997).
[CrossRef]

1995 (1)

A. V. Uskov, J. R. Karin, R. Nagarajan, and J. E. Bowers, “Dynamics of carrier heating and sweepout in waveguide saturable absorbers,” IEEE J. Quantum Electron. 1(2), 552–561 (1995).
[CrossRef]

1994 (3)

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field‐enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[CrossRef]

R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19(12), 889–991 (1994).
[CrossRef] [PubMed]

R. J. Manning, D. A. O. Davies, S. Cotter, and J. K. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994).
[CrossRef]

1993 (1)

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

1992 (1)

A. Uskov, J. Mork, and J. Mark, “Theory of short-pulse gain saturation in semiconductor laser amplifiers,” IEEE Photon. Technol. Lett. 4(5), 443–446 (1992).
[CrossRef]

Adams, M. J.

G. Talli and M. J. Adams, “Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam,” Opt. Commun. 245(1-6), 363–370 (2005).
[CrossRef]

Allin, D. S.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field‐enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[CrossRef]

Asghari, M.

M. Asghari, I. H. White, and R. V. Penty, “Wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol. 15(7), 1181–1190 (1997).
[CrossRef]

Barbarin, Y.

M. J. R. Heck, A. J. M. Bente, Y. Barbarin, D. Lenstra, and M. K. Smit, “Monolithic semiconductor waveguide device concept for picosecond pulse amplification, isolation, and spectral shaping,” IEEE J. Quantum Electron. 43(10), 910–922 (2007).
[CrossRef]

Bennion, I.

Bente, A. J. M.

M. J. R. Heck, A. J. M. Bente, Y. Barbarin, D. Lenstra, and M. K. Smit, “Monolithic semiconductor waveguide device concept for picosecond pulse amplification, isolation, and spectral shaping,” IEEE J. Quantum Electron. 43(10), 910–922 (2007).
[CrossRef]

Bhardwaj, A.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Bowers, J. E.

A. V. Uskov, J. R. Karin, R. Nagarajan, and J. E. Bowers, “Dynamics of carrier heating and sweepout in waveguide saturable absorbers,” IEEE J. Quantum Electron. 1(2), 552–561 (1995).
[CrossRef]

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field‐enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[CrossRef]

Cabot, S.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

J. Leuthold, R. Ryf, D. N. Maywar, S. Cabot, J. Jaques, and S. S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
[CrossRef]

Cheng, C.

Christiansen, L. J.

F. Ohman, R. Kjær, L. J. Christiansen, K. Yvind, and J. Mork, “Steep and adjustable transfer functions of monolithic SOA-EA 2R regenerators,” IEEE Photon. Technol. Lett. 18(9), 1067–1069 (2006).
[CrossRef]

Coldwell, C.

R. J. Runser, D. Zhou, C. Coldwell, B. C. Wang, P. Toliver, K. L. Deng, I. Glesk, and P. R. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

Cotter, D.

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(9), 1061–1063 (2006).
[CrossRef]

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Cotter, S.

R. J. Manning, D. A. O. Davies, S. Cotter, and J. K. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994).
[CrossRef]

Davies, D. A. O.

R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19(12), 889–991 (1994).
[CrossRef] [PubMed]

R. J. Manning, D. A. O. Davies, S. Cotter, and J. K. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994).
[CrossRef]

de Waardt, H.

Deng, K. L.

R. J. Runser, D. Zhou, C. Coldwell, B. C. Wang, P. Toliver, K. L. Deng, I. Glesk, and P. R. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

Derickson, D. J.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field‐enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[CrossRef]

Dorren, H. J. S.

Eckner, J.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Giller, R.

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(9), 1061–1063 (2006).
[CrossRef]

Girardin, F.

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

Glesk, I.

R. J. Runser, D. Zhou, C. Coldwell, B. C. Wang, P. Toliver, K. L. Deng, I. Glesk, and P. R. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

Guekos, G.

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000).
[CrossRef]

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

Gutierrez-Castrejon, R.

R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000).
[CrossRef]

Heck, M. J. R.

M. J. R. Heck, A. J. M. Bente, Y. Barbarin, D. Lenstra, and M. K. Smit, “Monolithic semiconductor waveguide device concept for picosecond pulse amplification, isolation, and spectral shaping,” IEEE J. Quantum Electron. 43(10), 910–922 (2007).
[CrossRef]

Helkey, R. J.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field‐enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[CrossRef]

Hojfeldt, S.

S. Hojfeldt and J. Mork, “Modeling of carrier dynamics in quantum-well electroabsorption modulators,” IEEE J. Quantum Electron. 8(6), 1265–1276 (2002).
[CrossRef]

Hong, W.

Houbavlis, A.

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

Huang, D.

Huang, L.

Y. Yu, L. Huang, M. Xiong, L. Yan, and P. Tian, “An integrated circuit subsystem of quantum dot semiconductor optical amplifier coupled with electro-absorption modulator and its application in wavelength conversion,” Opt. Commun. 284(7), 1847–1854 (2011).
[CrossRef]

Inoue, K.

K. Inoue, “Technique to compensate waveform distortion in a gain-saturated semiconductor optical amplifier using a semiconductor saturable absorber,” Electron. Lett. 34(4), 376–378 (1998).
[CrossRef]

Ito, Y.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

Jaques, J.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

J. Leuthold, R. Ryf, D. N. Maywar, S. Cabot, J. Jaques, and S. S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
[CrossRef]

Kane, M.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

Kang, I.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

Karin, J. R.

A. V. Uskov, J. R. Karin, R. Nagarajan, and J. E. Bowers, “Dynamics of carrier heating and sweepout in waveguide saturable absorbers,” IEEE J. Quantum Electron. 1(2), 552–561 (1995).
[CrossRef]

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field‐enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[CrossRef]

Kawaguchi, H.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Khoe, G. D.

Kjær, R.

F. Ohman, R. Kjær, L. J. Christiansen, K. Yvind, and J. Mork, “Steep and adjustable transfer functions of monolithic SOA-EA 2R regenerators,” IEEE Photon. Technol. Lett. 18(9), 1067–1069 (2006).
[CrossRef]

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
[CrossRef] [PubMed]

Koonen, A. M. J.

Lemieux, P.

Lenstra, D.

M. J. R. Heck, A. J. M. Bente, Y. Barbarin, D. Lenstra, and M. K. Smit, “Monolithic semiconductor waveguide device concept for picosecond pulse amplification, isolation, and spectral shaping,” IEEE J. Quantum Electron. 43(10), 910–922 (2007).
[CrossRef]

Leuthold, J.

Li, G. L.

Li, Z.

Liu, Y.

Lucek, J. K.

R. J. Manning, D. A. O. Davies, S. Cotter, and J. K. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994).
[CrossRef]

Manning, R. J.

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(9), 1061–1063 (2006).
[CrossRef]

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19(12), 889–991 (1994).
[CrossRef] [PubMed]

R. J. Manning, D. A. O. Davies, S. Cotter, and J. K. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994).
[CrossRef]

Mark, J.

A. Uskov, J. Mork, and J. Mark, “Theory of short-pulse gain saturation in semiconductor laser amplifiers,” IEEE Photon. Technol. Lett. 4(5), 443–446 (1992).
[CrossRef]

Mathlouthi, W.

Maywar, D. N.

Mork, J.

F. Ohman, R. Kjær, L. J. Christiansen, K. Yvind, and J. Mork, “Steep and adjustable transfer functions of monolithic SOA-EA 2R regenerators,” IEEE Photon. Technol. Lett. 18(9), 1067–1069 (2006).
[CrossRef]

S. Hojfeldt and J. Mork, “Modeling of carrier dynamics in quantum-well electroabsorption modulators,” IEEE J. Quantum Electron. 8(6), 1265–1276 (2002).
[CrossRef]

A. Uskov, J. Mork, and J. Mark, “Theory of short-pulse gain saturation in semiconductor laser amplifiers,” IEEE Photon. Technol. Lett. 4(5), 443–446 (1992).
[CrossRef]

Mørk, J.

Nagarajan, R.

A. V. Uskov, J. R. Karin, R. Nagarajan, and J. E. Bowers, “Dynamics of carrier heating and sweepout in waveguide saturable absorbers,” IEEE J. Quantum Electron. 1(2), 552–561 (1995).
[CrossRef]

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field‐enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[CrossRef]

Neilson, D. T.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Occhi, L.

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000).
[CrossRef]

Ohman, F.

F. Ohman, R. Kjær, L. J. Christiansen, K. Yvind, and J. Mork, “Steep and adjustable transfer functions of monolithic SOA-EA 2R regenerators,” IEEE Photon. Technol. Lett. 18(9), 1067–1069 (2006).
[CrossRef]

Öhman, F.

Patel, S. S.

Penty, R. V.

M. Asghari, I. H. White, and R. V. Penty, “Wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol. 15(7), 1181–1190 (1997).
[CrossRef]

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Prucnal, P. R.

R. J. Runser, D. Zhou, C. Coldwell, B. C. Wang, P. Toliver, K. L. Deng, I. Glesk, and P. R. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Runser, R. J.

R. J. Runser, D. Zhou, C. Coldwell, B. C. Wang, P. Toliver, K. L. Deng, I. Glesk, and P. R. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

Rusch, L. A.

Ryf, R.

Sauer, N.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

Schares, L.

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000).
[CrossRef]

Schmidt, C.

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

Schubert, C.

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

Shu, X.

Smit, M. K.

M. J. R. Heck, A. J. M. Bente, Y. Barbarin, D. Lenstra, and M. K. Smit, “Monolithic semiconductor waveguide device concept for picosecond pulse amplification, isolation, and spectral shaping,” IEEE J. Quantum Electron. 43(10), 910–922 (2007).
[CrossRef]

Sokoloff, J. P.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

Stubkjaer, K. E.

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Quantum Electron. 6(6), 1428–1435 (2000).
[CrossRef]

Talli, G.

G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol. 24(7), 2827–2834 (2006).
[CrossRef]

G. Talli and M. J. Adams, “Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam,” Opt. Commun. 245(1-6), 363–370 (2005).
[CrossRef]

Tangdiongga, E.

Thornton, R. L.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field‐enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[CrossRef]

Tian, P.

Y. Yu, L. Huang, M. Xiong, L. Yan, and P. Tian, “An integrated circuit subsystem of quantum dot semiconductor optical amplifier coupled with electro-absorption modulator and its application in wavelength conversion,” Opt. Commun. 284(7), 1847–1854 (2011).
[CrossRef]

Toliver, P.

R. J. Runser, D. Zhou, C. Coldwell, B. C. Wang, P. Toliver, K. L. Deng, I. Glesk, and P. R. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

Townsend, P. D.

Uskov, A.

A. Uskov, J. Mork, and J. Mark, “Theory of short-pulse gain saturation in semiconductor laser amplifiers,” IEEE Photon. Technol. Lett. 4(5), 443–446 (1992).
[CrossRef]

Uskov, A. V.

A. V. Uskov, J. R. Karin, R. Nagarajan, and J. E. Bowers, “Dynamics of carrier heating and sweepout in waveguide saturable absorbers,” IEEE J. Quantum Electron. 1(2), 552–561 (1995).
[CrossRef]

Vacondio, F.

van der Poel, M.

Wang, B. C.

R. J. Runser, D. Zhou, C. Coldwell, B. C. Wang, P. Toliver, K. L. Deng, I. Glesk, and P. R. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

Weber, H. G.

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

White, I. H.

M. Asghari, I. H. White, and R. V. Penty, “Wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol. 15(7), 1181–1190 (1997).
[CrossRef]

Xiong, M.

Y. Yu, L. Huang, M. Xiong, L. Yan, and P. Tian, “An integrated circuit subsystem of quantum dot semiconductor optical amplifier coupled with electro-absorption modulator and its application in wavelength conversion,” Opt. Commun. 284(7), 1847–1854 (2011).
[CrossRef]

Yan, L.

Y. Yu, L. Huang, M. Xiong, L. Yan, and P. Tian, “An integrated circuit subsystem of quantum dot semiconductor optical amplifier coupled with electro-absorption modulator and its application in wavelength conversion,” Opt. Commun. 284(7), 1847–1854 (2011).
[CrossRef]

Yu, P. K. L.

Yu, Y.

Y. Yu, L. Huang, M. Xiong, L. Yan, and P. Tian, “An integrated circuit subsystem of quantum dot semiconductor optical amplifier coupled with electro-absorption modulator and its application in wavelength conversion,” Opt. Commun. 284(7), 1847–1854 (2011).
[CrossRef]

Yvind, K.

F. Ohman, R. Kjær, L. J. Christiansen, K. Yvind, and J. Mork, “Steep and adjustable transfer functions of monolithic SOA-EA 2R regenerators,” IEEE Photon. Technol. Lett. 18(9), 1067–1069 (2006).
[CrossRef]

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
[CrossRef] [PubMed]

Zhang, L.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

Zhang, X.

Zhou, D.

R. J. Runser, D. Zhou, C. Coldwell, B. C. Wang, P. Toliver, K. L. Deng, I. Glesk, and P. R. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

Zhou, E.

Appl. Phys. Lett. (1)

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field‐enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[CrossRef]

Electron. Lett. (2)

K. Inoue, “Technique to compensate waveform distortion in a gain-saturated semiconductor optical amplifier using a semiconductor saturable absorber,” Electron. Lett. 34(4), 376–378 (1998).
[CrossRef]

R. J. Manning, D. A. O. Davies, S. Cotter, and J. K. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994).
[CrossRef]

IEEE J. Quantum Electron. (7)

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Quantum Electron. 6(6), 1428–1435 (2000).
[CrossRef]

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 1476–1484 (2000).
[CrossRef]

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

M. J. R. Heck, A. J. M. Bente, Y. Barbarin, D. Lenstra, and M. K. Smit, “Monolithic semiconductor waveguide device concept for picosecond pulse amplification, isolation, and spectral shaping,” IEEE J. Quantum Electron. 43(10), 910–922 (2007).
[CrossRef]

S. Hojfeldt and J. Mork, “Modeling of carrier dynamics in quantum-well electroabsorption modulators,” IEEE J. Quantum Electron. 8(6), 1265–1276 (2002).
[CrossRef]

A. V. Uskov, J. R. Karin, R. Nagarajan, and J. E. Bowers, “Dynamics of carrier heating and sweepout in waveguide saturable absorbers,” IEEE J. Quantum Electron. 1(2), 552–561 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

F. Ohman, R. Kjær, L. J. Christiansen, K. Yvind, and J. Mork, “Steep and adjustable transfer functions of monolithic SOA-EA 2R regenerators,” IEEE Photon. Technol. Lett. 18(9), 1067–1069 (2006).
[CrossRef]

A. Uskov, J. Mork, and J. Mark, “Theory of short-pulse gain saturation in semiconductor laser amplifiers,” IEEE Photon. Technol. Lett. 4(5), 443–446 (1992).
[CrossRef]

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(9), 1061–1063 (2006).
[CrossRef]

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Commun. (2)

Y. Yu, L. Huang, M. Xiong, L. Yan, and P. Tian, “An integrated circuit subsystem of quantum dot semiconductor optical amplifier coupled with electro-absorption modulator and its application in wavelength conversion,” Opt. Commun. 284(7), 1847–1854 (2011).
[CrossRef]

G. Talli and M. J. Adams, “Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam,” Opt. Commun. 245(1-6), 363–370 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

R. J. Runser, D. Zhou, C. Coldwell, B. C. Wang, P. Toliver, K. L. Deng, I. Glesk, and P. R. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

Science (1)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Other (4)

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Significant reduction of recovery time in semiconductor optical amplifier using p-type modulation doped MQW,” in European Conference on Optical Communications (ECOC,2006), 1–2.

T. Vivero, N. Calabretta, and I. T. Monroy, G. CarvalhoKassar, F. Ohman, K. Yvind, A. Gonzalez-Marcos, and J. Mork, “10 Gb/s-NRZ optical 2R-regeneration in two-section SOA-EA chip,” in IEEE conference on Lasers and Electro-Optics Society (LEOS,2007), 806–807.

R. P. Giller, R. J. Manning, and D. Cotter, “Recovery dynamics of the turbo-switch,” in Optical Amplifiers and Their Applications, Technical Digest (Optical Society of America, 2006), paper OTuC2.

E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, “Extended-reach PON employing 10Gb/s integrated reflective EAM-SOA,” in European Conference on Optical Communications (ECOC,2008), 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of time-resolved spectroscopy test-bed used to measure the amplitude evolution of the CSES and its constituent components (MLL: mode-locked laser, CWLD: CW laser diode, PC: polarization controller, Att: variable optical attenuator, OSO: optical sampling oscilloscope).

Fig. 2
Fig. 2

(a) SOA 1 small signal chip gain spectrum with current bias of 200mA and (b) EAM chip absorption spectra with voltage bias between 0 and 5V.

Fig. 3
Fig. 3

Normalized gain vs time for SOA 1 with 1565nm CW probe.

Fig. 4
Fig. 4

Normalized amplitude vs time for EAM with 1565nm CW probe and reverse voltage bias varied from 1.0 to 2.8V.

Fig. 5
Fig. 5

Normalized amplitude vs time for SOA 1 concatenated with EAM with 1565nm CW probe, where EAM reverse bias varied from 0 to 2.8V and current bias on SOA 1 was (a) 100mA and (b) 400mA.

Fig. 6
Fig. 6

Normalized amplitude vs time for CSES with 1565nm CW probe, where EAM reverse bias varied from 0 to 2.8V and SOA current biases were (a) 100mA for both SOAs and (b) 400mA for both SOAs.

Fig. 7
Fig. 7

Normalized amplitude vs time for CSES with 1565nm CW probe and (a) SOA bias currents of 300mA (SOA 1), 200mA (SOA 2) and EAM bias voltage of 2.2V and (b) SOA bias currents of 400mA (SOA 1), 200mA (SOA 2) and EAM bias voltage of 2.3V.

Fig. 8
Fig. 8

Normalized amplitude vs time for a 1565nm probe at output ports of various components in CSES with bias currents 300mA (SOA 1), 200mA (SOA 2), and with EAM bias voltages of (a) 0V and (b) 2.5V.

Fig. 9
Fig. 9

10/90 recovery times as a function of EAM voltage bias with (a) 200mA and (b) 400mA on SOA 1.

Fig. 10
Fig. 10

Normalized amplitude evolution of the CSES output for (a) several different CW wavelengths, with SOA bias currents of 400mA (SOA 1), 300mA (SOA 2) and 2.3V across the EAM and (b) various values of attenuation between SOA 1 and the EAM with 1565nm CW probe, SOA bias currents of 400mA (SOA 1), 300mA (SOA 2) and 2.2V across the EAM.

Fig. 11
Fig. 11

Experimental and modeled normalized gain response of SOA 1 with a current bias of 400mA.

Fig. 12
Fig. 12

EAM transmission vs bias (at 1565nm) with measured data and 9th order polynomial fitted curve.

Fig. 13
Fig. 13

Modeled and measured amplitude response of SOA 1 + EAM in series with current bias of 400mA applied to SOA 1 with (a) 1.0V and (b) 2.5V across EAM.

Fig. 14
Fig. 14

Modeled and measured amplitude response of entire CSES with current bias of 400mA for SOA 1 and current bias of 300mA for SOA 2, with (a) 1.0 and (b) 2.5V across EAM.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g coeff,x (t)= a bf,x exp( t τ bf,x )+ a ch,x exp( t τ ch,x ).
g conv,x (t)= y pump (t)* g coeff,x (t).
G conv,x (t)=exp( g conv,x (t) ).
Δ V EAM (t)= a v exp( t τ V,rec )( 1exp( t τ V,rise ) ).

Metrics