Abstract

We report the first few-mode compatible optical add/drop multiplexer (OADM) that enables add/drop functionality for mode division multiplexed (MDM) superchannels. The OADM is comprised of two cascaded free-space thin-film filters with 5° incident angle. The transmission of MDM superchannel CO-OFDM signals via the OADM is investigated. The experimental result shows that the OSNR penalties for add, drop and through ports are 2.6, 2.4, 0.7 dB, respectively for 3x318 Gb/s superchannels.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
    [CrossRef] [PubMed]
  2. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [CrossRef]
  3. X. Chen and W. Shieh, “Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems,” Opt. Express 18(18), 19039–19054 (2010).
    [CrossRef] [PubMed]
  4. W. Shieh and X. Chen, “Information spectral efficiency and launch power density limits due to fiber nonlinearity for coherent optical OFDM systems,” IEEE Photon. J. 3(2), 158–173 (2011).
    [CrossRef]
  5. D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370 x 294-Gb/s) PDM-128QAM-OFDM transmission over 3 x 55-km SSMF using pilot-based phase noise mitigation,” Optical Fiber Communication Conference (OFC), 2011, PDPB5.
  6. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” Optical Fiber Communication Conference (OFC), Los Angeles, USA, 2011, PDPB6.
  7. Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
    [CrossRef]
  8. B. Zhu, T. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. Yan, J. Fini, E. Monberg, and F. Dimarcello, “Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” Optical Fiber Communication Conference (OFC), Los Angeles, USA, 2011, PDPB.7.
  9. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” Optical Fiber Communication Conference (OFC), Los Angeles, USA, 2011, OWA4.
  10. A. Li, A. Al Amin, X. Chen, and W. Shieh, “ Reception of mode and polarization multiplexed 107-Gb/s CO-OFDM signal over a two-mode fiber” Optical Fiber Communication Conference (OFC), Los Angeles, USA, 2011, PDPB8.
  11. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2x100Gb/s, over two modes of 40km-long prototype few-mode fiber, using LCOS based mode multiplexer and demultiplexer,” Optical Fiber Communication Conference (OFC), Los Angeles, USA, 2011, PDPB9.
  12. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” Optical Fiber Communication Conference (OFC), Los Angeles, USA, 2011, PDPB10.
  13. E. Ip, B. Neng, Y. K. Huang, E. Mateo, F. Yaman, M. J. Li, S. Bickham, S. Ten, J. Linares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. M. Chung, A. Lau, H. Y. Tam, C. Lu, Y. H. Luo, G. D. Peng, and G. Li, “88×3×112-Gb/s WDM transmission over 50 km of three-mode fiber with inline few-mode fiber amplifier”, in European Conference and Exposition on Optical Communications (ECOC), Geneva, Switzerland, 2011, Th.13.C.2.
  14. P. M. Krummrich, “Optical amplification and optical filter based signal processing for cost and energy efficient spatial multiplexing,” Opt. Express 19(17), 16636–16652 (2011).
    [CrossRef] [PubMed]
  15. R. Ryf, A. Sierra, R. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed Raman amplification in 137-km few-mode Fiber,” in European Conference and Exposition on Optical Communications (ECOC), Geneva, Switzerland, 2011, Th.13.K.5.
  16. N. Bai, E. Ip, T. Wang, and G. Li, “Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump,” Opt. Express 19(17), 16601–16611 (2011).
    [CrossRef] [PubMed]
  17. S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightwave Technol. 28(4), 557–598 (2010).
    [CrossRef]
  18. A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
    [CrossRef] [PubMed]
  19. X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
    [CrossRef] [PubMed]
  20. X. Chen, A. Li, G. Gao, and W. Shieh, “Experimental demonstration of improved fiber nonlinearity tolerance for unique-word DFT-spread OFDM systems,” Opt. Express 19(27), 26198–26207 (2011).
    [CrossRef] [PubMed]
  21. S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2 b/s/Hz spectral efficiency over 1,000 km of SSMF,” J. Lightwave Technol. 27(3), 177–188 (2009).
    [CrossRef]

2011 (5)

2010 (3)

2009 (2)

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
[CrossRef]

S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2 b/s/Hz spectral efficiency over 1,000 km of SSMF,” J. Lightwave Technol. 27(3), 177–188 (2009).
[CrossRef]

2008 (1)

2001 (1)

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Al Amin, A.

Bai, N.

Buchali, F.

Chen, S.

Chen, X.

Essiambre, R. J.

Filer, M.

Foschini, G. J.

Gao, G.

Goebel, B.

Ip, E.

Jansen, S. L.

Kokubun, Y.

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
[CrossRef]

Koshiba, M.

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
[CrossRef]

Kramer, G.

Krummrich, P. M.

Li, A.

Li, G.

Liu, X.

Mitra, P. P.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Morita, I.

Schenk, T. C. W.

Shieh, W.

Stark, J. B.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Tanaka, H.

Tibuleac, S.

Wang, T.

Winzer, P. J.

IEEE Photon. J. (1)

W. Shieh and X. Chen, “Information spectral efficiency and launch power density limits due to fiber nonlinearity for coherent optical OFDM systems,” IEEE Photon. J. 3(2), 158–173 (2011).
[CrossRef]

IEICE Electron. Express (1)

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
[CrossRef]

J. Lightwave Technol. (3)

Nature (1)

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Opt. Express (6)

Other (9)

R. Ryf, A. Sierra, R. Essiambre, S. Randel, A. Gnauck, C. A. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, D. Peckham, A. McCurdy, and R. Lingle, “Mode-equalized distributed Raman amplification in 137-km few-mode Fiber,” in European Conference and Exposition on Optical Communications (ECOC), Geneva, Switzerland, 2011, Th.13.K.5.

D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370 x 294-Gb/s) PDM-128QAM-OFDM transmission over 3 x 55-km SSMF using pilot-based phase noise mitigation,” Optical Fiber Communication Conference (OFC), 2011, PDPB5.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” Optical Fiber Communication Conference (OFC), Los Angeles, USA, 2011, PDPB6.

B. Zhu, T. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. Yan, J. Fini, E. Monberg, and F. Dimarcello, “Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” Optical Fiber Communication Conference (OFC), Los Angeles, USA, 2011, PDPB.7.

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” Optical Fiber Communication Conference (OFC), Los Angeles, USA, 2011, OWA4.

A. Li, A. Al Amin, X. Chen, and W. Shieh, “ Reception of mode and polarization multiplexed 107-Gb/s CO-OFDM signal over a two-mode fiber” Optical Fiber Communication Conference (OFC), Los Angeles, USA, 2011, PDPB8.

M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2x100Gb/s, over two modes of 40km-long prototype few-mode fiber, using LCOS based mode multiplexer and demultiplexer,” Optical Fiber Communication Conference (OFC), Los Angeles, USA, 2011, PDPB9.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” Optical Fiber Communication Conference (OFC), Los Angeles, USA, 2011, PDPB10.

E. Ip, B. Neng, Y. K. Huang, E. Mateo, F. Yaman, M. J. Li, S. Bickham, S. Ten, J. Linares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. M. Chung, A. Lau, H. Y. Tam, C. Lu, Y. H. Luo, G. D. Peng, and G. Li, “88×3×112-Gb/s WDM transmission over 50 km of three-mode fiber with inline few-mode fiber amplifier”, in European Conference and Exposition on Optical Communications (ECOC), Geneva, Switzerland, 2011, Th.13.C.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.1
Fig.1

Illustration of few-mode compatible ROADM in few-mode fiber based optical networks. MDM: Mode division multiplexing/multiplexed, Mux: Multiplexer, DeMux: De-Multiplexer, FMF: Few-mode fiber.

Fig. 2
Fig. 2

Schematic diagram of the two-mode OADM.

Fig. 3
Fig. 3

(a) Measured transmission characteristics of the OADM based on TMF. (b) Measured transmission characteristics of the OADM based on SMF. Th: Through.

Fig. 4
Fig. 4

Experimental setup for TMF compatible OADM performance measurement. AWG: Arbitrary waveform generator, PBS: Polarization beam splitter, MS/C: Mode stripper/converter, BS: Beam Splitter, BPF: Band-pass filter, PD: Photodiode, ADC: Analog-to-digital converter, LD: Laser Diode.

Fig. 5
Fig. 5

Measured spectra for transmitted signal, OADM through channels (w/ and w/o add channel), and the drop channel. (Curves have been shifted along the y-axis for comparison).

Fig. 6
Fig. 6

(a) Measured Q factor versus OSNR for add, drop and through channels at 318 Gb/s. Inset shows constellations for the add port signals at OSNR of 22.8 dB. (b) Q factor for all bands after OADM at an OSNR of 22.8 dB.

Metrics