Abstract

Continuous tuning over a 1.6 THz region in the near-infrared (842.5-848.6 nm) has been achieved with a hybrid ring/external cavity laser having a single, optically-driven grating reflector and gain provided by an injection-seeded semiconductor amplifier. Driven at 532 nm and incorporating a photonic crystal with an azobenzene overlayer, the reflector has a peak reflectivity of ~80% and tunes at the rate of 0.024 nm per mW of incident green power. In a departure from conventional ring or external cavity lasers, the frequency selectivity for this system is provided by the passband of the tunable photonic crystal reflector and line narrowing in a high gain amplifier. Sub - 0.1 nm linewidths and amplifier extraction efficiencies above 97% are observed with the reflector tuned to 842.5 nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Crowe and R. M. Craig., “GaAs laser linewidth measurements by heterodyne detection,” Appl. Phys. Lett. 5(4), 72–74 (1964).
    [CrossRef]
  2. R. Ludeke and E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20(12), 499–500 (1972).
    [CrossRef]
  3. B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers—a review,” Opto-Electron. Rev. 16(4), 347–366 (2008).
    [CrossRef]
  4. A. S. P. Chang, H. Tan, S. Bai, W. Wu, Z. Yu, and S. Y. Chou, “Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror,” IEEE Photon. Technol. Lett. 19(14), 1099–1101 (2007).
    [CrossRef]
  5. D. W. Dobbs and B. T. Cunningham, “Optically tunable guided-mode resonance filter,” Appl. Opt. 45(28), 7286–7293 (2006).
    [CrossRef] [PubMed]
  6. C. Ge, M. Lu, X. Jian, Y. Tan, and B. T. Cunningham, “Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” Opt. Express 18(12), 12980–12991 (2010).
    [CrossRef] [PubMed]
  7. J. Zheng, J. Y. Kim, S. K. Lee, S.-J. Park, and J. G. Eden, “Molded arrays of microcavities and channels in polymer structures: ultraviolet emitting microplasma sources for biophotonics,” IEEE Trans. Plasma Sci. 36(4), 1256–1257 (2008).
    [CrossRef]
  8. M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, “Temperature-dependent light intensity controlled optical switching in azobenzene polymers,” Appl. Phys. Lett. 86(18), 181902 (2005).
    [CrossRef]
  9. L. L. Nedelchev, A. S. Matharu, S. Hvilsted, and P. S. Ramanujam, “Photoinduced anisotropy in a family of amorphous azobenzene polyesters for optical storage,” Appl. Opt. 42(29), 5918–5927 (2003).
    [CrossRef] [PubMed]
  10. V. Bolpasi and W. von Klitzing, “Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μW,” Rev. Sci. Instrum. 81(11), 113108 (2010).
    [CrossRef] [PubMed]
  11. L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8(2), 80–85 (1972).
    [CrossRef]
  12. G. Smith, P. C. Shardlow, and M. J. Damzen, “High-power near-diffraction-limited solid-state amplified spontaneous emission laser devices,” Opt. Lett. 32(13), 1911–1913 (2007).
    [CrossRef] [PubMed]
  13. A. E. Siegman, Lasers (University Science Books, 1986), pp. 547–557.
  14. J. Goldhar and J. R. Murray, “Injection-locked, narrow-band KrF discharge laser using an unstable resonator cavity,” Opt. Lett. 1(6), 199–201 (1977).
    [CrossRef] [PubMed]
  15. D. P. Greene and J. G. Eden, “Injection locking and saturation intensity of a cadmium iodide laser,” Opt. Lett. 10(2), 59–61 (1985).
    [CrossRef] [PubMed]

2010 (2)

V. Bolpasi and W. von Klitzing, “Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μW,” Rev. Sci. Instrum. 81(11), 113108 (2010).
[CrossRef] [PubMed]

C. Ge, M. Lu, X. Jian, Y. Tan, and B. T. Cunningham, “Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” Opt. Express 18(12), 12980–12991 (2010).
[CrossRef] [PubMed]

2008 (2)

J. Zheng, J. Y. Kim, S. K. Lee, S.-J. Park, and J. G. Eden, “Molded arrays of microcavities and channels in polymer structures: ultraviolet emitting microplasma sources for biophotonics,” IEEE Trans. Plasma Sci. 36(4), 1256–1257 (2008).
[CrossRef]

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers—a review,” Opto-Electron. Rev. 16(4), 347–366 (2008).
[CrossRef]

2007 (2)

A. S. P. Chang, H. Tan, S. Bai, W. Wu, Z. Yu, and S. Y. Chou, “Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror,” IEEE Photon. Technol. Lett. 19(14), 1099–1101 (2007).
[CrossRef]

G. Smith, P. C. Shardlow, and M. J. Damzen, “High-power near-diffraction-limited solid-state amplified spontaneous emission laser devices,” Opt. Lett. 32(13), 1911–1913 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, “Temperature-dependent light intensity controlled optical switching in azobenzene polymers,” Appl. Phys. Lett. 86(18), 181902 (2005).
[CrossRef]

2003 (1)

1985 (1)

1977 (1)

1972 (2)

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8(2), 80–85 (1972).
[CrossRef]

R. Ludeke and E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20(12), 499–500 (1972).
[CrossRef]

1964 (1)

J. W. Crowe and R. M. Craig., “GaAs laser linewidth measurements by heterodyne detection,” Appl. Phys. Lett. 5(4), 72–74 (1964).
[CrossRef]

Bai, S.

A. S. P. Chang, H. Tan, S. Bai, W. Wu, Z. Yu, and S. Y. Chou, “Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror,” IEEE Photon. Technol. Lett. 19(14), 1099–1101 (2007).
[CrossRef]

Bolpasi, V.

V. Bolpasi and W. von Klitzing, “Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μW,” Rev. Sci. Instrum. 81(11), 113108 (2010).
[CrossRef] [PubMed]

Casperson, L. W.

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8(2), 80–85 (1972).
[CrossRef]

Chang, A. S. P.

A. S. P. Chang, H. Tan, S. Bai, W. Wu, Z. Yu, and S. Y. Chou, “Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror,” IEEE Photon. Technol. Lett. 19(14), 1099–1101 (2007).
[CrossRef]

Chou, S. Y.

A. S. P. Chang, H. Tan, S. Bai, W. Wu, Z. Yu, and S. Y. Chou, “Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror,” IEEE Photon. Technol. Lett. 19(14), 1099–1101 (2007).
[CrossRef]

Craig, R. M.

J. W. Crowe and R. M. Craig., “GaAs laser linewidth measurements by heterodyne detection,” Appl. Phys. Lett. 5(4), 72–74 (1964).
[CrossRef]

Crowe, J. W.

J. W. Crowe and R. M. Craig., “GaAs laser linewidth measurements by heterodyne detection,” Appl. Phys. Lett. 5(4), 72–74 (1964).
[CrossRef]

Cunningham, B. T.

Damzen, M. J.

Dobbs, D. W.

Dragostinova, V.

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, “Temperature-dependent light intensity controlled optical switching in azobenzene polymers,” Appl. Phys. Lett. 86(18), 181902 (2005).
[CrossRef]

Eden, J. G.

J. Zheng, J. Y. Kim, S. K. Lee, S.-J. Park, and J. G. Eden, “Molded arrays of microcavities and channels in polymer structures: ultraviolet emitting microplasma sources for biophotonics,” IEEE Trans. Plasma Sci. 36(4), 1256–1257 (2008).
[CrossRef]

D. P. Greene and J. G. Eden, “Injection locking and saturation intensity of a cadmium iodide laser,” Opt. Lett. 10(2), 59–61 (1985).
[CrossRef] [PubMed]

Ge, C.

Goldhar, J.

Greene, D. P.

Harris, E. P.

R. Ludeke and E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20(12), 499–500 (1972).
[CrossRef]

Hvilsted, S.

Ilieva, D.

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, “Temperature-dependent light intensity controlled optical switching in azobenzene polymers,” Appl. Phys. Lett. 86(18), 181902 (2005).
[CrossRef]

Ivanov, M.

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, “Temperature-dependent light intensity controlled optical switching in azobenzene polymers,” Appl. Phys. Lett. 86(18), 181902 (2005).
[CrossRef]

Jian, X.

Kim, J. Y.

J. Zheng, J. Y. Kim, S. K. Lee, S.-J. Park, and J. G. Eden, “Molded arrays of microcavities and channels in polymer structures: ultraviolet emitting microplasma sources for biophotonics,” IEEE Trans. Plasma Sci. 36(4), 1256–1257 (2008).
[CrossRef]

Lee, S. K.

J. Zheng, J. Y. Kim, S. K. Lee, S.-J. Park, and J. G. Eden, “Molded arrays of microcavities and channels in polymer structures: ultraviolet emitting microplasma sources for biophotonics,” IEEE Trans. Plasma Sci. 36(4), 1256–1257 (2008).
[CrossRef]

Lu, M.

Ludeke, R.

R. Ludeke and E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20(12), 499–500 (1972).
[CrossRef]

Matharu, A. S.

Minchev, G.

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, “Temperature-dependent light intensity controlled optical switching in azobenzene polymers,” Appl. Phys. Lett. 86(18), 181902 (2005).
[CrossRef]

Mroziewicz, B.

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers—a review,” Opto-Electron. Rev. 16(4), 347–366 (2008).
[CrossRef]

Murray, J. R.

Nedelchev, L. L.

Nikolova, L.

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, “Temperature-dependent light intensity controlled optical switching in azobenzene polymers,” Appl. Phys. Lett. 86(18), 181902 (2005).
[CrossRef]

Park, S.-J.

J. Zheng, J. Y. Kim, S. K. Lee, S.-J. Park, and J. G. Eden, “Molded arrays of microcavities and channels in polymer structures: ultraviolet emitting microplasma sources for biophotonics,” IEEE Trans. Plasma Sci. 36(4), 1256–1257 (2008).
[CrossRef]

Petrova, T.

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, “Temperature-dependent light intensity controlled optical switching in azobenzene polymers,” Appl. Phys. Lett. 86(18), 181902 (2005).
[CrossRef]

Ramanujam, P. S.

Shardlow, P. C.

Smith, G.

Tan, H.

A. S. P. Chang, H. Tan, S. Bai, W. Wu, Z. Yu, and S. Y. Chou, “Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror,” IEEE Photon. Technol. Lett. 19(14), 1099–1101 (2007).
[CrossRef]

Tan, Y.

Todorov, T.

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, “Temperature-dependent light intensity controlled optical switching in azobenzene polymers,” Appl. Phys. Lett. 86(18), 181902 (2005).
[CrossRef]

von Klitzing, W.

V. Bolpasi and W. von Klitzing, “Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μW,” Rev. Sci. Instrum. 81(11), 113108 (2010).
[CrossRef] [PubMed]

Wu, W.

A. S. P. Chang, H. Tan, S. Bai, W. Wu, Z. Yu, and S. Y. Chou, “Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror,” IEEE Photon. Technol. Lett. 19(14), 1099–1101 (2007).
[CrossRef]

Yariv, A.

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8(2), 80–85 (1972).
[CrossRef]

Yu, Z.

A. S. P. Chang, H. Tan, S. Bai, W. Wu, Z. Yu, and S. Y. Chou, “Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror,” IEEE Photon. Technol. Lett. 19(14), 1099–1101 (2007).
[CrossRef]

Zheng, J.

J. Zheng, J. Y. Kim, S. K. Lee, S.-J. Park, and J. G. Eden, “Molded arrays of microcavities and channels in polymer structures: ultraviolet emitting microplasma sources for biophotonics,” IEEE Trans. Plasma Sci. 36(4), 1256–1257 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

J. W. Crowe and R. M. Craig., “GaAs laser linewidth measurements by heterodyne detection,” Appl. Phys. Lett. 5(4), 72–74 (1964).
[CrossRef]

R. Ludeke and E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20(12), 499–500 (1972).
[CrossRef]

M. Ivanov, D. Ilieva, G. Minchev, T. Petrova, V. Dragostinova, T. Todorov, and L. Nikolova, “Temperature-dependent light intensity controlled optical switching in azobenzene polymers,” Appl. Phys. Lett. 86(18), 181902 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron. 8(2), 80–85 (1972).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. S. P. Chang, H. Tan, S. Bai, W. Wu, Z. Yu, and S. Y. Chou, “Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror,” IEEE Photon. Technol. Lett. 19(14), 1099–1101 (2007).
[CrossRef]

IEEE Trans. Plasma Sci. (1)

J. Zheng, J. Y. Kim, S. K. Lee, S.-J. Park, and J. G. Eden, “Molded arrays of microcavities and channels in polymer structures: ultraviolet emitting microplasma sources for biophotonics,” IEEE Trans. Plasma Sci. 36(4), 1256–1257 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opto-Electron. Rev. (1)

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers—a review,” Opto-Electron. Rev. 16(4), 347–366 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

V. Bolpasi and W. von Klitzing, “Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μW,” Rev. Sci. Instrum. 81(11), 113108 (2010).
[CrossRef] [PubMed]

Other (1)

A. E. Siegman, Lasers (University Science Books, 1986), pp. 547–557.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Diagram in cross-section (not to scale) of the photonic crystal reflectance filter. The acronyms PET, UVCP, and Azo/IPA denote polyethylene terephthalate, ultraviolet-cured polymer, and the azobenzene-isopropyl alcohol solution, respectively. The index of refraction (n) for each component of the reflector is also indicated.

Fig. 2
Fig. 2

An array of replica-molded gratings, photographed prior to mounting and the application of the azobenzene-alcohol solution.

Fig. 3
Fig. 3

Calculated dispersion diagram for the photonic crystal-based reflector of Fig. 1. To improve contrast, the maximum suppression illustrated was limited to 20 dB.

Fig. 4
Fig. 4

Expected variation (with superstrate refractive index n) of the normalized reflectance profiles for the tunable filter of Fig. 1. Simulations are presented for 5 values of n ranging from 1.0 to 1.43.

Fig. 5
Fig. 5

Configuration of the tunable laser ring in which a photonic crystal reflector is controlled by the 532 nm radiation produced by a frequency-doubled Nd:YVO4 laser.

Fig. 6
Fig. 6

Superposition of several spectra characteristic of the tunable ring laser: (blue) emission from the semiconductor amplifier (in isolation) for a drive current of 190 mA; (green) reflectance spectrum for the photonic crystal; (red) output of the ring laser. The latter two spectra were recorded when no 532 nm power (cf. Fig. 5) was directed onto the tunable reflector (i.e., Pext = 0).

Fig. 7
Fig. 7

Variation of the laser output power with SOA current when the GMRF (Fig. 1) is not illuminated (Pext = 0).

Fig. 8
Fig. 8

Comparison of the normalized spectra generated by the free-running SOA (green) and the injection-seeded ring laser (red). In recording the free-running spectrum, the SOA current was fixed at 120 mA whereas, for injection-seeded operation, the current was maintained at 190 mA. The injection-seeded spectrum was recorded for Pext = 0. Also, the inset illustrates the experimental arrangement with which the free-running spectrum was acquired.

Fig. 9
Fig. 9

Laser spectra recorded for three values of the SOA current (120 mA [red], 160 mA [green], and 180 mA [blue]) when the reflector of Fig. 1 has no superstrate (azobenzene/isopropyl alcohol) layer. The mode spacing in all of the spectra is attributable to the thickness of the reflector’s PET substrate. For the sake of comparison of the three spectra, the 160 mA and 180 mA spectra have been attenuated.

Fig. 10
Fig. 10

(a) Superposition of six laser output spectra, each recorded with the reflector centered at a different wavelength. The green (532 nm) laser power Pext driving the tunable filter is indicated for each spectrum. All of the data were acquired with the SOA driving current maintained at 190 mA; (b) Same data as those of panel (a) but presented with the ordinate having a logarithmic scale.

Fig. 11
Fig. 11

Dependence of the laser extraction efficiency on the resonant wavelength of the tunable reflector (the injection wavelength, λinj) and, hence, the laser output. Representative estimated uncertainties (one standard deviation) are indicated for several of the measurements and the curve drawn through the data is intended only as a guide to the eye. Note that zero for the ordinate at left has been suppressed. In all of the experiments conducted to date, the amplifier extraction efficiency exceeded 33% and values above 97% were observed.

Fig. 12
Fig. 12

Spectra analogous to those of Fig. 6 but for which the peak reflectivity of the photonic crystal mirror lies at 843.9 nm. The SOA current is again fixed at 190 mA.

Metrics