Abstract

We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a ~40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than ~40 μs upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
    [CrossRef]
  2. Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
    [CrossRef]
  3. M. Mestre, J. M. Fabrega, J. A. Lazaro, V. Polo, A. Djupsjobacka, M. Forzati, P. Rigole, and J. Prat, “Tuning characteristics and switching speed of a modulated grating Y structure laser for wavelength routed PONs,” in Access Networks and In-house Communications, OSA Technical Digest (CD) (Optical Society of America, 2010), paper AThC2.
  4. M. Oberg, S. Nilsson, K. Streubel, J. Wallin, L. Backbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP/InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett. 5(7), 735–737 (1993).
    [CrossRef]
  5. J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24(1), 5–11 (2006).
    [CrossRef]
  6. R. Phelan, M. Lynch, J. F. Donegan, and V. Weldon, “Simultaneous multispecies gas sensing by use of a sampled grating distributed Bragg reflector and modulated grating Y laser diode,” Appl. Opt. 44(27), 5824–5831 (2005).
    [CrossRef] [PubMed]
  7. B. Puttnam, M. Dueser, B. Thomsen, P. Bayvel, A. Bianciotto, R. Gaudino, G. Busico, L. Ponnampalam, D. Robbins, and N. Whitbread, “Burst mode operation of a DS-DBR widely tunable laser for wavelength agile system applications,” in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2006), Paper OW186.
  8. J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett. 18(4), 565–567 (2006).
    [CrossRef]
  9. Space studies board, National research council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academies Press, 2007), Chap. 4.
  10. J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis of OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper LMA4.
  11. J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight,” Appl. Opt. 43(4), 914–927 (2004).
    [CrossRef] [PubMed]
  12. S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
    [CrossRef]
  13. J. R. Chen, K. Numata, and S. T. Wu, “Error reduction methods for integrated path differential absorption lidar measurements,” submitted to Opt. Express (2012).
  14. K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt. 50(7), 1047–1056 (2011).
    [CrossRef] [PubMed]
  15. L. Ponnampalam, D. J. Robbins, A. J. Ward, N. D. Whitbread, J. P. Duck, G. Busico, and D. J. Bazley, “Equivalent performance in C- and L-bands of digital supermode distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 43(9), 798–803 (2007).
    [CrossRef]
  16. C. J. Erickson, M. Van Zijll, G. Doermann, and D. S. Durfee, “An ultrahigh stability, low-noise laser current driver with digital control,” Rev. Sci. Instrum. 79(7), 073107 (2008).
    [CrossRef] [PubMed]
  17. P. Correc, O. Girard, and I. F. de Faria., “On the thermal contribution to the FM response of DFB lasers: theory and experiment,” IEEE J. Quantum Electron. 30(11), 2485–2490 (1994).
    [CrossRef]
  18. Analog Devices, AD9858 datasheet, http://www.analog.com/static/imported-files/data_sheets/AD9858.pdf .
  19. J. Ye and J. L. Hall, “Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements,” Opt. Lett. 24(24), 1838–1840 (1999).
    [CrossRef] [PubMed]
  20. J. I. Thorpe, K. Numata, and J. Livas, “Laser frequency stabilization and control through offset sideband locking to optical cavities,” Opt. Express 16(20), 15980–15990 (2008).
    [CrossRef] [PubMed]
  21. L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, and P. Cancio, “Optical frequency comb assisted laser system for multiplex precision spectroscopy,” Opt. Express 19(4), 3155–3162 (2011).
    [CrossRef] [PubMed]
  22. A. S. Olesen, A. T. Pedersen, and K. Rottwitt, “Frequency stepped pulse train modulated wind sensing lidar,” Proc. SPIE 8159, 81590O, 81590O-8 (2011).
    [CrossRef]

2012 (1)

J. R. Chen, K. Numata, and S. T. Wu, “Error reduction methods for integrated path differential absorption lidar measurements,” submitted to Opt. Express (2012).

2011 (3)

2010 (1)

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[CrossRef]

2008 (2)

C. J. Erickson, M. Van Zijll, G. Doermann, and D. S. Durfee, “An ultrahigh stability, low-noise laser current driver with digital control,” Rev. Sci. Instrum. 79(7), 073107 (2008).
[CrossRef] [PubMed]

J. I. Thorpe, K. Numata, and J. Livas, “Laser frequency stabilization and control through offset sideband locking to optical cavities,” Opt. Express 16(20), 15980–15990 (2008).
[CrossRef] [PubMed]

2007 (1)

L. Ponnampalam, D. J. Robbins, A. J. Ward, N. D. Whitbread, J. P. Duck, G. Busico, and D. J. Bazley, “Equivalent performance in C- and L-bands of digital supermode distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 43(9), 798–803 (2007).
[CrossRef]

2006 (2)

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett. 18(4), 565–567 (2006).
[CrossRef]

J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24(1), 5–11 (2006).
[CrossRef]

2005 (2)

R. Phelan, M. Lynch, J. F. Donegan, and V. Weldon, “Simultaneous multispecies gas sensing by use of a sampled grating distributed Bragg reflector and modulated grating Y laser diode,” Appl. Opt. 44(27), 5824–5831 (2005).
[CrossRef] [PubMed]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

2004 (1)

2002 (1)

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

1999 (1)

1994 (1)

P. Correc, O. Girard, and I. F. de Faria., “On the thermal contribution to the FM response of DFB lasers: theory and experiment,” IEEE J. Quantum Electron. 30(11), 2485–2490 (1994).
[CrossRef]

1993 (1)

M. Oberg, S. Nilsson, K. Streubel, J. Wallin, L. Backbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP/InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett. 5(7), 735–737 (1993).
[CrossRef]

Abshire, J. B.

K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt. 50(7), 1047–1056 (2011).
[CrossRef] [PubMed]

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[CrossRef]

Akulova, Y. A.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Backbom, L.

M. Oberg, S. Nilsson, K. Streubel, J. Wallin, L. Backbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP/InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett. 5(7), 735–737 (1993).
[CrossRef]

Barton, E.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Bazley, D. J.

L. Ponnampalam, D. J. Robbins, A. J. Ward, N. D. Whitbread, J. P. Duck, G. Busico, and D. J. Bazley, “Equivalent performance in C- and L-bands of digital supermode distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 43(9), 798–803 (2007).
[CrossRef]

Busico, G.

L. Ponnampalam, D. J. Robbins, A. J. Ward, N. D. Whitbread, J. P. Duck, G. Busico, and D. J. Bazley, “Equivalent performance in C- and L-bands of digital supermode distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 43(9), 798–803 (2007).
[CrossRef]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Buus, J.

Cancio, P.

Carter, A. C.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Chen, J. R.

Coldren, E.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Coldren, L. A.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Collatz, G. J.

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[CrossRef]

Consolino, L.

Correc, P.

P. Correc, O. Girard, and I. F. de Faria., “On the thermal contribution to the FM response of DFB lasers: theory and experiment,” IEEE J. Quantum Electron. 30(11), 2485–2490 (1994).
[CrossRef]

Dahl, S.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

de Faria, I. F.

P. Correc, O. Girard, and I. F. de Faria., “On the thermal contribution to the FM response of DFB lasers: theory and experiment,” IEEE J. Quantum Electron. 30(11), 2485–2490 (1994).
[CrossRef]

De Natale, P.

Doermann, G.

C. J. Erickson, M. Van Zijll, G. Doermann, and D. S. Durfee, “An ultrahigh stability, low-noise laser current driver with digital control,” Rev. Sci. Instrum. 79(7), 073107 (2008).
[CrossRef] [PubMed]

Donegan, J. F.

Duck, J. P.

L. Ponnampalam, D. J. Robbins, A. J. Ward, N. D. Whitbread, J. P. Duck, G. Busico, and D. J. Bazley, “Equivalent performance in C- and L-bands of digital supermode distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 43(9), 798–803 (2007).
[CrossRef]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Durfee, D. S.

C. J. Erickson, M. Van Zijll, G. Doermann, and D. S. Durfee, “An ultrahigh stability, low-noise laser current driver with digital control,” Rev. Sci. Instrum. 79(7), 073107 (2008).
[CrossRef] [PubMed]

Erickson, C. J.

C. J. Erickson, M. Van Zijll, G. Doermann, and D. S. Durfee, “An ultrahigh stability, low-noise laser current driver with digital control,” Rev. Sci. Instrum. 79(7), 073107 (2008).
[CrossRef] [PubMed]

Fish, G. A.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Garrett, H. E.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett. 18(4), 565–567 (2006).
[CrossRef]

Girard, O.

P. Correc, O. Girard, and I. F. de Faria., “On the thermal contribution to the FM response of DFB lasers: theory and experiment,” IEEE J. Quantum Electron. 30(11), 2485–2490 (1994).
[CrossRef]

Giusfredi, G.

Hall, J. L.

Hegblom, S. K.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Inguscio, M.

Kawa, S. R.

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[CrossRef]

J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight,” Appl. Opt. 43(4), 914–927 (2004).
[CrossRef] [PubMed]

Klinga, T.

M. Oberg, S. Nilsson, K. Streubel, J. Wallin, L. Backbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP/InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett. 5(7), 735–737 (1993).
[CrossRef]

Kozodoy, A. P.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Krainak, M. A.

Larson, M. C.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett. 18(4), 565–567 (2006).
[CrossRef]

Larson, M. P.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Livas, J.

Lynch, M.

Mack, T. A.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Mao, J.

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[CrossRef]

J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight,” Appl. Opt. 43(4), 914–927 (2004).
[CrossRef] [PubMed]

Murphy, E. J.

Nakagawa, M. C.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Nilsson, S.

M. Oberg, S. Nilsson, K. Streubel, J. Wallin, L. Backbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP/InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett. 5(7), 735–737 (1993).
[CrossRef]

Numata, K.

Oberg, M.

M. Oberg, S. Nilsson, K. Streubel, J. Wallin, L. Backbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP/InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett. 5(7), 735–737 (1993).
[CrossRef]

Olesen, A. S.

A. S. Olesen, A. T. Pedersen, and K. Rottwitt, “Frequency stepped pulse train modulated wind sensing lidar,” Proc. SPIE 8159, 81590O, 81590O-8 (2011).
[CrossRef]

Pedersen, A. T.

A. S. Olesen, A. T. Pedersen, and K. Rottwitt, “Frequency stepped pulse train modulated wind sensing lidar,” Proc. SPIE 8159, 81590O, 81590O-8 (2011).
[CrossRef]

Penniman, T.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Phelan, R.

Ping-Chiek Koh, C. L.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Ponnampalam, L.

L. Ponnampalam, D. J. Robbins, A. J. Ward, N. D. Whitbread, J. P. Duck, G. Busico, and D. J. Bazley, “Equivalent performance in C- and L-bands of digital supermode distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 43(9), 798–803 (2007).
[CrossRef]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Reid, D. C. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Robbins, D. J.

L. Ponnampalam, D. J. Robbins, A. J. Ward, N. D. Whitbread, J. P. Duck, G. Busico, and D. J. Bazley, “Equivalent performance in C- and L-bands of digital supermode distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 43(9), 798–803 (2007).
[CrossRef]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Rottwitt, K.

A. S. Olesen, A. T. Pedersen, and K. Rottwitt, “Frequency stepped pulse train modulated wind sensing lidar,” Proc. SPIE 8159, 81590O, 81590O-8 (2011).
[CrossRef]

Schow, P.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Simsarian, J. E.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett. 18(4), 565–567 (2006).
[CrossRef]

Strand, C. W.

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Strand, T. A.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett. 18(4), 565–567 (2006).
[CrossRef]

Streubel, K.

M. Oberg, S. Nilsson, K. Streubel, J. Wallin, L. Backbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP/InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett. 5(7), 735–737 (1993).
[CrossRef]

Sun, X.

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[CrossRef]

Thorpe, J. I.

Van Zijll, M.

C. J. Erickson, M. Van Zijll, G. Doermann, and D. S. Durfee, “An ultrahigh stability, low-noise laser current driver with digital control,” Rev. Sci. Instrum. 79(7), 073107 (2008).
[CrossRef] [PubMed]

Wale, M. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Wallin, J.

M. Oberg, S. Nilsson, K. Streubel, J. Wallin, L. Backbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP/InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett. 5(7), 735–737 (1993).
[CrossRef]

Ward, A. J.

L. Ponnampalam, D. J. Robbins, A. J. Ward, N. D. Whitbread, J. P. Duck, G. Busico, and D. J. Bazley, “Equivalent performance in C- and L-bands of digital supermode distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 43(9), 798–803 (2007).
[CrossRef]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Weaver, C. J.

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[CrossRef]

Weldon, V.

Whitbread, N. D.

L. Ponnampalam, D. J. Robbins, A. J. Ward, N. D. Whitbread, J. P. Duck, G. Busico, and D. J. Bazley, “Equivalent performance in C- and L-bands of digital supermode distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 43(9), 798–803 (2007).
[CrossRef]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Williams, P. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Wipiejewski,

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

Wu, S. T.

Xu, H.

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett. 18(4), 565–567 (2006).
[CrossRef]

Ye, J.

Appl. Opt. (3)

IEEE J. Quantum Electron. (2)

P. Correc, O. Girard, and I. F. de Faria., “On the thermal contribution to the FM response of DFB lasers: theory and experiment,” IEEE J. Quantum Electron. 30(11), 2485–2490 (1994).
[CrossRef]

L. Ponnampalam, D. J. Robbins, A. J. Ward, N. D. Whitbread, J. P. Duck, G. Busico, and D. J. Bazley, “Equivalent performance in C- and L-bands of digital supermode distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 43(9), 798–803 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron. 11(1), 149–156 (2005).
[CrossRef]

Y. A. Akulova, G. A. Fish, C. L. Ping-Chiek Koh, P. Schow, A. P. Kozodoy, S. Dahl, M. C. Nakagawa, M. P. Larson, T. A. Mack, C. W. Strand, E. Coldren, S. K. Hegblom, T. Penniman, Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitters,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1349–1357 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Oberg, S. Nilsson, K. Streubel, J. Wallin, L. Backbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP/InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett. 5(7), 735–737 (1993).
[CrossRef]

J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett. 18(4), 565–567 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

A. S. Olesen, A. T. Pedersen, and K. Rottwitt, “Frequency stepped pulse train modulated wind sensing lidar,” Proc. SPIE 8159, 81590O, 81590O-8 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

C. J. Erickson, M. Van Zijll, G. Doermann, and D. S. Durfee, “An ultrahigh stability, low-noise laser current driver with digital control,” Rev. Sci. Instrum. 79(7), 073107 (2008).
[CrossRef] [PubMed]

Tellus, Ser. B, Chem. Phys. Meteorol. (1)

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62(5), 759–769 (2010).
[CrossRef]

Other (5)

Space studies board, National research council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academies Press, 2007), Chap. 4.

J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis of OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper LMA4.

B. Puttnam, M. Dueser, B. Thomsen, P. Bayvel, A. Bianciotto, R. Gaudino, G. Busico, L. Ponnampalam, D. Robbins, and N. Whitbread, “Burst mode operation of a DS-DBR widely tunable laser for wavelength agile system applications,” in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2006), Paper OW186.

M. Mestre, J. M. Fabrega, J. A. Lazaro, V. Polo, A. Djupsjobacka, M. Forzati, P. Rigole, and J. Prat, “Tuning characteristics and switching speed of a modulated grating Y structure laser for wavelength routed PONs,” in Access Networks and In-house Communications, OSA Technical Digest (CD) (Optical Society of America, 2010), paper AThC2.

Analog Devices, AD9858 datasheet, http://www.analog.com/static/imported-files/data_sheets/AD9858.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Concept of the precision fast laser tuning technique and its application for CO2 remote sensing. The DS-DBR laser is dynamically offset-locked to the master DFB-LD using a dynamic OPLL. The frequency-stepped pulse train is formed by external modulation through the MZM and subsequent amplification. The amplified pulse train is used to repeatedly measure at multiple points across the CO2 absorption line. PLL: phase-locked loop.

Fig. 2
Fig. 2

The optical frequency shifts of the DS-DBR laser (a) and the DFB-LD (b) as functions of a tuning current ramping in a triangular waveform.

Fig. 3
Fig. 3

OPLL experimental setup. TEC, thermoelectric cooler.

Fig. 4
Fig. 4

(a) The RF spectra of the master-slave beatnote for the three offset locking points. The resolution bandwidth of the RF spectrum analyzer was 3 MHz. (b) Allan deviations of the offset and absolute frequencies of the slave laser when statically-locked, and of the absolute frequency of the slave laser when unlocked.

Fig. 5
Fig. 5

Measured offset frequency and relevant signals as functions of time. (a) Divided beatnote measured after divider 1 and 2, and the reference DDS frequency. (b) The feed-forward voltage (left axis) and the feedback voltage (right axis). (c) The offset frequency between the slave and the master lasers. The dashed horizontal lines indicate target offset frequencies. Closer views of the two frequency steps (corresponding to the two green boxes) are shown in Fig. 6. The arrows indicate time points when the optical frequency for this step was periodically measured for statistical evaluation, as shown in Fig. 7.

Fig. 6
Fig. 6

Closer view of two frequency steps. (a) Easiest step with + 0.58 GHz jump and no polarity change. (b) Hardest step with −31.2 GHz jump and polarity change. The dashed lines indicate target offset frequencies ( + 1.08 GHz and −15.6 GHz, respectively).

Fig. 7
Fig. 7

Relationships between the standard deviations of averaged laser offset and absolute frequencies, and the number of measurements (pulses) being averaged. The gate time used for each measurement is 1 µs.

Fig. 8
Fig. 8

Measured transmittance of CO2 in a gas cell using the scanning DS-DBR laser. (a) Transmittance vs. time measured in frequency-stepped mode with and without the pulse modulation. (b) Transmittance spectra measured by continuously scanning the same laser (solid line) and by stepping the frequency (solid circle). The calculated transmittance (dashed blue) is also plotted for comparison.

Tables (1)

Tables Icon

Table 1 Target Offset Frequencies, Their Corresponding Frequency Divider Settings, and Reference DDS Frequencies for the Eight Wavelength Points

Metrics