Abstract

With existing techniques for mode-locking, the bandwidth of ultrashort pulses from a laser is determined primarily by the spectrum of the gain medium. Lasers with self-similar evolution of the pulse in the gain medium can tolerate strong spectral breathing, which is stabilized by nonlinear attraction to the parabolic self-similar pulse. Here we show that this property can be exploited in a fiber laser to eliminate the gain-bandwidth limitation to the pulse duration. Broad (∼200 nm) spectra are generated through passive nonlinear propagation in a normal-dispersion laser, and these can be dechirped to ∼20-fs duration.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F. Krtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express 16, 9739–9745 (2008).
    [CrossRef] [PubMed]
  2. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
    [CrossRef]
  3. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
    [CrossRef]
  4. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
    [CrossRef]
  5. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
    [CrossRef]
  6. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
    [CrossRef]
  7. E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE J. Quantum Electron. 47, 597–606 (2011).
    [CrossRef] [PubMed]
  8. J. R. Buckley, S. W. Clark, and F. W. Wise, “Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation,” Opt. Lett. 31, 1340–1342 (2006).
    [CrossRef] [PubMed]
  9. X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express 16, 7055–7059 (2008).
    [CrossRef] [PubMed]
  10. P. Adel and C. Fallnich, “High-power ultra-broadband modelocked Yb3+-fiber laser with 118 nm bandwidth,” Opt. Express 10, 622–627 (2002).
    [PubMed]
  11. L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281, 157–161 (2008).
    [CrossRef]
  12. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10, 1185–1190 (1993).
    [CrossRef]
  13. M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
    [CrossRef] [PubMed]
  14. B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
    [CrossRef]
  15. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
    [CrossRef]
  16. C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic raman fiber oscillator,” Opt. Express 18, 8680–8687 (2010).
    [CrossRef] [PubMed]
  17. B. G. Bale and S. Wabnitz, “Strong spectral filtering for a mode-locked similariton fiber laser,” Opt. Lett. 35, 2466–2468 (2010).
    [CrossRef] [PubMed]
  18. A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206, 171–177 (2002).
    [CrossRef]
  19. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.-H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008).
    [CrossRef]
  20. I. Saytashev, B. Nie, A. Chong, H. Liu, S. Arkhipov, F. W. Wise, and M. Dantus, “Multiphoton imaging with sub-30 fs Yb fiber laser,” Proc. SPIE 8226, 82261I (2012).
    [CrossRef]
  21. M. Y. Sander, J. Birge, A. Benedick, H. M. Crespo, and F. X. Kärtner, “Dynamics of dispersion managed octave-spanning titanium:sapphire lasers,” J. Opt. Soc. Am. B 26, 743–749 (2009).
    [CrossRef]
  22. T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett. 29, 498–500 (2004).
    [CrossRef] [PubMed]
  23. A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319–322 (2007).
    [CrossRef]
  24. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15, 15824–15835 (2007).
    [CrossRef] [PubMed]

2012

I. Saytashev, B. Nie, A. Chong, H. Liu, S. Arkhipov, F. W. Wise, and M. Dantus, “Multiphoton imaging with sub-30 fs Yb fiber laser,” Proc. SPIE 8226, 82261I (2012).
[CrossRef]

2011

E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE J. Quantum Electron. 47, 597–606 (2011).
[CrossRef] [PubMed]

2010

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[CrossRef]

C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic raman fiber oscillator,” Opt. Express 18, 8680–8687 (2010).
[CrossRef] [PubMed]

B. G. Bale and S. Wabnitz, “Strong spectral filtering for a mode-locked similariton fiber laser,” Opt. Lett. 35, 2466–2468 (2010).
[CrossRef] [PubMed]

2009

2008

2007

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319–322 (2007).
[CrossRef]

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15, 15824–15835 (2007).
[CrossRef] [PubMed]

2006

2004

2002

P. Adel and C. Fallnich, “High-power ultra-broadband modelocked Yb3+-fiber laser with 118 nm bandwidth,” Opt. Express 10, 622–627 (2002).
[PubMed]

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206, 171–177 (2002).
[CrossRef]

2000

M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

1997

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

1994

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[CrossRef]

1993

1991

Adel, P.

Aguergaray, C.

Andegeko, Y.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[CrossRef]

Anderson, D.

Arkhipov, S.

I. Saytashev, B. Nie, A. Chong, H. Liu, S. Arkhipov, F. W. Wise, and M. Dantus, “Multiphoton imaging with sub-30 fs Yb fiber laser,” Proc. SPIE 8226, 82261I (2012).
[CrossRef]

Bale, B. G.

Barviau, B.

Benedick, A.

Binhammer, T.

Birge, J.

Borukhovich, I.

Brabec, T.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[CrossRef]

Buckley, J. R.

Cheng, T. H.

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281, 157–161 (2008).
[CrossRef]

Chong, A.

I. Saytashev, B. Nie, A. Chong, H. Liu, S. Arkhipov, F. W. Wise, and M. Dantus, “Multiphoton imaging with sub-30 fs Yb fiber laser,” Proc. SPIE 8226, 82261I (2012).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[CrossRef]

Clark, S. W.

Coello, Y.

Crespo, H. M.

Curley, P. F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[CrossRef]

Dantus, M.

I. Saytashev, B. Nie, A. Chong, H. Liu, S. Arkhipov, F. W. Wise, and M. Dantus, “Multiphoton imaging with sub-30 fs Yb fiber laser,” Proc. SPIE 8226, 82261I (2012).
[CrossRef]

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.-H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008).
[CrossRef]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[CrossRef]

Desaix, M.

Ding, E.

E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE J. Quantum Electron. 47, 597–606 (2011).
[CrossRef] [PubMed]

Dudley, J.

M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

Dudley, J. M.

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206, 171–177 (2002).
[CrossRef]

Eggert, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Ell, R.

Fallnich, C.

Fermann, M.

M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

Finot, C.

Fujimoto, J. G.

Gunaratne, T. C.

Guryanov, A.

Hanke, T.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Harper, P.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319–322 (2007).
[CrossRef]

Harrison, J.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319–322 (2007).
[CrossRef]

Harth, A.

Harvey, J.

M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

Harvey, J. D.

C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic raman fiber oscillator,” Opt. Express 18, 8680–8687 (2010).
[CrossRef] [PubMed]

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206, 171–177 (2002).
[CrossRef]

Haus, H. A.

Hirooka, T.

Huber, R.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Ilday, F. O.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

Ippen, E. P.

Karlsson, M.

Kärtner, F. X.

Khopin, V. F.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319–322 (2007).
[CrossRef]

Kim, J.

Kobayashi, Y.

Krauss, G.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Krausz, F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[CrossRef]

Krtner, F.

Kruglov, V.

C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic raman fiber oscillator,” Opt. Express 18, 8680–8687 (2010).
[CrossRef] [PubMed]

M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

Kruhlak, R. J.

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206, 171–177 (2002).
[CrossRef]

Kutz, J. N.

E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE J. Quantum Electron. 47, 597–606 (2011).
[CrossRef] [PubMed]

Latkin, A. I.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319–322 (2007).
[CrossRef]

Lefrancois, S.

E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE J. Quantum Electron. 47, 597–606 (2011).
[CrossRef] [PubMed]

Leitenstorfer, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Lisak, M.

Liu, H.

I. Saytashev, B. Nie, A. Chong, H. Liu, S. Arkhipov, F. W. Wise, and M. Dantus, “Multiphoton imaging with sub-30 fs Yb fiber laser,” Proc. SPIE 8226, 82261I (2012).
[CrossRef]

Lohss, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Lozovoy, V. V.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[CrossRef]

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.-H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25, A140–A150 (2008).
[CrossRef]

Lu, C.

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281, 157–161 (2008).
[CrossRef]

Méchin, D.

Millot, G.

Morgner, U.

Nakazawa, M.

Nie, B.

I. Saytashev, B. Nie, A. Chong, H. Liu, S. Arkhipov, F. W. Wise, and M. Dantus, “Multiphoton imaging with sub-30 fs Yb fiber laser,” Proc. SPIE 8226, 82261I (2012).
[CrossRef]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Oktem, B.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Peacock, A. C.

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206, 171–177 (2002).
[CrossRef]

Plocky, A.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319–322 (2007).
[CrossRef]

Quiroga-Teixeiro, M.

Rausch, S.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[CrossRef]

Sander, M. Y.

Saytashev, I.

I. Saytashev, B. Nie, A. Chong, H. Liu, S. Arkhipov, F. W. Wise, and M. Dantus, “Multiphoton imaging with sub-30 fs Yb fiber laser,” Proc. SPIE 8226, 82261I (2012).
[CrossRef]

Sell, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Spielmann, C.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[CrossRef]

Sysoliatin, A.

Sysoliatin, A. A.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319–322 (2007).
[CrossRef]

Tam, H. Y.

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281, 157–161 (2008).
[CrossRef]

Tang, D. Y.

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281, 157–161 (2008).
[CrossRef]

Thomsen, B.

M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

Torizuka, K.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Tseng, C.-H.

Turitsyn, S. K.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319–322 (2007).
[CrossRef]

Ulgudur, C.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

Wabnitz, S.

Weinacht, T.

Weisel, L. R.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[CrossRef]

Wise, F. W.

I. Saytashev, B. Nie, A. Chong, H. Liu, S. Arkhipov, F. W. Wise, and M. Dantus, “Multiphoton imaging with sub-30 fs Yb fiber laser,” Proc. SPIE 8226, 82261I (2012).
[CrossRef]

E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE J. Quantum Electron. 47, 597–606 (2011).
[CrossRef] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[CrossRef]

J. R. Buckley, S. W. Clark, and F. W. Wise, “Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation,” Opt. Lett. 31, 1340–1342 (2006).
[CrossRef] [PubMed]

Xi, P.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[CrossRef]

Xu, B.

Yoshitomi, D.

Zhao, L. M.

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281, 157–161 (2008).
[CrossRef]

Zhou, X.

IEEE J. Quantum Electron.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

E. Ding, S. Lefrancois, J. N. Kutz, and F. W. Wise, “Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber,” IEEE J. Quantum Electron. 47, 597–606 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

JETP Lett.

A. Plocky, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in waveguides with length-varying normal chromatic dispersion,” JETP Lett. 85, 319–322 (2007).
[CrossRef]

Nat. Photonics

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[CrossRef]

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Opt. Commun.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281, 1841–1849 (2008).
[CrossRef]

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281, 157–161 (2008).
[CrossRef]

A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, “Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,” Opt. Commun. 206, 171–177 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).
[CrossRef]

Phys. Rev. Lett.

M. Fermann, V. Kruglov, B. Thomsen, J. Dudley, and J. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

Proc. SPIE

I. Saytashev, B. Nie, A. Chong, H. Liu, S. Arkhipov, F. W. Wise, and M. Dantus, “Multiphoton imaging with sub-30 fs Yb fiber laser,” Proc. SPIE 8226, 82261I (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Conceptual schematic of the laser. HNLF: Highly nonlinear fiber.

Fig. 2
Fig. 2

Fiber laser schematic. QWP: quarter-waveplate; HWP: half-waveplate; PBS: polarizing beam-splitter.

Fig. 3
Fig. 3

Comparison of simulation to experiment at the indicated locations in the cavity. Simulations assume 2-m length of PCF with β2 = 70 fs2/cm and nonlinear coefficient 9 times larger than that of the gain fiber. Top row: simulated chirped pulses. The inset is the numerical transform-limited pulse from location C. Middle row: simulated spectra. Bottom row: experimental spectra.

Fig. 4
Fig. 4

Experimental (a) spectrum after the PCF, (b) output spectrum, and (c) output autocorrelation signal after phase correction by MIIPS for a 25-fs pulse.

Fig. 5
Fig. 5

Experimental (a) spectrum after the PCF, (b) output spectrum, and (c) output autocorrelation signal after phase correction by MIIPS for a 21-fs pulse.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( z , t ) = A 0 ( z ) 1 ( t / t 0 ( z ) ) 2 e i ( a ( z ) b ( z ) t 2 )

Metrics