Abstract

We compare the performance of two methods for the synchronization of the atomic spins in optically pumped magnetometers: intensity modulation of the pump light and the classical Mx method using B1 field modulation. Both techniques use the same set-up and measure the resulting features of the light after passing a micro-fabricated Cs cell. The intensity-modulated pumping shows several advantages: better noise-limited magnetic field sensitivity, misalignment between pumping and spin synchronization is excluded, and magnetometer arrays without any cross-talk can be easily set up.

© 2012 OSA

Full Article  |  PDF Article

Corrections

Volkmar Schultze, Rob Ijsselsteijn, Theo Scholtes, Stefan Woetzel, and Hans-Georg Meyer, "Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer: Erratum," Opt. Express 20, 28056-28056 (2012)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-27-28056

References

  • View by:
  • |
  • |
  • |

  1. A. Weis and R. Wynands, “Laser-based precision magnetometry in fundamental and applied research,” Opt. Lasers Eng. 43(3-5), 387–401 (2005).
    [CrossRef]
  2. E. B. Aleksandrov and A. K. Vershovskii, “Modern radio-optical methods in quantum magnetometry,” Phys.- Usp. 52(6), 573–601 (2009).
    [CrossRef]
  3. I. M. Savukov, “Ultra-sensitive optical atomic magnetometers and their applications,” in: Advances in Optical and Photonic Devices, K. Y Kim, ed. (INTECH, Croatia, 2010).
  4. J. Kitching, S. Knappe, and A. Donley, “Atomic Sensors – A Review,” IEEE Sens. J. 11(9), 1749–1758 (2011).
    [CrossRef]
  5. A. L. Bloom, “Principles of Operation of the Rubidium Vapor Magnetometer,” Appl. Opt. 1(1), 61–68 (1962).
    [CrossRef]
  6. E. B. Alexandrov, M. V. Balabas, A. S. Pazgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-Resonance Atomic Magnetometers: from Gas Discharge to Laser Pumping,” Laser Phys. 6, 244–251 (1996).
  7. S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
    [CrossRef]
  8. W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
    [CrossRef]
  9. L. N. Novikov, V. G. Pokazan'ev, and G. V. Skrotskii, “Coherent phenomena in systems interacting with resonant radiation,” Sov. Phys. Usp. 13(3), 384–399 (1970).
    [CrossRef]
  10. D. Suter, M. Rosatzin, and J. Mlynek, “Optically driven spin nutations in the ground state of atomic sodium,” Phys. Rev. A 41(3), 1634–1644 (1990).
    [CrossRef] [PubMed]
  11. M. Rosatzin, D. Suter, W. Lange, and J. Mlynek, “Phase and amplitude variations of optically induced spin transients,” J. Opt. Soc. Am. B 7(7), 1231–1238 (1990).
    [CrossRef]
  12. S. Pustelny, M. Koczwara, L. Cincio, and W. Gawlik, “Tailoring quantum superpositions with linearly polarized amplitude-modulated light,” Phys. Rev. A 83(4), 043832 (2011).
    [CrossRef]
  13. W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson, “Improved Limit on the Permanent Electric Dipole Moment of 199Hg,” Phys. Rev. Lett. 102(10), 101601 (2009).
    [CrossRef] [PubMed]
  14. S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J. Zachorowski, and W. Gawlik, “Magnetometry based on nonlinear magneto-optical rotation with amplitude modulated light,” J. Appl. Phys. 103(6), 063108 (2008).
    [CrossRef]
  15. D. F. Jackson Kimball, L. R. Jacome, S. Guttikonda, E. J. Bahr, and L. F. Chan, “Magnetometric sensitivity optimization for nonlinear optical rotation with frequency-modulated light: Rubidium D2 line,” J. Appl. Phys. 106(6), 063113 (2009).
    [CrossRef]
  16. R. Jimenez-Martinez, W. C. Griffith, Y.-J. Wang, S. Knappe, J. Kitching, K. Smith, and M. Prouty, “Sensitivity Comparison of Mx and Frequency-Modulated Bell-Bloom Cs Magnetometers in a Microfabricated Cell,” IEEE Trans. Instrum. Meas. 59(2), 372–378 (2010).
    [CrossRef]
  17. A. Cassimi, B. Cheron, and J. Hamel, “4He optical pumping with intensity modulated laser light,” J. Phys. II 1(2), 123–133 (1991).
    [CrossRef]
  18. H. Gilles, B. Cheron, and J. Hamel, “Magnetometre a 4He pompe par laser. Isotropie spatiale des signaux de resonance en resonance magnetique et en modulation de lumiere,” J. Phys. II 2(4), 781–799 (1992).
    [CrossRef]
  19. S. Woetzel, V. Schultze, R. Ijsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82(3), 033111 (2011).
    [CrossRef] [PubMed]
  20. V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100(4), 717–724 (2010).
    [CrossRef]
  21. P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85(26), 6409–6411 (2004).
    [CrossRef]
  22. S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt. 8(7), S318–S322 (2006).
    [CrossRef]
  23. A. H. Couture, T. B. Clegg, and B. Driehuys, “Pressure shifts and broadening of the Cs D1 and D2 lines by He, N2, and Xe at densities used for optical pumping and spin exchange polarization,” J. Appl. Phys. 104(9), 094912 (2008).
    [CrossRef]
  24. C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor pressure equations for the metallic elements,” Can. Metall. Quart. 23, 309–313 (1984).
  25. J.-P. Ruske, “Wellenleitermodulatoren für neue Einsatzgebiete,” Optik Photonik 5(1), 49–52 (2010).
    [CrossRef]
  26. E. B. Alexandrov, M. V. Balabas, A. K. Vershovski, and A. S. Pazgalev, “Experimental Demonstration of the Sensitivity of an Optically Pumped Quantum Magnetometer,” Tech. Phys. 49(6), 779–783 (2004).
    [CrossRef]
  27. S. Groeger, A. S. Pazgalev, and A. Weis, “Comparison of discharge lamp and laser pumped cesium magnetometers,” Appl. Phys. B 80(6), 645–654 (2005).
    [CrossRef]
  28. G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22(1), 77–87 (2005).
    [CrossRef]
  29. S. J. Smulin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80(3), 033420 (2009).
    [CrossRef]
  30. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
    [CrossRef] [PubMed]
  31. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
    [CrossRef] [PubMed]
  32. T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84(4), 043416 (2011).
    [CrossRef]
  33. E. B. Aleksandrov, M. V. Balabas, A. K. Vershovskii, A. E. Ivanov, N. N. Yakobson, V. L. Velichanskii, and N. V. Senkov, “Laser Pumping in the Scheme of an Mx-Magnetometer,” Opt. Spectrosc. 78, 292–298 (1995).
  34. N. Castagna, G. Bison, G. Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B 96(4), 763–772 (2009).
    [CrossRef]
  35. P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90(8), 081102 (2007).
    [CrossRef]

2011 (4)

J. Kitching, S. Knappe, and A. Donley, “Atomic Sensors – A Review,” IEEE Sens. J. 11(9), 1749–1758 (2011).
[CrossRef]

S. Pustelny, M. Koczwara, L. Cincio, and W. Gawlik, “Tailoring quantum superpositions with linearly polarized amplitude-modulated light,” Phys. Rev. A 83(4), 043832 (2011).
[CrossRef]

S. Woetzel, V. Schultze, R. Ijsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82(3), 033111 (2011).
[CrossRef] [PubMed]

T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84(4), 043416 (2011).
[CrossRef]

2010 (3)

V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100(4), 717–724 (2010).
[CrossRef]

J.-P. Ruske, “Wellenleitermodulatoren für neue Einsatzgebiete,” Optik Photonik 5(1), 49–52 (2010).
[CrossRef]

R. Jimenez-Martinez, W. C. Griffith, Y.-J. Wang, S. Knappe, J. Kitching, K. Smith, and M. Prouty, “Sensitivity Comparison of Mx and Frequency-Modulated Bell-Bloom Cs Magnetometers in a Microfabricated Cell,” IEEE Trans. Instrum. Meas. 59(2), 372–378 (2010).
[CrossRef]

2009 (5)

D. F. Jackson Kimball, L. R. Jacome, S. Guttikonda, E. J. Bahr, and L. F. Chan, “Magnetometric sensitivity optimization for nonlinear optical rotation with frequency-modulated light: Rubidium D2 line,” J. Appl. Phys. 106(6), 063113 (2009).
[CrossRef]

W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson, “Improved Limit on the Permanent Electric Dipole Moment of 199Hg,” Phys. Rev. Lett. 102(10), 101601 (2009).
[CrossRef] [PubMed]

E. B. Aleksandrov and A. K. Vershovskii, “Modern radio-optical methods in quantum magnetometry,” Phys.- Usp. 52(6), 573–601 (2009).
[CrossRef]

N. Castagna, G. Bison, G. Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B 96(4), 763–772 (2009).
[CrossRef]

S. J. Smulin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80(3), 033420 (2009).
[CrossRef]

2008 (2)

A. H. Couture, T. B. Clegg, and B. Driehuys, “Pressure shifts and broadening of the Cs D1 and D2 lines by He, N2, and Xe at densities used for optical pumping and spin exchange polarization,” J. Appl. Phys. 104(9), 094912 (2008).
[CrossRef]

S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J. Zachorowski, and W. Gawlik, “Magnetometry based on nonlinear magneto-optical rotation with amplitude modulated light,” J. Appl. Phys. 103(6), 063108 (2008).
[CrossRef]

2007 (1)

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90(8), 081102 (2007).
[CrossRef]

2006 (2)

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt. 8(7), S318–S322 (2006).
[CrossRef]

S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
[CrossRef]

2005 (3)

A. Weis and R. Wynands, “Laser-based precision magnetometry in fundamental and applied research,” Opt. Lasers Eng. 43(3-5), 387–401 (2005).
[CrossRef]

S. Groeger, A. S. Pazgalev, and A. Weis, “Comparison of discharge lamp and laser pumped cesium magnetometers,” Appl. Phys. B 80(6), 645–654 (2005).
[CrossRef]

G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22(1), 77–87 (2005).
[CrossRef]

2004 (2)

E. B. Alexandrov, M. V. Balabas, A. K. Vershovski, and A. S. Pazgalev, “Experimental Demonstration of the Sensitivity of an Optically Pumped Quantum Magnetometer,” Tech. Phys. 49(6), 779–783 (2004).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85(26), 6409–6411 (2004).
[CrossRef]

2003 (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

2002 (1)

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[CrossRef] [PubMed]

1996 (1)

E. B. Alexandrov, M. V. Balabas, A. S. Pazgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-Resonance Atomic Magnetometers: from Gas Discharge to Laser Pumping,” Laser Phys. 6, 244–251 (1996).

1995 (1)

E. B. Aleksandrov, M. V. Balabas, A. K. Vershovskii, A. E. Ivanov, N. N. Yakobson, V. L. Velichanskii, and N. V. Senkov, “Laser Pumping in the Scheme of an Mx-Magnetometer,” Opt. Spectrosc. 78, 292–298 (1995).

1992 (1)

H. Gilles, B. Cheron, and J. Hamel, “Magnetometre a 4He pompe par laser. Isotropie spatiale des signaux de resonance en resonance magnetique et en modulation de lumiere,” J. Phys. II 2(4), 781–799 (1992).
[CrossRef]

1991 (1)

A. Cassimi, B. Cheron, and J. Hamel, “4He optical pumping with intensity modulated laser light,” J. Phys. II 1(2), 123–133 (1991).
[CrossRef]

1990 (2)

D. Suter, M. Rosatzin, and J. Mlynek, “Optically driven spin nutations in the ground state of atomic sodium,” Phys. Rev. A 41(3), 1634–1644 (1990).
[CrossRef] [PubMed]

M. Rosatzin, D. Suter, W. Lange, and J. Mlynek, “Phase and amplitude variations of optically induced spin transients,” J. Opt. Soc. Am. B 7(7), 1231–1238 (1990).
[CrossRef]

1984 (1)

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor pressure equations for the metallic elements,” Can. Metall. Quart. 23, 309–313 (1984).

1970 (1)

L. N. Novikov, V. G. Pokazan'ev, and G. V. Skrotskii, “Coherent phenomena in systems interacting with resonant radiation,” Sov. Phys. Usp. 13(3), 384–399 (1970).
[CrossRef]

1962 (1)

1961 (1)

W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
[CrossRef]

Alcock, C. B.

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor pressure equations for the metallic elements,” Can. Metall. Quart. 23, 309–313 (1984).

Aleksandrov, E. B.

E. B. Aleksandrov and A. K. Vershovskii, “Modern radio-optical methods in quantum magnetometry,” Phys.- Usp. 52(6), 573–601 (2009).
[CrossRef]

E. B. Aleksandrov, M. V. Balabas, A. K. Vershovskii, A. E. Ivanov, N. N. Yakobson, V. L. Velichanskii, and N. V. Senkov, “Laser Pumping in the Scheme of an Mx-Magnetometer,” Opt. Spectrosc. 78, 292–298 (1995).

Alexandrov, E. B.

E. B. Alexandrov, M. V. Balabas, A. K. Vershovski, and A. S. Pazgalev, “Experimental Demonstration of the Sensitivity of an Optically Pumped Quantum Magnetometer,” Tech. Phys. 49(6), 779–783 (2004).
[CrossRef]

E. B. Alexandrov, M. V. Balabas, A. S. Pazgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-Resonance Atomic Magnetometers: from Gas Discharge to Laser Pumping,” Laser Phys. 6, 244–251 (1996).

Allred, J. C.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[CrossRef] [PubMed]

Anders, S.

S. Woetzel, V. Schultze, R. Ijsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82(3), 033111 (2011).
[CrossRef] [PubMed]

Bahr, E. J.

D. F. Jackson Kimball, L. R. Jacome, S. Guttikonda, E. J. Bahr, and L. F. Chan, “Magnetometric sensitivity optimization for nonlinear optical rotation with frequency-modulated light: Rubidium D2 line,” J. Appl. Phys. 106(6), 063113 (2009).
[CrossRef]

Balabas, M. V.

E. B. Alexandrov, M. V. Balabas, A. K. Vershovski, and A. S. Pazgalev, “Experimental Demonstration of the Sensitivity of an Optically Pumped Quantum Magnetometer,” Tech. Phys. 49(6), 779–783 (2004).
[CrossRef]

E. B. Alexandrov, M. V. Balabas, A. S. Pazgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-Resonance Atomic Magnetometers: from Gas Discharge to Laser Pumping,” Laser Phys. 6, 244–251 (1996).

E. B. Aleksandrov, M. V. Balabas, A. K. Vershovskii, A. E. Ivanov, N. N. Yakobson, V. L. Velichanskii, and N. V. Senkov, “Laser Pumping in the Scheme of an Mx-Magnetometer,” Opt. Spectrosc. 78, 292–298 (1995).

Bell, W. E.

W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
[CrossRef]

Bison, G.

N. Castagna, G. Bison, G. Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B 96(4), 763–772 (2009).
[CrossRef]

S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
[CrossRef]

G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22(1), 77–87 (2005).
[CrossRef]

Bloom, A. L.

A. L. Bloom, “Principles of Operation of the Rubidium Vapor Magnetometer,” Appl. Opt. 1(1), 61–68 (1962).
[CrossRef]

W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
[CrossRef]

Cassimi, A.

A. Cassimi, B. Cheron, and J. Hamel, “4He optical pumping with intensity modulated laser light,” J. Phys. II 1(2), 123–133 (1991).
[CrossRef]

Castagna, N.

N. Castagna, G. Bison, G. Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B 96(4), 763–772 (2009).
[CrossRef]

Chan, L. F.

D. F. Jackson Kimball, L. R. Jacome, S. Guttikonda, E. J. Bahr, and L. F. Chan, “Magnetometric sensitivity optimization for nonlinear optical rotation with frequency-modulated light: Rubidium D2 line,” J. Appl. Phys. 106(6), 063113 (2009).
[CrossRef]

Cheron, B.

H. Gilles, B. Cheron, and J. Hamel, “Magnetometre a 4He pompe par laser. Isotropie spatiale des signaux de resonance en resonance magnetique et en modulation de lumiere,” J. Phys. II 2(4), 781–799 (1992).
[CrossRef]

A. Cassimi, B. Cheron, and J. Hamel, “4He optical pumping with intensity modulated laser light,” J. Phys. II 1(2), 123–133 (1991).
[CrossRef]

Cincio, L.

S. Pustelny, M. Koczwara, L. Cincio, and W. Gawlik, “Tailoring quantum superpositions with linearly polarized amplitude-modulated light,” Phys. Rev. A 83(4), 043832 (2011).
[CrossRef]

Clegg, T. B.

A. H. Couture, T. B. Clegg, and B. Driehuys, “Pressure shifts and broadening of the Cs D1 and D2 lines by He, N2, and Xe at densities used for optical pumping and spin exchange polarization,” J. Appl. Phys. 104(9), 094912 (2008).
[CrossRef]

Couture, A. H.

A. H. Couture, T. B. Clegg, and B. Driehuys, “Pressure shifts and broadening of the Cs D1 and D2 lines by He, N2, and Xe at densities used for optical pumping and spin exchange polarization,” J. Appl. Phys. 104(9), 094912 (2008).
[CrossRef]

Domenico, G.

N. Castagna, G. Bison, G. Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B 96(4), 763–772 (2009).
[CrossRef]

Donley, A.

J. Kitching, S. Knappe, and A. Donley, “Atomic Sensors – A Review,” IEEE Sens. J. 11(9), 1749–1758 (2011).
[CrossRef]

Driehuys, B.

A. H. Couture, T. B. Clegg, and B. Driehuys, “Pressure shifts and broadening of the Cs D1 and D2 lines by He, N2, and Xe at densities used for optical pumping and spin exchange polarization,” J. Appl. Phys. 104(9), 094912 (2008).
[CrossRef]

Fortson, E. N.

W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson, “Improved Limit on the Permanent Electric Dipole Moment of 199Hg,” Phys. Rev. Lett. 102(10), 101601 (2009).
[CrossRef] [PubMed]

Gawlik, W.

S. Pustelny, M. Koczwara, L. Cincio, and W. Gawlik, “Tailoring quantum superpositions with linearly polarized amplitude-modulated light,” Phys. Rev. A 83(4), 043832 (2011).
[CrossRef]

S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J. Zachorowski, and W. Gawlik, “Magnetometry based on nonlinear magneto-optical rotation with amplitude modulated light,” J. Appl. Phys. 103(6), 063108 (2008).
[CrossRef]

Gerginov, V.

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt. 8(7), S318–S322 (2006).
[CrossRef]

Ghosh, R. K.

S. J. Smulin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80(3), 033420 (2009).
[CrossRef]

Gilles, H.

H. Gilles, B. Cheron, and J. Hamel, “Magnetometre a 4He pompe par laser. Isotropie spatiale des signaux de resonance en resonance magnetique et en modulation de lumiere,” J. Phys. II 2(4), 781–799 (1992).
[CrossRef]

Griffith, W. C.

R. Jimenez-Martinez, W. C. Griffith, Y.-J. Wang, S. Knappe, J. Kitching, K. Smith, and M. Prouty, “Sensitivity Comparison of Mx and Frequency-Modulated Bell-Bloom Cs Magnetometers in a Microfabricated Cell,” IEEE Trans. Instrum. Meas. 59(2), 372–378 (2010).
[CrossRef]

W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson, “Improved Limit on the Permanent Electric Dipole Moment of 199Hg,” Phys. Rev. Lett. 102(10), 101601 (2009).
[CrossRef] [PubMed]

Gring, M.

S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J. Zachorowski, and W. Gawlik, “Magnetometry based on nonlinear magneto-optical rotation with amplitude modulated light,” J. Appl. Phys. 103(6), 063108 (2008).
[CrossRef]

Groeger, S.

S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
[CrossRef]

S. Groeger, A. S. Pazgalev, and A. Weis, “Comparison of discharge lamp and laser pumped cesium magnetometers,” Appl. Phys. B 80(6), 645–654 (2005).
[CrossRef]

Guttikonda, S.

D. F. Jackson Kimball, L. R. Jacome, S. Guttikonda, E. J. Bahr, and L. F. Chan, “Magnetometric sensitivity optimization for nonlinear optical rotation with frequency-modulated light: Rubidium D2 line,” J. Appl. Phys. 106(6), 063113 (2009).
[CrossRef]

Hamel, J.

H. Gilles, B. Cheron, and J. Hamel, “Magnetometre a 4He pompe par laser. Isotropie spatiale des signaux de resonance en resonance magnetique et en modulation de lumiere,” J. Phys. II 2(4), 781–799 (1992).
[CrossRef]

A. Cassimi, B. Cheron, and J. Hamel, “4He optical pumping with intensity modulated laser light,” J. Phys. II 1(2), 123–133 (1991).
[CrossRef]

Heckel, B. R.

W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson, “Improved Limit on the Permanent Electric Dipole Moment of 199Hg,” Phys. Rev. Lett. 102(10), 101601 (2009).
[CrossRef] [PubMed]

Hofer, A.

N. Castagna, G. Bison, G. Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B 96(4), 763–772 (2009).
[CrossRef]

Hollberg, L.

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt. 8(7), S318–S322 (2006).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85(26), 6409–6411 (2004).
[CrossRef]

Horrigan, M. K.

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor pressure equations for the metallic elements,” Can. Metall. Quart. 23, 309–313 (1984).

IJsselsteijn, R.

T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84(4), 043416 (2011).
[CrossRef]

S. Woetzel, V. Schultze, R. Ijsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82(3), 033111 (2011).
[CrossRef] [PubMed]

V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100(4), 717–724 (2010).
[CrossRef]

Itkin, V. P.

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor pressure equations for the metallic elements,” Can. Metall. Quart. 23, 309–313 (1984).

Ivanov, A. E.

E. B. Aleksandrov, M. V. Balabas, A. K. Vershovskii, A. E. Ivanov, N. N. Yakobson, V. L. Velichanskii, and N. V. Senkov, “Laser Pumping in the Scheme of an Mx-Magnetometer,” Opt. Spectrosc. 78, 292–298 (1995).

Jackson Kimball, D. F.

D. F. Jackson Kimball, L. R. Jacome, S. Guttikonda, E. J. Bahr, and L. F. Chan, “Magnetometric sensitivity optimization for nonlinear optical rotation with frequency-modulated light: Rubidium D2 line,” J. Appl. Phys. 106(6), 063113 (2009).
[CrossRef]

Jacome, L. R.

D. F. Jackson Kimball, L. R. Jacome, S. Guttikonda, E. J. Bahr, and L. F. Chan, “Magnetometric sensitivity optimization for nonlinear optical rotation with frequency-modulated light: Rubidium D2 line,” J. Appl. Phys. 106(6), 063113 (2009).
[CrossRef]

Jimenez-Martinez, R.

R. Jimenez-Martinez, W. C. Griffith, Y.-J. Wang, S. Knappe, J. Kitching, K. Smith, and M. Prouty, “Sensitivity Comparison of Mx and Frequency-Modulated Bell-Bloom Cs Magnetometers in a Microfabricated Cell,” IEEE Trans. Instrum. Meas. 59(2), 372–378 (2010).
[CrossRef]

Kitching, J.

J. Kitching, S. Knappe, and A. Donley, “Atomic Sensors – A Review,” IEEE Sens. J. 11(9), 1749–1758 (2011).
[CrossRef]

R. Jimenez-Martinez, W. C. Griffith, Y.-J. Wang, S. Knappe, J. Kitching, K. Smith, and M. Prouty, “Sensitivity Comparison of Mx and Frequency-Modulated Bell-Bloom Cs Magnetometers in a Microfabricated Cell,” IEEE Trans. Instrum. Meas. 59(2), 372–378 (2010).
[CrossRef]

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90(8), 081102 (2007).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt. 8(7), S318–S322 (2006).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85(26), 6409–6411 (2004).
[CrossRef]

Knappe, S.

J. Kitching, S. Knappe, and A. Donley, “Atomic Sensors – A Review,” IEEE Sens. J. 11(9), 1749–1758 (2011).
[CrossRef]

R. Jimenez-Martinez, W. C. Griffith, Y.-J. Wang, S. Knappe, J. Kitching, K. Smith, and M. Prouty, “Sensitivity Comparison of Mx and Frequency-Modulated Bell-Bloom Cs Magnetometers in a Microfabricated Cell,” IEEE Trans. Instrum. Meas. 59(2), 372–378 (2010).
[CrossRef]

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90(8), 081102 (2007).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt. 8(7), S318–S322 (2006).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85(26), 6409–6411 (2004).
[CrossRef]

Knowles, P.

N. Castagna, G. Bison, G. Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B 96(4), 763–772 (2009).
[CrossRef]

Koczwara, M.

S. Pustelny, M. Koczwara, L. Cincio, and W. Gawlik, “Tailoring quantum superpositions with linearly polarized amplitude-modulated light,” Phys. Rev. A 83(4), 043832 (2011).
[CrossRef]

Kominis, I. K.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

Kornack, T. W.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[CrossRef] [PubMed]

Kotyrba, M.

S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J. Zachorowski, and W. Gawlik, “Magnetometry based on nonlinear magneto-optical rotation with amplitude modulated light,” J. Appl. Phys. 103(6), 063108 (2008).
[CrossRef]

Lange, W.

Liew, L.

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt. 8(7), S318–S322 (2006).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85(26), 6409–6411 (2004).
[CrossRef]

Liew, L.-A.

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90(8), 081102 (2007).
[CrossRef]

Lindseth, B.

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90(8), 081102 (2007).
[CrossRef]

Loftus, T. H.

W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson, “Improved Limit on the Permanent Electric Dipole Moment of 199Hg,” Phys. Rev. Lett. 102(10), 101601 (2009).
[CrossRef] [PubMed]

Lyman, R. N.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[CrossRef] [PubMed]

Macchione, C.

N. Castagna, G. Bison, G. Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B 96(4), 763–772 (2009).
[CrossRef]

Meyer, H.-G.

T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84(4), 043416 (2011).
[CrossRef]

S. Woetzel, V. Schultze, R. Ijsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82(3), 033111 (2011).
[CrossRef] [PubMed]

V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100(4), 717–724 (2010).
[CrossRef]

Mlynek, J.

M. Rosatzin, D. Suter, W. Lange, and J. Mlynek, “Phase and amplitude variations of optically induced spin transients,” J. Opt. Soc. Am. B 7(7), 1231–1238 (1990).
[CrossRef]

D. Suter, M. Rosatzin, and J. Mlynek, “Optically driven spin nutations in the ground state of atomic sodium,” Phys. Rev. A 41(3), 1634–1644 (1990).
[CrossRef] [PubMed]

Moreland, J.

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt. 8(7), S318–S322 (2006).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85(26), 6409–6411 (2004).
[CrossRef]

Novikov, L. N.

L. N. Novikov, V. G. Pokazan'ev, and G. V. Skrotskii, “Coherent phenomena in systems interacting with resonant radiation,” Sov. Phys. Usp. 13(3), 384–399 (1970).
[CrossRef]

Pazgalev, A. S.

S. Groeger, A. S. Pazgalev, and A. Weis, “Comparison of discharge lamp and laser pumped cesium magnetometers,” Appl. Phys. B 80(6), 645–654 (2005).
[CrossRef]

E. B. Alexandrov, M. V. Balabas, A. K. Vershovski, and A. S. Pazgalev, “Experimental Demonstration of the Sensitivity of an Optically Pumped Quantum Magnetometer,” Tech. Phys. 49(6), 779–783 (2004).
[CrossRef]

E. B. Alexandrov, M. V. Balabas, A. S. Pazgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-Resonance Atomic Magnetometers: from Gas Discharge to Laser Pumping,” Laser Phys. 6, 244–251 (1996).

Pokazan'ev, V. G.

L. N. Novikov, V. G. Pokazan'ev, and G. V. Skrotskii, “Coherent phenomena in systems interacting with resonant radiation,” Sov. Phys. Usp. 13(3), 384–399 (1970).
[CrossRef]

Prouty, M.

R. Jimenez-Martinez, W. C. Griffith, Y.-J. Wang, S. Knappe, J. Kitching, K. Smith, and M. Prouty, “Sensitivity Comparison of Mx and Frequency-Modulated Bell-Bloom Cs Magnetometers in a Microfabricated Cell,” IEEE Trans. Instrum. Meas. 59(2), 372–378 (2010).
[CrossRef]

Pustelny, S.

S. Pustelny, M. Koczwara, L. Cincio, and W. Gawlik, “Tailoring quantum superpositions with linearly polarized amplitude-modulated light,” Phys. Rev. A 83(4), 043832 (2011).
[CrossRef]

S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J. Zachorowski, and W. Gawlik, “Magnetometry based on nonlinear magneto-optical rotation with amplitude modulated light,” J. Appl. Phys. 103(6), 063108 (2008).
[CrossRef]

Robinson, H. G.

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt. 8(7), S318–S322 (2006).
[CrossRef]

Romalis, M. V.

S. J. Smulin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80(3), 033420 (2009).
[CrossRef]

W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson, “Improved Limit on the Permanent Electric Dipole Moment of 199Hg,” Phys. Rev. Lett. 102(10), 101601 (2009).
[CrossRef] [PubMed]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[CrossRef] [PubMed]

Rosatzin, M.

D. Suter, M. Rosatzin, and J. Mlynek, “Optically driven spin nutations in the ground state of atomic sodium,” Phys. Rev. A 41(3), 1634–1644 (1990).
[CrossRef] [PubMed]

M. Rosatzin, D. Suter, W. Lange, and J. Mlynek, “Phase and amplitude variations of optically induced spin transients,” J. Opt. Soc. Am. B 7(7), 1231–1238 (1990).
[CrossRef]

Ruske, J.-P.

J.-P. Ruske, “Wellenleitermodulatoren für neue Einsatzgebiete,” Optik Photonik 5(1), 49–52 (2010).
[CrossRef]

Saudan, H.

N. Castagna, G. Bison, G. Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B 96(4), 763–772 (2009).
[CrossRef]

Savukov, I. M.

S. J. Smulin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80(3), 033420 (2009).
[CrossRef]

Schenker, J.-L.

S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
[CrossRef]

Scholtes, T.

T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84(4), 043416 (2011).
[CrossRef]

Schultze, V.

T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84(4), 043416 (2011).
[CrossRef]

S. Woetzel, V. Schultze, R. Ijsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82(3), 033111 (2011).
[CrossRef] [PubMed]

V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100(4), 717–724 (2010).
[CrossRef]

Schulz, T.

S. Woetzel, V. Schultze, R. Ijsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82(3), 033111 (2011).
[CrossRef] [PubMed]

Schwindt, P. D. D.

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90(8), 081102 (2007).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt. 8(7), S318–S322 (2006).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85(26), 6409–6411 (2004).
[CrossRef]

Senkov, N. V.

E. B. Aleksandrov, M. V. Balabas, A. K. Vershovskii, A. E. Ivanov, N. N. Yakobson, V. L. Velichanskii, and N. V. Senkov, “Laser Pumping in the Scheme of an Mx-Magnetometer,” Opt. Spectrosc. 78, 292–298 (1995).

Shah, V.

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90(8), 081102 (2007).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt. 8(7), S318–S322 (2006).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85(26), 6409–6411 (2004).
[CrossRef]

Skrotskii, G. V.

L. N. Novikov, V. G. Pokazan'ev, and G. V. Skrotskii, “Coherent phenomena in systems interacting with resonant radiation,” Sov. Phys. Usp. 13(3), 384–399 (1970).
[CrossRef]

Smith, K.

R. Jimenez-Martinez, W. C. Griffith, Y.-J. Wang, S. Knappe, J. Kitching, K. Smith, and M. Prouty, “Sensitivity Comparison of Mx and Frequency-Modulated Bell-Bloom Cs Magnetometers in a Microfabricated Cell,” IEEE Trans. Instrum. Meas. 59(2), 372–378 (2010).
[CrossRef]

Smulin, S. J.

S. J. Smulin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80(3), 033420 (2009).
[CrossRef]

Stolz, R.

S. Woetzel, V. Schultze, R. Ijsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82(3), 033111 (2011).
[CrossRef] [PubMed]

Suter, D.

D. Suter, M. Rosatzin, and J. Mlynek, “Optically driven spin nutations in the ground state of atomic sodium,” Phys. Rev. A 41(3), 1634–1644 (1990).
[CrossRef] [PubMed]

M. Rosatzin, D. Suter, W. Lange, and J. Mlynek, “Phase and amplitude variations of optically induced spin transients,” J. Opt. Soc. Am. B 7(7), 1231–1238 (1990).
[CrossRef]

Swallows, M. D.

W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson, “Improved Limit on the Permanent Electric Dipole Moment of 199Hg,” Phys. Rev. Lett. 102(10), 101601 (2009).
[CrossRef] [PubMed]

Vasilakis, G.

S. J. Smulin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80(3), 033420 (2009).
[CrossRef]

Velichanskii, V. L.

E. B. Aleksandrov, M. V. Balabas, A. K. Vershovskii, A. E. Ivanov, N. N. Yakobson, V. L. Velichanskii, and N. V. Senkov, “Laser Pumping in the Scheme of an Mx-Magnetometer,” Opt. Spectrosc. 78, 292–298 (1995).

Vershovski, A. K.

E. B. Alexandrov, M. V. Balabas, A. K. Vershovski, and A. S. Pazgalev, “Experimental Demonstration of the Sensitivity of an Optically Pumped Quantum Magnetometer,” Tech. Phys. 49(6), 779–783 (2004).
[CrossRef]

Vershovskii, A. K.

E. B. Aleksandrov and A. K. Vershovskii, “Modern radio-optical methods in quantum magnetometry,” Phys.- Usp. 52(6), 573–601 (2009).
[CrossRef]

E. B. Alexandrov, M. V. Balabas, A. S. Pazgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-Resonance Atomic Magnetometers: from Gas Discharge to Laser Pumping,” Laser Phys. 6, 244–251 (1996).

E. B. Aleksandrov, M. V. Balabas, A. K. Vershovskii, A. E. Ivanov, N. N. Yakobson, V. L. Velichanskii, and N. V. Senkov, “Laser Pumping in the Scheme of an Mx-Magnetometer,” Opt. Spectrosc. 78, 292–298 (1995).

Wang, Y.-J.

R. Jimenez-Martinez, W. C. Griffith, Y.-J. Wang, S. Knappe, J. Kitching, K. Smith, and M. Prouty, “Sensitivity Comparison of Mx and Frequency-Modulated Bell-Bloom Cs Magnetometers in a Microfabricated Cell,” IEEE Trans. Instrum. Meas. 59(2), 372–378 (2010).
[CrossRef]

Weis, A.

N. Castagna, G. Bison, G. Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B 96(4), 763–772 (2009).
[CrossRef]

S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
[CrossRef]

A. Weis and R. Wynands, “Laser-based precision magnetometry in fundamental and applied research,” Opt. Lasers Eng. 43(3-5), 387–401 (2005).
[CrossRef]

S. Groeger, A. S. Pazgalev, and A. Weis, “Comparison of discharge lamp and laser pumped cesium magnetometers,” Appl. Phys. B 80(6), 645–654 (2005).
[CrossRef]

G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22(1), 77–87 (2005).
[CrossRef]

Woetzel, S.

T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84(4), 043416 (2011).
[CrossRef]

S. Woetzel, V. Schultze, R. Ijsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82(3), 033111 (2011).
[CrossRef] [PubMed]

Wojciechowski, A.

S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J. Zachorowski, and W. Gawlik, “Magnetometry based on nonlinear magneto-optical rotation with amplitude modulated light,” J. Appl. Phys. 103(6), 063108 (2008).
[CrossRef]

Wynands, R.

S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
[CrossRef]

A. Weis and R. Wynands, “Laser-based precision magnetometry in fundamental and applied research,” Opt. Lasers Eng. 43(3-5), 387–401 (2005).
[CrossRef]

G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22(1), 77–87 (2005).
[CrossRef]

Yakobson, N. N.

E. B. Alexandrov, M. V. Balabas, A. S. Pazgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-Resonance Atomic Magnetometers: from Gas Discharge to Laser Pumping,” Laser Phys. 6, 244–251 (1996).

E. B. Aleksandrov, M. V. Balabas, A. K. Vershovskii, A. E. Ivanov, N. N. Yakobson, V. L. Velichanskii, and N. V. Senkov, “Laser Pumping in the Scheme of an Mx-Magnetometer,” Opt. Spectrosc. 78, 292–298 (1995).

Zachorowski, J.

S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J. Zachorowski, and W. Gawlik, “Magnetometry based on nonlinear magneto-optical rotation with amplitude modulated light,” J. Appl. Phys. 103(6), 063108 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100(4), 717–724 (2010).
[CrossRef]

S. Groeger, A. S. Pazgalev, and A. Weis, “Comparison of discharge lamp and laser pumped cesium magnetometers,” Appl. Phys. B 80(6), 645–654 (2005).
[CrossRef]

N. Castagna, G. Bison, G. Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B 96(4), 763–772 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett. 90(8), 081102 (2007).
[CrossRef]

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85(26), 6409–6411 (2004).
[CrossRef]

Can. Metall. Quart. (1)

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor pressure equations for the metallic elements,” Can. Metall. Quart. 23, 309–313 (1984).

Eur. Phys. J. D (1)

S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38(2), 239–247 (2006).
[CrossRef]

IEEE Sens. J. (1)

J. Kitching, S. Knappe, and A. Donley, “Atomic Sensors – A Review,” IEEE Sens. J. 11(9), 1749–1758 (2011).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

R. Jimenez-Martinez, W. C. Griffith, Y.-J. Wang, S. Knappe, J. Kitching, K. Smith, and M. Prouty, “Sensitivity Comparison of Mx and Frequency-Modulated Bell-Bloom Cs Magnetometers in a Microfabricated Cell,” IEEE Trans. Instrum. Meas. 59(2), 372–378 (2010).
[CrossRef]

J. Appl. Phys. (3)

S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J. Zachorowski, and W. Gawlik, “Magnetometry based on nonlinear magneto-optical rotation with amplitude modulated light,” J. Appl. Phys. 103(6), 063108 (2008).
[CrossRef]

D. F. Jackson Kimball, L. R. Jacome, S. Guttikonda, E. J. Bahr, and L. F. Chan, “Magnetometric sensitivity optimization for nonlinear optical rotation with frequency-modulated light: Rubidium D2 line,” J. Appl. Phys. 106(6), 063113 (2009).
[CrossRef]

A. H. Couture, T. B. Clegg, and B. Driehuys, “Pressure shifts and broadening of the Cs D1 and D2 lines by He, N2, and Xe at densities used for optical pumping and spin exchange polarization,” J. Appl. Phys. 104(9), 094912 (2008).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt. 8(7), S318–S322 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. II (2)

A. Cassimi, B. Cheron, and J. Hamel, “4He optical pumping with intensity modulated laser light,” J. Phys. II 1(2), 123–133 (1991).
[CrossRef]

H. Gilles, B. Cheron, and J. Hamel, “Magnetometre a 4He pompe par laser. Isotropie spatiale des signaux de resonance en resonance magnetique et en modulation de lumiere,” J. Phys. II 2(4), 781–799 (1992).
[CrossRef]

Laser Phys. (1)

E. B. Alexandrov, M. V. Balabas, A. S. Pazgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-Resonance Atomic Magnetometers: from Gas Discharge to Laser Pumping,” Laser Phys. 6, 244–251 (1996).

Nature (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[CrossRef] [PubMed]

Opt. Lasers Eng. (1)

A. Weis and R. Wynands, “Laser-based precision magnetometry in fundamental and applied research,” Opt. Lasers Eng. 43(3-5), 387–401 (2005).
[CrossRef]

Opt. Spectrosc. (1)

E. B. Aleksandrov, M. V. Balabas, A. K. Vershovskii, A. E. Ivanov, N. N. Yakobson, V. L. Velichanskii, and N. V. Senkov, “Laser Pumping in the Scheme of an Mx-Magnetometer,” Opt. Spectrosc. 78, 292–298 (1995).

Optik Photonik (1)

J.-P. Ruske, “Wellenleitermodulatoren für neue Einsatzgebiete,” Optik Photonik 5(1), 49–52 (2010).
[CrossRef]

Phys. Rev. A (4)

S. J. Smulin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80(3), 033420 (2009).
[CrossRef]

T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84(4), 043416 (2011).
[CrossRef]

D. Suter, M. Rosatzin, and J. Mlynek, “Optically driven spin nutations in the ground state of atomic sodium,” Phys. Rev. A 41(3), 1634–1644 (1990).
[CrossRef] [PubMed]

S. Pustelny, M. Koczwara, L. Cincio, and W. Gawlik, “Tailoring quantum superpositions with linearly polarized amplitude-modulated light,” Phys. Rev. A 83(4), 043832 (2011).
[CrossRef]

Phys. Rev. Lett. (3)

W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson, “Improved Limit on the Permanent Electric Dipole Moment of 199Hg,” Phys. Rev. Lett. 102(10), 101601 (2009).
[CrossRef] [PubMed]

W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett. 6(6), 280–281 (1961).
[CrossRef]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002).
[CrossRef] [PubMed]

Phys.- Usp. (1)

E. B. Aleksandrov and A. K. Vershovskii, “Modern radio-optical methods in quantum magnetometry,” Phys.- Usp. 52(6), 573–601 (2009).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Woetzel, V. Schultze, R. Ijsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82(3), 033111 (2011).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

L. N. Novikov, V. G. Pokazan'ev, and G. V. Skrotskii, “Coherent phenomena in systems interacting with resonant radiation,” Sov. Phys. Usp. 13(3), 384–399 (1970).
[CrossRef]

Tech. Phys. (1)

E. B. Alexandrov, M. V. Balabas, A. K. Vershovski, and A. S. Pazgalev, “Experimental Demonstration of the Sensitivity of an Optically Pumped Quantum Magnetometer,” Tech. Phys. 49(6), 779–783 (2004).
[CrossRef]

Other (1)

I. M. Savukov, “Ultra-sensitive optical atomic magnetometers and their applications,” in: Advances in Optical and Photonic Devices, K. Y Kim, ed. (INTECH, Croatia, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup. With a beam splitter the linearly polarized light from the laser is split into two channels. For all investigations the measurement channel M is used with circularly polarized light (provided by a linear polarizer LP and a λ/4 plate). For some noise measurements a reference channel R is used additionally. There, with several loops FL of a multimode fiber the light is depolarized. In both channels, the photo diodes PD are connected to trans-impedance amplifiers I/U. With switch ① either modulation with B1-field or intensity modulator IM can be chosen. With switch ② the reference signal can (after a tuning in strength) be subtracted from the measurement signal. B0 is supplied by a three-axis Helmholtz coil system. Ua and Ud denote the absorptive and dispersive signals of the lock-in amplifier, respectively. M and R are two magnetometer cells out of four integrated ones. (b) Photo of the cell array in a ceramic holder with two fibers F for the laser heating radiation. From the two printed circuit boards PCB with B1-field coils the upper one is detached.

Fig. 2
Fig. 2

Rectangular modulation of the pump light. Triggering was performed at Larmor frequency. In measurements (a), (b) and (c) the light remained switched-on for different lengths of time.

Fig. 3
Fig. 3

Rectangular modulation of the pump light. Dependence of the photocurrent I behind the magnetometer cell on duty cycle d (a) and modulation depth k (b) of the pumping light. The laser intensity, i.e. the higher pump level, always stayed fixed. Pumping was performed at Larmor frequency.

Fig. 4
Fig. 4

Rectangular modulation of the pump light. Calculated magnetization of the vapor (left charts) and resulting signals behind the magnetometer cell (right charts) depending on duty cycle d (a) and modulation depth k (b) of the pumping light.

Fig. 5
Fig. 5

Rectangular (a) and smoothed (b) modulation of the pump light. Dependence of the light signal I on the modulation frequency. The Larmor frequency was fL = 17.7kHz. Modulation depth and duty cycle were 100% and 50%, respectively.

Fig. 6
Fig. 6

Modulation of the light signal I with various signal forms at Larmor frequency. For the pump light modulation (rectangular pulse, smoothed pulse), modulation depth and duty cycle were 100% and 50%, respectively. B1-field modulation is shown for comparison.

Fig. 7
Fig. 7

Polar diagram of the magnetometer signal in dependence on the B0-field direction with respect to the pump light direction (zero degrees). The northern hemisphere (red) belongs to the IM magnetometer; the southern hemisphere (blue) to the Mx magnetometer. The symbols display measurement values of the slope of the lock-in’s dispersive signal (cp. Figure 8 (b)). For the calculated curves, please refer to the formulae from Ref [17].

Fig. 8
Fig. 8

Absorptive (a), dispersive (b) and phase (c) signal from lock-in detection for the Mx method (blue curves) and for IM with rectangular pulses (red curves) and smoothed pulses (black curves). The parameters of curves (b) are given in Table 1.

Fig. 9
Fig. 9

Modulation with rectangular (a) and smoothed (b) light pulses at the Larmor frequency fL with reference signal subtraction with various values Gref.

Fig. 10
Fig. 10

Magnetometer noise. The upper curves belonging to the Mx method, (the blue and green traces) and the lower curves belonging to the IM method, (the black and red traces) are without and with reference signal subtraction, respectively. For the values of the shot-noise limited levels Bsn please viz. text.

Tables (2)

Tables Icon

Table 1 Parameters Which Determine the Magnetic Field Resolution

Tables Icon

Table 2 Parameters of Selected Magnetometers

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

m + (t)=Acos( Ω L t+φ) e Γ eff t + m s
m (t)=Acos( Ω L t+φ+δ) e Γ 0 t .
A= P + Ω L 2 + Γ eff 2
φ=arctan Ω L Γ eff .
m s = P + Γ eff (1 e Γ eff d f L )
B sn = G γ 2e I dc | d U d / df | .
B n = 1 γ Γ nV

Metrics