Abstract

This work reports on the first time experimental investigation of temperature field inside silicon substrates under particle-induced near-field focusing at a sub-wavelength resolution. The noncontact Raman thermometry technique employing both Raman shift and full width at half maximum (FWHM) methods is employed to investigate the temperature rise in silicon beneath silica particles. Silica particles of three diameters (400, 800 and 1210 nm), each under four laser energy fluxes of 2.5 × 108, 3.8 ×108, 6.9 ×108 and 8.6 ×108 W/m2, are used to investigate the effects of particle size and laser energy flux. The experimental results indicate that as the particle size or the laser energy flux increases, the temperature rise inside the substrate goes higher. Maximum temperature rises of 55.8 K (based on Raman FWHM method) and 29.3K (based on Raman shift method) are observed inside the silicon under particles of 1210 nm diameter with an incident laser of 8.6 × 108 W/m2. The difference is largely due to the stress inside the silicon caused by the laser heating. To explore the mechanism of heating at the sub-wavelength scale, high-fidelity simulations are conducted on the enhanced electric and temperature fields. Modeling results agree with experiment qualitatively, and discussions are provided about the reasons for their discrepancy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bar, S. Rubin, R. W. Cutts, T. N. Taylor, and T. A. Zawodzinski., “Dendrimer-modified silicon oxide surfaces as platforms for the deposition of gold and silver colloid monolayers: preparation method, characterization, and correlation between microstructure and optical properties,” Langmuir 12(5), 1172–1179 (1996).
    [CrossRef]
  2. Y. Endo, M. Ono, T. Yamada, H. Kawamura, K. Kobara, and T. Kawamura, “A study of antireflective and antistatic coating with ultrafine particles,” Adv. Powder Technol. 7(2), 131–140 (1996).
    [CrossRef]
  3. J. V. Sanders, “Colour of precious opal,” Nature 204(4964), 1151–1153 (1964).
    [CrossRef]
  4. V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7619–7625 (1997).
    [CrossRef]
  5. J. S. Park, S. O. Meade, E. Segal, and M. J. Sailor, “Porous silicon-based polymer replicas formed by bead patterning,” Physica Status Solidi A 204(5), 1383–1387 (2007).
    [CrossRef]
  6. V. M. Shelekhina, O. A. Prokhorov, P. A. Vityaz, A. P. Stupak, S. V. Gaponenko, and N. V. Gaponenko, “Towards 3D photonic crystals,” Synth. Met. 124(1), 137–139 (2001).
    [CrossRef]
  7. F. Xia and L. Jiang, “Bio−inspired, smart, multiscale interfacial materials,” Adv. Mater. (Deerfield Beach Fla.) 20(15), 2842–2858 (2008).
    [CrossRef]
  8. M. X. Yang, D. H. Gracias, P. W. Jacobs, and G. A. Somorjai, “Lithographic fabrication of model systems in heterogeneous catalysis and surface science studies,” Langmuir 14(6), 1458–1464 (1998).
    [CrossRef]
  9. M. Aminuzzaman, A. Watanabe, and T. Miyashita, “Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film,” J. Nanopart. Res. 12(3), 931–938 (2010).
    [CrossRef]
  10. H. W. Deckman, J. H. Dunsmuir, S. Garoff, J. A. Mchenry, and D. G. Peiffer, “Macromolecular self-organized assemblies,” J. Vac. Sci. Technol. B 6(1), 333–336 (1988).
    [CrossRef]
  11. S. Hayashi, Y. Kumamoto, T. Suzuki, and T. Hirai, “Imaging by polystyrene latex-particles,” J. Colloid Interface Sci. 144(2), 538–547 (1991).
    [CrossRef]
  12. D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
    [CrossRef]
  13. L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, J. Shi, and J. C. Li, “Fabrication of hemispherical cavity arrays on silicon substrates using laser-assisted nanoimprinting of self-assembled particles,” Nanotechnology 15(3), 333–336 (2004).
    [CrossRef]
  14. L. P. Li, Y. F. Lu, D. W. Doerr, and D. R. Alexander, “Laser-assisted nanopatterning of aluminium using particle-induced near-field optical enhancement and nanoimprinting,” Nanotechnology 15(11), 1655–1660 (2004).
    [CrossRef]
  15. L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, and X. Y. Chen, “Parametric investigation of laser nanoimprinting of hemispherical cavity arrays,” J. Appl. Phys. 96(9), 5144–5151 (2004).
    [CrossRef]
  16. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
    [CrossRef] [PubMed]
  17. K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
    [CrossRef]
  18. S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
    [CrossRef]
  19. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
    [CrossRef]
  20. S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
    [CrossRef]
  21. H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
    [CrossRef] [PubMed]
  22. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, Cambridge, 1999).
  23. G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Ann. Phys.  25, 377–445 (1908).
  24. B. S. Luk'yanchuk, Y. W. Zheng, and Y. F. Lu, “Laser cleaning of solid surface: Optical resonance and near-field effects,” High-Power Laser Ablation III. 4065, 576–587 (2000).
  25. M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
    [CrossRef]
  26. J. Menéndez and M. Cardona, “Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α-Sn: Anharmonic effects,” Phys. Rev. B 29(4), 2051–2059 (1984).
    [CrossRef]
  27. M. Konstantinović, S. Bersier, X. Wang, M. Hayne, P. Lievens, R. Silverans, and V. Moshchalkov, “Raman scattering in cluster-deposited nanogranular silicon films,” Phys. Rev. B 66(16), 161311 (2002).
    [CrossRef]
  28. Z. Su, J. Sha, G. Pan, J. Liu, D. Yang, C. Dickinson, and W. Zhou, “Temperature-dependent Raman scattering of silicon nanowires,” J. Phys. Chem. B 110(3), 1229–1234 (2006).
    [CrossRef] [PubMed]
  29. T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1(2), 638–642 (1970).
    [CrossRef]
  30. Y. N. Yue, X. W. Chen, and X. W. Wang, “Noncontact sub-10 nm temperature measurement in near-field laser heating,” ACS Nano 5(6), 4466–4475 (2011).
    [CrossRef] [PubMed]
  31. Y. N. Yue, J. C. Zhang, and X. W. Wang, “Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC,” Small 7(23), 3324–3333 (2011).
    [CrossRef] [PubMed]
  32. R. K. Iler, “Adhesion of submicron silica particles on glass,” J. Colloid Interface Sci. 38(2), 496–501 (1972).
    [CrossRef]
  33. U. C. Fischer and H. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19(4), 881–885 (1981).
    [CrossRef]
  34. H. W. Deckman, “Natural lithography,” Appl. Phys. Lett. 41(4), 377–379 (1982).
    [CrossRef]
  35. A. S. Dimitrov, T. Miwa, and K. Nagayama, “A comparison between the optical properties of amorphous and crystalline monolayers of silica particles,” Langmuir 15(16), 5257–5264 (1999).
    [CrossRef]
  36. N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of 2-dimensional crystals from latex-particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
    [CrossRef]
  37. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
    [CrossRef]
  38. R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a 2-dimensional, ordered array of small latex-particles,” Langmuir 11(9), 3333–3336 (1995).
    [CrossRef]
  39. J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
    [CrossRef]
  40. V. Ng, Y. Lee, B. Chen, and A. Adeyeye, “Nanostructure array fabrication with temperature-controlled self-assembly techniques,” Nanotechnology 13(5), 554–558 (2002).
    [CrossRef]
  41. Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
    [CrossRef]
  42. B. G. Prevo and O. D. Velev, “Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions,” Langmuir 20(6), 2099–2107 (2004).
    [CrossRef] [PubMed]
  43. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  44. J. Huang, A. R. Tao, S. Connor, R. He, and P. Yang, “A general method for assembling single colloidal particle lines,” Nano Lett. 6(3), 524–529 (2006).
    [CrossRef] [PubMed]
  45. C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
    [CrossRef]
  46. S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10(8), 2989–2994 (2010).
    [CrossRef] [PubMed]
  47. A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir 12(5), 1303–1311 (1996).
    [CrossRef]
  48. G. Doerk, C. Carraro, and R. Maboudian, “Temperature dependence of Raman spectra for individual silicon nanowires,” Phys. Rev. B 80(7), 073306 (2009).
    [CrossRef]
  49. S. Khachadorian, H. Scheel, A. Colli, A. Vierck, and C. Thomsen, “Temperature dependence of first- and second-order Raman scattering in silicon nanowires,” Physica Status Solidi B 247(11-12), 3084–3088 (2010).
    [CrossRef]
  50. R. Tsu and J. G. Hernandez, “Temperature dependence of silicon Raman lines,” Appl. Phys. Lett. 41(11), 1016–1018 (1982).
    [CrossRef]
  51. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
    [CrossRef]
  52. T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited article: simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
    [CrossRef] [PubMed]
  53. P. G. Klemens, “Anharmonic decay of optical phonons,” Phys. Rev. 148(2), 845–848 (1966).
    [CrossRef]
  54. H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B Condens. Matter 43(3), 2299–2304 (1991).
    [CrossRef] [PubMed]
  55. Y. Chen, B. Peng, and B. Wang, “Raman spectra and temperature-dependent raman scattering of silicon nanowires,” J. Phys. Chem. C 111(16), 5855–5858 (2007).
    [CrossRef]
  56. M. R. Abel, S. Graham, J. R. Serrano, S. P. Kearney, and L. M. Phinney, “Raman thermometry of polysilicon microelectromechanical systems in the presence of an evolving stress,” J. Heat Trans. 129(3), 329–334 (2007).
    [CrossRef]
  57. M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008).
    [CrossRef]
  58. J. Weaver and H. Frederikse, CRC Handbook of Chemistry and Physics (CRC Press, 2001).

2011 (2)

Y. N. Yue, X. W. Chen, and X. W. Wang, “Noncontact sub-10 nm temperature measurement in near-field laser heating,” ACS Nano 5(6), 4466–4475 (2011).
[CrossRef] [PubMed]

Y. N. Yue, J. C. Zhang, and X. W. Wang, “Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC,” Small 7(23), 3324–3333 (2011).
[CrossRef] [PubMed]

2010 (4)

M. Aminuzzaman, A. Watanabe, and T. Miyashita, “Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film,” J. Nanopart. Res. 12(3), 931–938 (2010).
[CrossRef]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10(8), 2989–2994 (2010).
[CrossRef] [PubMed]

S. Khachadorian, H. Scheel, A. Colli, A. Vierck, and C. Thomsen, “Temperature dependence of first- and second-order Raman scattering in silicon nanowires,” Physica Status Solidi B 247(11-12), 3084–3088 (2010).
[CrossRef]

2009 (2)

G. Doerk, C. Carraro, and R. Maboudian, “Temperature dependence of Raman spectra for individual silicon nanowires,” Phys. Rev. B 80(7), 073306 (2009).
[CrossRef]

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

2008 (4)

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[CrossRef]

M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008).
[CrossRef]

F. Xia and L. Jiang, “Bio−inspired, smart, multiscale interfacial materials,” Adv. Mater. (Deerfield Beach Fla.) 20(15), 2842–2858 (2008).
[CrossRef]

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[CrossRef] [PubMed]

2007 (4)

J. S. Park, S. O. Meade, E. Segal, and M. J. Sailor, “Porous silicon-based polymer replicas formed by bead patterning,” Physica Status Solidi A 204(5), 1383–1387 (2007).
[CrossRef]

Y. Chen, B. Peng, and B. Wang, “Raman spectra and temperature-dependent raman scattering of silicon nanowires,” J. Phys. Chem. C 111(16), 5855–5858 (2007).
[CrossRef]

M. R. Abel, S. Graham, J. R. Serrano, S. P. Kearney, and L. M. Phinney, “Raman thermometry of polysilicon microelectromechanical systems in the presence of an evolving stress,” J. Heat Trans. 129(3), 329–334 (2007).
[CrossRef]

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited article: simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[CrossRef] [PubMed]

2006 (2)

J. Huang, A. R. Tao, S. Connor, R. He, and P. Yang, “A general method for assembling single colloidal particle lines,” Nano Lett. 6(3), 524–529 (2006).
[CrossRef] [PubMed]

Z. Su, J. Sha, G. Pan, J. Liu, D. Yang, C. Dickinson, and W. Zhou, “Temperature-dependent Raman scattering of silicon nanowires,” J. Phys. Chem. B 110(3), 1229–1234 (2006).
[CrossRef] [PubMed]

2004 (4)

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, J. Shi, and J. C. Li, “Fabrication of hemispherical cavity arrays on silicon substrates using laser-assisted nanoimprinting of self-assembled particles,” Nanotechnology 15(3), 333–336 (2004).
[CrossRef]

L. P. Li, Y. F. Lu, D. W. Doerr, and D. R. Alexander, “Laser-assisted nanopatterning of aluminium using particle-induced near-field optical enhancement and nanoimprinting,” Nanotechnology 15(11), 1655–1660 (2004).
[CrossRef]

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, and X. Y. Chen, “Parametric investigation of laser nanoimprinting of hemispherical cavity arrays,” J. Appl. Phys. 96(9), 5144–5151 (2004).
[CrossRef]

B. G. Prevo and O. D. Velev, “Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions,” Langmuir 20(6), 2099–2107 (2004).
[CrossRef] [PubMed]

2002 (4)

V. Ng, Y. Lee, B. Chen, and A. Adeyeye, “Nanostructure array fabrication with temperature-controlled self-assembly techniques,” Nanotechnology 13(5), 554–558 (2002).
[CrossRef]

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[CrossRef]

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

M. Konstantinović, S. Bersier, X. Wang, M. Hayne, P. Lievens, R. Silverans, and V. Moshchalkov, “Raman scattering in cluster-deposited nanogranular silicon films,” Phys. Rev. B 66(16), 161311 (2002).
[CrossRef]

2001 (2)

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[CrossRef] [PubMed]

V. M. Shelekhina, O. A. Prokhorov, P. A. Vityaz, A. P. Stupak, S. V. Gaponenko, and N. V. Gaponenko, “Towards 3D photonic crystals,” Synth. Met. 124(1), 137–139 (2001).
[CrossRef]

2000 (1)

B. S. Luk'yanchuk, Y. W. Zheng, and Y. F. Lu, “Laser cleaning of solid surface: Optical resonance and near-field effects,” High-Power Laser Ablation III. 4065, 576–587 (2000).

1999 (3)

D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
[CrossRef]

A. S. Dimitrov, T. Miwa, and K. Nagayama, “A comparison between the optical properties of amorphous and crystalline monolayers of silica particles,” Langmuir 15(16), 5257–5264 (1999).
[CrossRef]

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

1998 (1)

M. X. Yang, D. H. Gracias, P. W. Jacobs, and G. A. Somorjai, “Lithographic fabrication of model systems in heterogeneous catalysis and surface science studies,” Langmuir 14(6), 1458–1464 (1998).
[CrossRef]

1997 (3)

S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[CrossRef]

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7619–7625 (1997).
[CrossRef]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

1996 (4)

A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir 12(5), 1303–1311 (1996).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[CrossRef]

G. Bar, S. Rubin, R. W. Cutts, T. N. Taylor, and T. A. Zawodzinski., “Dendrimer-modified silicon oxide surfaces as platforms for the deposition of gold and silver colloid monolayers: preparation method, characterization, and correlation between microstructure and optical properties,” Langmuir 12(5), 1172–1179 (1996).
[CrossRef]

Y. Endo, M. Ono, T. Yamada, H. Kawamura, K. Kobara, and T. Kawamura, “A study of antireflective and antistatic coating with ultrafine particles,” Adv. Powder Technol. 7(2), 131–140 (1996).
[CrossRef]

1995 (2)

R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a 2-dimensional, ordered array of small latex-particles,” Langmuir 11(9), 3333–3336 (1995).
[CrossRef]

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[CrossRef]

1992 (1)

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of 2-dimensional crystals from latex-particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[CrossRef]

1991 (2)

S. Hayashi, Y. Kumamoto, T. Suzuki, and T. Hirai, “Imaging by polystyrene latex-particles,” J. Colloid Interface Sci. 144(2), 538–547 (1991).
[CrossRef]

H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B Condens. Matter 43(3), 2299–2304 (1991).
[CrossRef] [PubMed]

1988 (1)

H. W. Deckman, J. H. Dunsmuir, S. Garoff, J. A. Mchenry, and D. G. Peiffer, “Macromolecular self-organized assemblies,” J. Vac. Sci. Technol. B 6(1), 333–336 (1988).
[CrossRef]

1984 (1)

J. Menéndez and M. Cardona, “Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α-Sn: Anharmonic effects,” Phys. Rev. B 29(4), 2051–2059 (1984).
[CrossRef]

1983 (1)

M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[CrossRef]

1982 (2)

R. Tsu and J. G. Hernandez, “Temperature dependence of silicon Raman lines,” Appl. Phys. Lett. 41(11), 1016–1018 (1982).
[CrossRef]

H. W. Deckman, “Natural lithography,” Appl. Phys. Lett. 41(4), 377–379 (1982).
[CrossRef]

1981 (1)

U. C. Fischer and H. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19(4), 881–885 (1981).
[CrossRef]

1972 (1)

R. K. Iler, “Adhesion of submicron silica particles on glass,” J. Colloid Interface Sci. 38(2), 496–501 (1972).
[CrossRef]

1970 (1)

T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1(2), 638–642 (1970).
[CrossRef]

1966 (1)

P. G. Klemens, “Anharmonic decay of optical phonons,” Phys. Rev. 148(2), 845–848 (1966).
[CrossRef]

1964 (1)

J. V. Sanders, “Colour of precious opal,” Nature 204(4964), 1151–1153 (1964).
[CrossRef]

1908 (1)

G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Ann. Phys.  25, 377–445 (1908).

Abel, M. R.

M. R. Abel, S. Graham, J. R. Serrano, S. P. Kearney, and L. M. Phinney, “Raman thermometry of polysilicon microelectromechanical systems in the presence of an evolving stress,” J. Heat Trans. 129(3), 329–334 (2007).
[CrossRef]

Adeyeye, A.

V. Ng, Y. Lee, B. Chen, and A. Adeyeye, “Nanostructure array fabrication with temperature-controlled self-assembly techniques,” Nanotechnology 13(5), 554–558 (2002).
[CrossRef]

Aggarwal, R.

T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1(2), 638–642 (1970).
[CrossRef]

Alexander, D. R.

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, J. Shi, and J. C. Li, “Fabrication of hemispherical cavity arrays on silicon substrates using laser-assisted nanoimprinting of self-assembled particles,” Nanotechnology 15(3), 333–336 (2004).
[CrossRef]

L. P. Li, Y. F. Lu, D. W. Doerr, and D. R. Alexander, “Laser-assisted nanopatterning of aluminium using particle-induced near-field optical enhancement and nanoimprinting,” Nanotechnology 15(11), 1655–1660 (2004).
[CrossRef]

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, and X. Y. Chen, “Parametric investigation of laser nanoimprinting of hemispherical cavity arrays,” J. Appl. Phys. 96(9), 5144–5151 (2004).
[CrossRef]

Aminuzzaman, M.

M. Aminuzzaman, A. Watanabe, and T. Miyashita, “Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film,” J. Nanopart. Res. 12(3), 931–938 (2010).
[CrossRef]

Arnold, C. B.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[CrossRef] [PubMed]

Balkanski, M.

M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[CrossRef]

Bar, G.

G. Bar, S. Rubin, R. W. Cutts, T. N. Taylor, and T. A. Zawodzinski., “Dendrimer-modified silicon oxide surfaces as platforms for the deposition of gold and silver colloid monolayers: preparation method, characterization, and correlation between microstructure and optical properties,” Langmuir 12(5), 1172–1179 (1996).
[CrossRef]

Bauer, M.

M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008).
[CrossRef]

Bäuerle, D.

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[CrossRef]

Beechem, T.

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited article: simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[CrossRef] [PubMed]

Bersier, S.

M. Konstantinović, S. Bersier, X. Wang, M. Hayne, P. Lievens, R. Silverans, and V. Moshchalkov, “Raman scattering in cluster-deposited nanogranular silicon films,” Phys. Rev. B 66(16), 161311 (2002).
[CrossRef]

Bertsch, M.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[CrossRef] [PubMed]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Bogomolov, V. N.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7619–7625 (1997).
[CrossRef]

Boneberg, J.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[CrossRef] [PubMed]

Cardona, M.

J. Menéndez and M. Cardona, “Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α-Sn: Anharmonic effects,” Phys. Rev. B 29(4), 2051–2059 (1984).
[CrossRef]

Carraro, C.

G. Doerk, C. Carraro, and R. Maboudian, “Temperature dependence of Raman spectra for individual silicon nanowires,” Phys. Rev. B 80(7), 073306 (2009).
[CrossRef]

Chen, B.

V. Ng, Y. Lee, B. Chen, and A. Adeyeye, “Nanostructure array fabrication with temperature-controlled self-assembly techniques,” Nanotechnology 13(5), 554–558 (2002).
[CrossRef]

Chen, L.

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

Chen, X. W.

Y. N. Yue, X. W. Chen, and X. W. Wang, “Noncontact sub-10 nm temperature measurement in near-field laser heating,” ACS Nano 5(6), 4466–4475 (2011).
[CrossRef] [PubMed]

Chen, X. Y.

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, and X. Y. Chen, “Parametric investigation of laser nanoimprinting of hemispherical cavity arrays,” J. Appl. Phys. 96(9), 5144–5151 (2004).
[CrossRef]

Chen, Y.

Y. Chen, B. Peng, and B. Wang, “Raman spectra and temperature-dependent raman scattering of silicon nanowires,” J. Phys. Chem. C 111(16), 5855–5858 (2007).
[CrossRef]

Choi, J. W.

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10(8), 2989–2994 (2010).
[CrossRef] [PubMed]

Chong, T. C.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[CrossRef]

Colli, A.

S. Khachadorian, H. Scheel, A. Colli, A. Vierck, and C. Thomsen, “Temperature dependence of first- and second-order Raman scattering in silicon nanowires,” Physica Status Solidi B 247(11-12), 3084–3088 (2010).
[CrossRef]

Connor, S.

J. Huang, A. R. Tao, S. Connor, R. He, and P. Yang, “A general method for assembling single colloidal particle lines,” Nano Lett. 6(3), 524–529 (2006).
[CrossRef] [PubMed]

Connor, S. T.

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[CrossRef]

Cui, Y.

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10(8), 2989–2994 (2010).
[CrossRef] [PubMed]

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[CrossRef]

Cutts, R. W.

G. Bar, S. Rubin, R. W. Cutts, T. N. Taylor, and T. A. Zawodzinski., “Dendrimer-modified silicon oxide surfaces as platforms for the deposition of gold and silver colloid monolayers: preparation method, characterization, and correlation between microstructure and optical properties,” Langmuir 12(5), 1172–1179 (1996).
[CrossRef]

Deckman, H. W.

H. W. Deckman, J. H. Dunsmuir, S. Garoff, J. A. Mchenry, and D. G. Peiffer, “Macromolecular self-organized assemblies,” J. Vac. Sci. Technol. B 6(1), 333–336 (1988).
[CrossRef]

H. W. Deckman, “Natural lithography,” Appl. Phys. Lett. 41(4), 377–379 (1982).
[CrossRef]

Denk, R.

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[CrossRef]

Denkov, N.

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of 2-dimensional crystals from latex-particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[CrossRef]

Dickinson, C.

Z. Su, J. Sha, G. Pan, J. Liu, D. Yang, C. Dickinson, and W. Zhou, “Temperature-dependent Raman scattering of silicon nanowires,” J. Phys. Chem. B 110(3), 1229–1234 (2006).
[CrossRef] [PubMed]

Dimitrov, A. S.

A. S. Dimitrov, T. Miwa, and K. Nagayama, “A comparison between the optical properties of amorphous and crystalline monolayers of silica particles,” Langmuir 15(16), 5257–5264 (1999).
[CrossRef]

A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir 12(5), 1303–1311 (1996).
[CrossRef]

Doerk, G.

G. Doerk, C. Carraro, and R. Maboudian, “Temperature dependence of Raman spectra for individual silicon nanowires,” Phys. Rev. B 80(7), 073306 (2009).
[CrossRef]

Doerr, D. W.

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, and X. Y. Chen, “Parametric investigation of laser nanoimprinting of hemispherical cavity arrays,” J. Appl. Phys. 96(9), 5144–5151 (2004).
[CrossRef]

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, J. Shi, and J. C. Li, “Fabrication of hemispherical cavity arrays on silicon substrates using laser-assisted nanoimprinting of self-assembled particles,” Nanotechnology 15(3), 333–336 (2004).
[CrossRef]

L. P. Li, Y. F. Lu, D. W. Doerr, and D. R. Alexander, “Laser-assisted nanopatterning of aluminium using particle-induced near-field optical enhancement and nanoimprinting,” Nanotechnology 15(11), 1655–1660 (2004).
[CrossRef]

Dunsmuir, J. H.

H. W. Deckman, J. H. Dunsmuir, S. Garoff, J. A. Mchenry, and D. G. Peiffer, “Macromolecular self-organized assemblies,” J. Vac. Sci. Technol. B 6(1), 333–336 (1988).
[CrossRef]

Duval, M. L.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

Endo, Y.

Y. Endo, M. Ono, T. Yamada, H. Kawamura, K. Kobara, and T. Kawamura, “A study of antireflective and antistatic coating with ultrafine particles,” Adv. Powder Technol. 7(2), 131–140 (1996).
[CrossRef]

Fischer, U. C.

U. C. Fischer and H. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19(4), 881–885 (1981).
[CrossRef]

Fukuda, H.

R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a 2-dimensional, ordered array of small latex-particles,” Langmuir 11(9), 3333–3336 (1995).
[CrossRef]

Gaponenko, N. V.

V. M. Shelekhina, O. A. Prokhorov, P. A. Vityaz, A. P. Stupak, S. V. Gaponenko, and N. V. Gaponenko, “Towards 3D photonic crystals,” Synth. Met. 124(1), 137–139 (2001).
[CrossRef]

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7619–7625 (1997).
[CrossRef]

Gaponenko, S. V.

V. M. Shelekhina, O. A. Prokhorov, P. A. Vityaz, A. P. Stupak, S. V. Gaponenko, and N. V. Gaponenko, “Towards 3D photonic crystals,” Synth. Met. 124(1), 137–139 (2001).
[CrossRef]

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7619–7625 (1997).
[CrossRef]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10(8), 2989–2994 (2010).
[CrossRef] [PubMed]

Garoff, S.

H. W. Deckman, J. H. Dunsmuir, S. Garoff, J. A. Mchenry, and D. G. Peiffer, “Macromolecular self-organized assemblies,” J. Vac. Sci. Technol. B 6(1), 333–336 (1988).
[CrossRef]

Germanenko, I. N.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7619–7625 (1997).
[CrossRef]

Gigler, A. M.

M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008).
[CrossRef]

Gracias, D. H.

M. X. Yang, D. H. Gracias, P. W. Jacobs, and G. A. Somorjai, “Lithographic fabrication of model systems in heterogeneous catalysis and surface science studies,” Langmuir 14(6), 1458–1464 (1998).
[CrossRef]

Graham, S.

M. R. Abel, S. Graham, J. R. Serrano, S. P. Kearney, and L. M. Phinney, “Raman thermometry of polysilicon microelectromechanical systems in the presence of an evolving stress,” J. Heat Trans. 129(3), 329–334 (2007).
[CrossRef]

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited article: simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[CrossRef] [PubMed]

Guo, L. J.

S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[CrossRef]

Guo, Q.

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

Halfpenny, D. R.

D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
[CrossRef]

Haro, E.

M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[CrossRef]

Hart, T.

T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1(2), 638–642 (1970).
[CrossRef]

Hayashi, S.

S. Hayashi, Y. Kumamoto, T. Suzuki, and T. Hirai, “Imaging by polystyrene latex-particles,” J. Colloid Interface Sci. 144(2), 538–547 (1991).
[CrossRef]

Hayne, M.

M. Konstantinović, S. Bersier, X. Wang, M. Hayne, P. Lievens, R. Silverans, and V. Moshchalkov, “Raman scattering in cluster-deposited nanogranular silicon films,” Phys. Rev. B 66(16), 161311 (2002).
[CrossRef]

He, R.

J. Huang, A. R. Tao, S. Connor, R. He, and P. Yang, “A general method for assembling single colloidal particle lines,” Nano Lett. 6(3), 524–529 (2006).
[CrossRef] [PubMed]

Herman, I. P.

H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B Condens. Matter 43(3), 2299–2304 (1991).
[CrossRef] [PubMed]

Hernandez, J. G.

R. Tsu and J. G. Hernandez, “Temperature dependence of silicon Raman lines,” Appl. Phys. Lett. 41(11), 1016–1018 (1982).
[CrossRef]

Hirai, T.

S. Hayashi, Y. Kumamoto, T. Suzuki, and T. Hirai, “Imaging by polystyrene latex-particles,” J. Colloid Interface Sci. 144(2), 538–547 (1991).
[CrossRef]

Hong, M. H.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Hsu, C. M.

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[CrossRef]

Hu, L.

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10(8), 2989–2994 (2010).
[CrossRef] [PubMed]

Huang, J.

J. Huang, A. R. Tao, S. Connor, R. He, and P. Yang, “A general method for assembling single colloidal particle lines,” Nano Lett. 6(3), 524–529 (2006).
[CrossRef] [PubMed]

Huang, S. M.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Hulteen, J. C.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[CrossRef]

Iler, R. K.

R. K. Iler, “Adhesion of submicron silica particles on glass,” J. Colloid Interface Sci. 38(2), 496–501 (1972).
[CrossRef]

Ivanov, I.

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of 2-dimensional crystals from latex-particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[CrossRef]

Jacobs, P. W.

M. X. Yang, D. H. Gracias, P. W. Jacobs, and G. A. Somorjai, “Lithographic fabrication of model systems in heterogeneous catalysis and surface science studies,” Langmuir 14(6), 1458–1464 (1998).
[CrossRef]

Jensen, T. R.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

Jeong, S.

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10(8), 2989–2994 (2010).
[CrossRef] [PubMed]

Jiang, L.

F. Xia and L. Jiang, “Bio−inspired, smart, multiscale interfacial materials,” Adv. Mater. (Deerfield Beach Fla.) 20(15), 2842–2858 (2008).
[CrossRef]

Kane, D. M.

D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
[CrossRef]

Kapitonov, A. M.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7619–7625 (1997).
[CrossRef]

Kawamura, H.

Y. Endo, M. Ono, T. Yamada, H. Kawamura, K. Kobara, and T. Kawamura, “A study of antireflective and antistatic coating with ultrafine particles,” Adv. Powder Technol. 7(2), 131–140 (1996).
[CrossRef]

Kawamura, T.

Y. Endo, M. Ono, T. Yamada, H. Kawamura, K. Kobara, and T. Kawamura, “A study of antireflective and antistatic coating with ultrafine particles,” Adv. Powder Technol. 7(2), 131–140 (1996).
[CrossRef]

Kearney, S. P.

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited article: simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[CrossRef] [PubMed]

M. R. Abel, S. Graham, J. R. Serrano, S. P. Kearney, and L. M. Phinney, “Raman thermometry of polysilicon microelectromechanical systems in the presence of an evolving stress,” J. Heat Trans. 129(3), 329–334 (2007).
[CrossRef]

Khachadorian, S.

S. Khachadorian, H. Scheel, A. Colli, A. Vierck, and C. Thomsen, “Temperature dependence of first- and second-order Raman scattering in silicon nanowires,” Physica Status Solidi B 247(11-12), 3084–3088 (2010).
[CrossRef]

Klemens, P. G.

P. G. Klemens, “Anharmonic decay of optical phonons,” Phys. Rev. 148(2), 845–848 (1966).
[CrossRef]

Kobara, K.

Y. Endo, M. Ono, T. Yamada, H. Kawamura, K. Kobara, and T. Kawamura, “A study of antireflective and antistatic coating with ultrafine particles,” Adv. Powder Technol. 7(2), 131–140 (1996).
[CrossRef]

Konstantinovic, M.

M. Konstantinović, S. Bersier, X. Wang, M. Hayne, P. Lievens, R. Silverans, and V. Moshchalkov, “Raman scattering in cluster-deposited nanogranular silicon films,” Phys. Rev. B 66(16), 161311 (2002).
[CrossRef]

Kralchevski, P.

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of 2-dimensional crystals from latex-particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[CrossRef]

Kumamoto, Y.

S. Hayashi, Y. Kumamoto, T. Suzuki, and T. Hirai, “Imaging by polystyrene latex-particles,” J. Colloid Interface Sci. 144(2), 538–547 (1991).
[CrossRef]

Lax, B.

T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1(2), 638–642 (1970).
[CrossRef]

Lee, H. R.

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10(8), 2989–2994 (2010).
[CrossRef] [PubMed]

Lee, Y.

V. Ng, Y. Lee, B. Chen, and A. Adeyeye, “Nanostructure array fabrication with temperature-controlled self-assembly techniques,” Nanotechnology 13(5), 554–558 (2002).
[CrossRef]

Leiderer, P.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[CrossRef] [PubMed]

Li, J. C.

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, J. Shi, and J. C. Li, “Fabrication of hemispherical cavity arrays on silicon substrates using laser-assisted nanoimprinting of self-assembled particles,” Nanotechnology 15(3), 333–336 (2004).
[CrossRef]

Li, L. P.

L. P. Li, Y. F. Lu, D. W. Doerr, and D. R. Alexander, “Laser-assisted nanopatterning of aluminium using particle-induced near-field optical enhancement and nanoimprinting,” Nanotechnology 15(11), 1655–1660 (2004).
[CrossRef]

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, and X. Y. Chen, “Parametric investigation of laser nanoimprinting of hemispherical cavity arrays,” J. Appl. Phys. 96(9), 5144–5151 (2004).
[CrossRef]

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, J. Shi, and J. C. Li, “Fabrication of hemispherical cavity arrays on silicon substrates using laser-assisted nanoimprinting of self-assembled particles,” Nanotechnology 15(3), 333–336 (2004).
[CrossRef]

Lievens, P.

M. Konstantinović, S. Bersier, X. Wang, M. Hayne, P. Lievens, R. Silverans, and V. Moshchalkov, “Raman scattering in cluster-deposited nanogranular silicon films,” Phys. Rev. B 66(16), 161311 (2002).
[CrossRef]

Liu, J.

Z. Su, J. Sha, G. Pan, J. Liu, D. Yang, C. Dickinson, and W. Zhou, “Temperature-dependent Raman scattering of silicon nanowires,” J. Phys. Chem. B 110(3), 1229–1234 (2006).
[CrossRef] [PubMed]

Lu, Y. F.

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, J. Shi, and J. C. Li, “Fabrication of hemispherical cavity arrays on silicon substrates using laser-assisted nanoimprinting of self-assembled particles,” Nanotechnology 15(3), 333–336 (2004).
[CrossRef]

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, and X. Y. Chen, “Parametric investigation of laser nanoimprinting of hemispherical cavity arrays,” J. Appl. Phys. 96(9), 5144–5151 (2004).
[CrossRef]

L. P. Li, Y. F. Lu, D. W. Doerr, and D. R. Alexander, “Laser-assisted nanopatterning of aluminium using particle-induced near-field optical enhancement and nanoimprinting,” Nanotechnology 15(11), 1655–1660 (2004).
[CrossRef]

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

B. S. Luk'yanchuk, Y. W. Zheng, and Y. F. Lu, “Laser cleaning of solid surface: Optical resonance and near-field effects,” High-Power Laser Ablation III. 4065, 576–587 (2000).

Luk’yanchuk, B. S.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Luk'yanchuk, B. S.

B. S. Luk'yanchuk, Y. W. Zheng, and Y. F. Lu, “Laser cleaning of solid surface: Optical resonance and near-field effects,” High-Power Laser Ablation III. 4065, 576–587 (2000).

Maboudian, R.

G. Doerk, C. Carraro, and R. Maboudian, “Temperature dependence of Raman spectra for individual silicon nanowires,” Phys. Rev. B 80(7), 073306 (2009).
[CrossRef]

Mchenry, J. A.

H. W. Deckman, J. H. Dunsmuir, S. Garoff, J. A. Mchenry, and D. G. Peiffer, “Macromolecular self-organized assemblies,” J. Vac. Sci. Technol. B 6(1), 333–336 (1988).
[CrossRef]

McLeod, E.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[CrossRef] [PubMed]

Meade, S. O.

J. S. Park, S. O. Meade, E. Segal, and M. J. Sailor, “Porous silicon-based polymer replicas formed by bead patterning,” Physica Status Solidi A 204(5), 1383–1387 (2007).
[CrossRef]

Menéndez, J.

J. Menéndez and M. Cardona, “Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α-Sn: Anharmonic effects,” Phys. Rev. B 29(4), 2051–2059 (1984).
[CrossRef]

Micheletto, R.

R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a 2-dimensional, ordered array of small latex-particles,” Langmuir 11(9), 3333–3336 (1995).
[CrossRef]

Mie, G.

G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Ann. Phys.  25, 377–445 (1908).

Miwa, T.

A. S. Dimitrov, T. Miwa, and K. Nagayama, “A comparison between the optical properties of amorphous and crystalline monolayers of silica particles,” Langmuir 15(16), 5257–5264 (1999).
[CrossRef]

Miyashita, T.

M. Aminuzzaman, A. Watanabe, and T. Miyashita, “Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film,” J. Nanopart. Res. 12(3), 931–938 (2010).
[CrossRef]

Mosbacher, M.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[CrossRef] [PubMed]

Moshchalkov, V.

M. Konstantinović, S. Bersier, X. Wang, M. Hayne, P. Lievens, R. Silverans, and V. Moshchalkov, “Raman scattering in cluster-deposited nanogranular silicon films,” Phys. Rev. B 66(16), 161311 (2002).
[CrossRef]

Münzer, H. J.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[CrossRef] [PubMed]

Nagayama, K.

A. S. Dimitrov, T. Miwa, and K. Nagayama, “A comparison between the optical properties of amorphous and crystalline monolayers of silica particles,” Langmuir 15(16), 5257–5264 (1999).
[CrossRef]

A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir 12(5), 1303–1311 (1996).
[CrossRef]

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of 2-dimensional crystals from latex-particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[CrossRef]

Ng, V.

V. Ng, Y. Lee, B. Chen, and A. Adeyeye, “Nanostructure array fabrication with temperature-controlled self-assembly techniques,” Nanotechnology 13(5), 554–558 (2002).
[CrossRef]

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Ohtsu, M.

R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a 2-dimensional, ordered array of small latex-particles,” Langmuir 11(9), 3333–3336 (1995).
[CrossRef]

Ono, M.

Y. Endo, M. Ono, T. Yamada, H. Kawamura, K. Kobara, and T. Kawamura, “A study of antireflective and antistatic coating with ultrafine particles,” Adv. Powder Technol. 7(2), 131–140 (1996).
[CrossRef]

Pan, G.

Z. Su, J. Sha, G. Pan, J. Liu, D. Yang, C. Dickinson, and W. Zhou, “Temperature-dependent Raman scattering of silicon nanowires,” J. Phys. Chem. B 110(3), 1229–1234 (2006).
[CrossRef] [PubMed]

Park, J. S.

J. S. Park, S. O. Meade, E. Segal, and M. J. Sailor, “Porous silicon-based polymer replicas formed by bead patterning,” Physica Status Solidi A 204(5), 1383–1387 (2007).
[CrossRef]

Peiffer, D. G.

H. W. Deckman, J. H. Dunsmuir, S. Garoff, J. A. Mchenry, and D. G. Peiffer, “Macromolecular self-organized assemblies,” J. Vac. Sci. Technol. B 6(1), 333–336 (1988).
[CrossRef]

Peng, B.

Y. Chen, B. Peng, and B. Wang, “Raman spectra and temperature-dependent raman scattering of silicon nanowires,” J. Phys. Chem. C 111(16), 5855–5858 (2007).
[CrossRef]

Petrov, E. P.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7619–7625 (1997).
[CrossRef]

Phinney, L. M.

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited article: simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[CrossRef] [PubMed]

M. R. Abel, S. Graham, J. R. Serrano, S. P. Kearney, and L. M. Phinney, “Raman thermometry of polysilicon microelectromechanical systems in the presence of an evolving stress,” J. Heat Trans. 129(3), 329–334 (2007).
[CrossRef]

Piglmayer, K.

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[CrossRef]

Ponyavina, A. N.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7619–7625 (1997).
[CrossRef]

Prevo, B. G.

B. G. Prevo and O. D. Velev, “Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions,” Langmuir 20(6), 2099–2107 (2004).
[CrossRef] [PubMed]

Prokhorov, O. A.

V. M. Shelekhina, O. A. Prokhorov, P. A. Vityaz, A. P. Stupak, S. V. Gaponenko, and N. V. Gaponenko, “Towards 3D photonic crystals,” Synth. Met. 124(1), 137–139 (2001).
[CrossRef]

Prokofiev, A. V.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7619–7625 (1997).
[CrossRef]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[CrossRef]

Richter, C.

M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008).
[CrossRef]

Rubin, S.

G. Bar, S. Rubin, R. W. Cutts, T. N. Taylor, and T. A. Zawodzinski., “Dendrimer-modified silicon oxide surfaces as platforms for the deposition of gold and silver colloid monolayers: preparation method, characterization, and correlation between microstructure and optical properties,” Langmuir 12(5), 1172–1179 (1996).
[CrossRef]

Sailor, M. J.

J. S. Park, S. O. Meade, E. Segal, and M. J. Sailor, “Porous silicon-based polymer replicas formed by bead patterning,” Physica Status Solidi A 204(5), 1383–1387 (2007).
[CrossRef]

Samoilovich, S. M.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7619–7625 (1997).
[CrossRef]

Sanders, J. V.

J. V. Sanders, “Colour of precious opal,” Nature 204(4964), 1151–1153 (1964).
[CrossRef]

Scheel, H.

S. Khachadorian, H. Scheel, A. Colli, A. Vierck, and C. Thomsen, “Temperature dependence of first- and second-order Raman scattering in silicon nanowires,” Physica Status Solidi B 247(11-12), 3084–3088 (2010).
[CrossRef]

Segal, E.

J. S. Park, S. O. Meade, E. Segal, and M. J. Sailor, “Porous silicon-based polymer replicas formed by bead patterning,” Physica Status Solidi A 204(5), 1383–1387 (2007).
[CrossRef]

Serrano, J. R.

M. R. Abel, S. Graham, J. R. Serrano, S. P. Kearney, and L. M. Phinney, “Raman thermometry of polysilicon microelectromechanical systems in the presence of an evolving stress,” J. Heat Trans. 129(3), 329–334 (2007).
[CrossRef]

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited article: simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[CrossRef] [PubMed]

Sha, J.

Z. Su, J. Sha, G. Pan, J. Liu, D. Yang, C. Dickinson, and W. Zhou, “Temperature-dependent Raman scattering of silicon nanowires,” J. Phys. Chem. B 110(3), 1229–1234 (2006).
[CrossRef] [PubMed]

Shelekhina, V. M.

V. M. Shelekhina, O. A. Prokhorov, P. A. Vityaz, A. P. Stupak, S. V. Gaponenko, and N. V. Gaponenko, “Towards 3D photonic crystals,” Synth. Met. 124(1), 137–139 (2001).
[CrossRef]

Shi, J.

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, J. Shi, and J. C. Li, “Fabrication of hemispherical cavity arrays on silicon substrates using laser-assisted nanoimprinting of self-assembled particles,” Nanotechnology 15(3), 333–336 (2004).
[CrossRef]

Silvanovich, N. I.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7619–7625 (1997).
[CrossRef]

Silverans, R.

M. Konstantinović, S. Bersier, X. Wang, M. Hayne, P. Lievens, R. Silverans, and V. Moshchalkov, “Raman scattering in cluster-deposited nanogranular silicon films,” Phys. Rev. B 66(16), 161311 (2002).
[CrossRef]

Smith, M. T.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

Somorjai, G. A.

M. X. Yang, D. H. Gracias, P. W. Jacobs, and G. A. Somorjai, “Lithographic fabrication of model systems in heterogeneous catalysis and surface science studies,” Langmuir 14(6), 1458–1464 (1998).
[CrossRef]

Song, W. D.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Stark, R. W.

M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008).
[CrossRef]

Stupak, A. P.

V. M. Shelekhina, O. A. Prokhorov, P. A. Vityaz, A. P. Stupak, S. V. Gaponenko, and N. V. Gaponenko, “Towards 3D photonic crystals,” Synth. Met. 124(1), 137–139 (2001).
[CrossRef]

Su, Z.

Z. Su, J. Sha, G. Pan, J. Liu, D. Yang, C. Dickinson, and W. Zhou, “Temperature-dependent Raman scattering of silicon nanowires,” J. Phys. Chem. B 110(3), 1229–1234 (2006).
[CrossRef] [PubMed]

Suzuki, T.

S. Hayashi, Y. Kumamoto, T. Suzuki, and T. Hirai, “Imaging by polystyrene latex-particles,” J. Colloid Interface Sci. 144(2), 538–547 (1991).
[CrossRef]

Tang, H.

H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B Condens. Matter 43(3), 2299–2304 (1991).
[CrossRef] [PubMed]

Tang, M. X.

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[CrossRef]

Tao, A. R.

J. Huang, A. R. Tao, S. Connor, R. He, and P. Yang, “A general method for assembling single colloidal particle lines,” Nano Lett. 6(3), 524–529 (2006).
[CrossRef] [PubMed]

Tao, M.

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

Taylor, T. N.

G. Bar, S. Rubin, R. W. Cutts, T. N. Taylor, and T. A. Zawodzinski., “Dendrimer-modified silicon oxide surfaces as platforms for the deposition of gold and silver colloid monolayers: preparation method, characterization, and correlation between microstructure and optical properties,” Langmuir 12(5), 1172–1179 (1996).
[CrossRef]

Thomsen, C.

S. Khachadorian, H. Scheel, A. Colli, A. Vierck, and C. Thomsen, “Temperature dependence of first- and second-order Raman scattering in silicon nanowires,” Physica Status Solidi B 247(11-12), 3084–3088 (2010).
[CrossRef]

Treichel, D. A.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

Tsu, R.

R. Tsu and J. G. Hernandez, “Temperature dependence of silicon Raman lines,” Appl. Phys. Lett. 41(11), 1016–1018 (1982).
[CrossRef]

Van Duyne, R. P.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[CrossRef]

Velev, O.

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of 2-dimensional crystals from latex-particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[CrossRef]

Velev, O. D.

B. G. Prevo and O. D. Velev, “Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions,” Langmuir 20(6), 2099–2107 (2004).
[CrossRef] [PubMed]

Vierck, A.

S. Khachadorian, H. Scheel, A. Colli, A. Vierck, and C. Thomsen, “Temperature dependence of first- and second-order Raman scattering in silicon nanowires,” Physica Status Solidi B 247(11-12), 3084–3088 (2010).
[CrossRef]

Vityaz, P. A.

V. M. Shelekhina, O. A. Prokhorov, P. A. Vityaz, A. P. Stupak, S. V. Gaponenko, and N. V. Gaponenko, “Towards 3D photonic crystals,” Synth. Met. 124(1), 137–139 (2001).
[CrossRef]

Wallis, R.

M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[CrossRef]

Wang, B.

Y. Chen, B. Peng, and B. Wang, “Raman spectra and temperature-dependent raman scattering of silicon nanowires,” J. Phys. Chem. C 111(16), 5855–5858 (2007).
[CrossRef]

Wang, X.

M. Konstantinović, S. Bersier, X. Wang, M. Hayne, P. Lievens, R. Silverans, and V. Moshchalkov, “Raman scattering in cluster-deposited nanogranular silicon films,” Phys. Rev. B 66(16), 161311 (2002).
[CrossRef]

Wang, X. W.

Y. N. Yue, J. C. Zhang, and X. W. Wang, “Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC,” Small 7(23), 3324–3333 (2011).
[CrossRef] [PubMed]

Y. N. Yue, X. W. Chen, and X. W. Wang, “Noncontact sub-10 nm temperature measurement in near-field laser heating,” ACS Nano 5(6), 4466–4475 (2011).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

Watanabe, A.

M. Aminuzzaman, A. Watanabe, and T. Miyashita, “Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film,” J. Nanopart. Res. 12(3), 931–938 (2010).
[CrossRef]

Xia, F.

F. Xia and L. Jiang, “Bio−inspired, smart, multiscale interfacial materials,” Adv. Mater. (Deerfield Beach Fla.) 20(15), 2842–2858 (2008).
[CrossRef]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Yamada, T.

Y. Endo, M. Ono, T. Yamada, H. Kawamura, K. Kobara, and T. Kawamura, “A study of antireflective and antistatic coating with ultrafine particles,” Adv. Powder Technol. 7(2), 131–140 (1996).
[CrossRef]

Yang, D.

Z. Su, J. Sha, G. Pan, J. Liu, D. Yang, C. Dickinson, and W. Zhou, “Temperature-dependent Raman scattering of silicon nanowires,” J. Phys. Chem. B 110(3), 1229–1234 (2006).
[CrossRef] [PubMed]

Yang, H.

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

Yang, M. X.

M. X. Yang, D. H. Gracias, P. W. Jacobs, and G. A. Somorjai, “Lithographic fabrication of model systems in heterogeneous catalysis and surface science studies,” Langmuir 14(6), 1458–1464 (1998).
[CrossRef]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

J. Huang, A. R. Tao, S. Connor, R. He, and P. Yang, “A general method for assembling single colloidal particle lines,” Nano Lett. 6(3), 524–529 (2006).
[CrossRef] [PubMed]

Yoshimura, H.

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of 2-dimensional crystals from latex-particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[CrossRef]

Yue, Y. N.

Y. N. Yue, J. C. Zhang, and X. W. Wang, “Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC,” Small 7(23), 3324–3333 (2011).
[CrossRef] [PubMed]

Y. N. Yue, X. W. Chen, and X. W. Wang, “Noncontact sub-10 nm temperature measurement in near-field laser heating,” ACS Nano 5(6), 4466–4475 (2011).
[CrossRef] [PubMed]

Zawodzinski, T. A.

G. Bar, S. Rubin, R. W. Cutts, T. N. Taylor, and T. A. Zawodzinski., “Dendrimer-modified silicon oxide surfaces as platforms for the deposition of gold and silver colloid monolayers: preparation method, characterization, and correlation between microstructure and optical properties,” Langmuir 12(5), 1172–1179 (1996).
[CrossRef]

Zhang, J. C.

Y. N. Yue, J. C. Zhang, and X. W. Wang, “Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC,” Small 7(23), 3324–3333 (2011).
[CrossRef] [PubMed]

Zhang, W.

S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[CrossRef]

Zheng, Y. W.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

B. S. Luk'yanchuk, Y. W. Zheng, and Y. F. Lu, “Laser cleaning of solid surface: Optical resonance and near-field effects,” High-Power Laser Ablation III. 4065, 576–587 (2000).

Zhou, W.

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

Z. Su, J. Sha, G. Pan, J. Liu, D. Yang, C. Dickinson, and W. Zhou, “Temperature-dependent Raman scattering of silicon nanowires,” J. Phys. Chem. B 110(3), 1229–1234 (2006).
[CrossRef] [PubMed]

Zhuang, L.

S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[CrossRef]

Zimmermann, J.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[CrossRef] [PubMed]

Zingsheim, H.

U. C. Fischer and H. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19(4), 881–885 (1981).
[CrossRef]

ACS Nano (1)

Y. N. Yue, X. W. Chen, and X. W. Wang, “Noncontact sub-10 nm temperature measurement in near-field laser heating,” ACS Nano 5(6), 4466–4475 (2011).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

F. Xia and L. Jiang, “Bio−inspired, smart, multiscale interfacial materials,” Adv. Mater. (Deerfield Beach Fla.) 20(15), 2842–2858 (2008).
[CrossRef]

Adv. Powder Technol. (1)

Y. Endo, M. Ono, T. Yamada, H. Kawamura, K. Kobara, and T. Kawamura, “A study of antireflective and antistatic coating with ultrafine particles,” Adv. Powder Technol. 7(2), 131–140 (1996).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Ann. Phys.  25, 377–445 (1908).

Appl. Phys. Lett. (4)

H. W. Deckman, “Natural lithography,” Appl. Phys. Lett. 41(4), 377–379 (1982).
[CrossRef]

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[CrossRef]

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[CrossRef]

R. Tsu and J. G. Hernandez, “Temperature dependence of silicon Raman lines,” Appl. Phys. Lett. 41(11), 1016–1018 (1982).
[CrossRef]

High-Power Laser Ablation III. (1)

B. S. Luk'yanchuk, Y. W. Zheng, and Y. F. Lu, “Laser cleaning of solid surface: Optical resonance and near-field effects,” High-Power Laser Ablation III. 4065, 576–587 (2000).

J. Appl. Phys. (3)

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, and X. Y. Chen, “Parametric investigation of laser nanoimprinting of hemispherical cavity arrays,” J. Appl. Phys. 96(9), 5144–5151 (2004).
[CrossRef]

D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
[CrossRef]

J. Colloid Interface Sci. (2)

S. Hayashi, Y. Kumamoto, T. Suzuki, and T. Hirai, “Imaging by polystyrene latex-particles,” J. Colloid Interface Sci. 144(2), 538–547 (1991).
[CrossRef]

R. K. Iler, “Adhesion of submicron silica particles on glass,” J. Colloid Interface Sci. 38(2), 496–501 (1972).
[CrossRef]

J. Heat Trans. (1)

M. R. Abel, S. Graham, J. R. Serrano, S. P. Kearney, and L. M. Phinney, “Raman thermometry of polysilicon microelectromechanical systems in the presence of an evolving stress,” J. Heat Trans. 129(3), 329–334 (2007).
[CrossRef]

J. Microsc. (1)

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[CrossRef] [PubMed]

J. Nanopart. Res. (1)

M. Aminuzzaman, A. Watanabe, and T. Miyashita, “Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film,” J. Nanopart. Res. 12(3), 931–938 (2010).
[CrossRef]

J. Phys. Chem. B (2)

Z. Su, J. Sha, G. Pan, J. Liu, D. Yang, C. Dickinson, and W. Zhou, “Temperature-dependent Raman scattering of silicon nanowires,” J. Phys. Chem. B 110(3), 1229–1234 (2006).
[CrossRef] [PubMed]

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

J. Phys. Chem. C (1)

Y. Chen, B. Peng, and B. Wang, “Raman spectra and temperature-dependent raman scattering of silicon nanowires,” J. Phys. Chem. C 111(16), 5855–5858 (2007).
[CrossRef]

J. Vac. Sci. Technol. (1)

U. C. Fischer and H. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol. 19(4), 881–885 (1981).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[CrossRef]

J. Vac. Sci. Technol. B (2)

H. W. Deckman, J. H. Dunsmuir, S. Garoff, J. A. Mchenry, and D. G. Peiffer, “Macromolecular self-organized assemblies,” J. Vac. Sci. Technol. B 6(1), 333–336 (1988).
[CrossRef]

S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[CrossRef]

Langmuir (7)

G. Bar, S. Rubin, R. W. Cutts, T. N. Taylor, and T. A. Zawodzinski., “Dendrimer-modified silicon oxide surfaces as platforms for the deposition of gold and silver colloid monolayers: preparation method, characterization, and correlation between microstructure and optical properties,” Langmuir 12(5), 1172–1179 (1996).
[CrossRef]

M. X. Yang, D. H. Gracias, P. W. Jacobs, and G. A. Somorjai, “Lithographic fabrication of model systems in heterogeneous catalysis and surface science studies,” Langmuir 14(6), 1458–1464 (1998).
[CrossRef]

R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a 2-dimensional, ordered array of small latex-particles,” Langmuir 11(9), 3333–3336 (1995).
[CrossRef]

A. S. Dimitrov, T. Miwa, and K. Nagayama, “A comparison between the optical properties of amorphous and crystalline monolayers of silica particles,” Langmuir 15(16), 5257–5264 (1999).
[CrossRef]

N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of 2-dimensional crystals from latex-particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[CrossRef]

B. G. Prevo and O. D. Velev, “Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions,” Langmuir 20(6), 2099–2107 (2004).
[CrossRef] [PubMed]

A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir 12(5), 1303–1311 (1996).
[CrossRef]

Microelectron. Eng. (1)

M. Bauer, A. M. Gigler, C. Richter, and R. W. Stark, “Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy,” Microelectron. Eng. 85(5-6), 1443–1446 (2008).
[CrossRef]

Nano Lett. (3)

S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10(8), 2989–2994 (2010).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

J. Huang, A. R. Tao, S. Connor, R. He, and P. Yang, “A general method for assembling single colloidal particle lines,” Nano Lett. 6(3), 524–529 (2006).
[CrossRef] [PubMed]

Nanotechnology (3)

V. Ng, Y. Lee, B. Chen, and A. Adeyeye, “Nanostructure array fabrication with temperature-controlled self-assembly techniques,” Nanotechnology 13(5), 554–558 (2002).
[CrossRef]

L. P. Li, Y. F. Lu, D. W. Doerr, D. R. Alexander, J. Shi, and J. C. Li, “Fabrication of hemispherical cavity arrays on silicon substrates using laser-assisted nanoimprinting of self-assembled particles,” Nanotechnology 15(3), 333–336 (2004).
[CrossRef]

L. P. Li, Y. F. Lu, D. W. Doerr, and D. R. Alexander, “Laser-assisted nanopatterning of aluminium using particle-induced near-field optical enhancement and nanoimprinting,” Nanotechnology 15(11), 1655–1660 (2004).
[CrossRef]

Nat. Nanotechnol. (1)

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[CrossRef] [PubMed]

Nature (1)

J. V. Sanders, “Colour of precious opal,” Nature 204(4964), 1151–1153 (1964).
[CrossRef]

Phys. Rev. (1)

P. G. Klemens, “Anharmonic decay of optical phonons,” Phys. Rev. 148(2), 845–848 (1966).
[CrossRef]

Phys. Rev. B (5)

G. Doerk, C. Carraro, and R. Maboudian, “Temperature dependence of Raman spectra for individual silicon nanowires,” Phys. Rev. B 80(7), 073306 (2009).
[CrossRef]

T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1(2), 638–642 (1970).
[CrossRef]

M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[CrossRef]

J. Menéndez and M. Cardona, “Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α-Sn: Anharmonic effects,” Phys. Rev. B 29(4), 2051–2059 (1984).
[CrossRef]

M. Konstantinović, S. Bersier, X. Wang, M. Hayne, P. Lievens, R. Silverans, and V. Moshchalkov, “Raman scattering in cluster-deposited nanogranular silicon films,” Phys. Rev. B 66(16), 161311 (2002).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B Condens. Matter 43(3), 2299–2304 (1991).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7619–7625 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Physica Status Solidi A (1)

J. S. Park, S. O. Meade, E. Segal, and M. J. Sailor, “Porous silicon-based polymer replicas formed by bead patterning,” Physica Status Solidi A 204(5), 1383–1387 (2007).
[CrossRef]

Physica Status Solidi B (1)

S. Khachadorian, H. Scheel, A. Colli, A. Vierck, and C. Thomsen, “Temperature dependence of first- and second-order Raman scattering in silicon nanowires,” Physica Status Solidi B 247(11-12), 3084–3088 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited article: simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[CrossRef] [PubMed]

Science (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[CrossRef]

Small (1)

Y. N. Yue, J. C. Zhang, and X. W. Wang, “Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC,” Small 7(23), 3324–3333 (2011).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, and M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells 93(1), 85–91 (2009).
[CrossRef]

Synth. Met. (1)

V. M. Shelekhina, O. A. Prokhorov, P. A. Vityaz, A. P. Stupak, S. V. Gaponenko, and N. V. Gaponenko, “Towards 3D photonic crystals,” Synth. Met. 124(1), 137–139 (2001).
[CrossRef]

Other (2)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, Cambridge, 1999).

J. Weaver and H. Frederikse, CRC Handbook of Chemistry and Physics (CRC Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A typical scanning electron microscope image of 2-D monolayer array of silica particles with a diameter of 800nm assembled on a silicon wafer.

Fig. 2
Fig. 2

Schematic of the experimental setup for near-field heating and temperature probing (not to scale). A sample that is set on a 3-D piezo-actuated nano-stage is located under the focused laser beam from a Raman spectrometer. The sample is a monolayer of silica particles formed on a silicon substrate. The incident laser, which is used as both temperature probing and heating source, is focused on the substrate by the particles. The laser beam is polarized with the strongest intensity along the x-axis. The spot size of the incident laser is about 2 × 4 µm2 in the x-y plane on the sample. The substrate is heated by the laser in a sub-wavelength region (r ~200 nm) right beneath the particles. During the experiment, the laser beam is fixed, and the sample moves vertically in the z direction controlled by the 3-D nano-stage electrically without any touch of the sample and other equipment. The step of movement is 0.53 μm in a range of about 10 μm, covering the laser focal depth. The temperature rise inside the substrate achieves the highest value at the focal spot.

Fig. 3
Fig. 3

Variations of (a) Raman FWHM, (b) Raman shift and (c) Raman intensity for bare silicon under laser irradiation along the z direction location around the laser focal spot. The laser is incident at room temperature with an energy flux of 8.6 × 108 W/m2.

Fig. 4
Fig. 4

(a) Calibration for Raman shift and FWHM of silicon against temperature. The slope of the linear fitting for Raman shift against temperature is −0.022 cm−1/K. For FWHM against temperature, it is 0.0082 cm−1/K. (b) A comparison of Raman spectra between bare silicon and silicon under silica particles. The diameter of silica particle is 1210 nm. The solid curves are the Gaussian fittings for the experimental Raman data. The difference of the two straight lines shows that the Raman peak shifts due to temperature rise in near-field heating.

Fig. 5
Fig. 5

The relationship between temperature rise in silicon against (a) energy flux of incident laser and (b) diameter of silica particle. The upper figures show the temperature rise assessed based on the Raman FWHM, and the lower figures are based on the Raman shift method.

Fig. 6
Fig. 6

Electric field distribution inside the substrates and particles of (a) 400, (b) 800 and (c) 1210 nm diameter. In figures (a), (b) and (c), the upper figures are top view of the substrates beneath the particles, and the lower figures are central cross-section view of the particles and substrates. The amplitude of electric field is equal to the enhancement factor. (d) Electric field inside silicon in the r direction (along the magnetic field direction). (e) Electric field inside silicon in the z direction. At points A, B and C, the amplitude of electric field drops to e−1. The z-axis values of A, B and C are 878, 1094 and 1013 nm, respectively.

Fig. 7
Fig. 7

Temperature distributions inside silicon substrates under particles of (a) 400, (b) 800 and (c) 1210 nm diameter. In figures (a), (b) and (c), the upper figures are top view of the substrates beneath the particles, and the lower figures are central cross-section view of the substrates. (d) Temperature profile inside silicon in the radial direction. (e) Temperature profile inside silicon in the vertical direction. The initial temperature of the substrates is 300 K.

Metrics