Abstract

Using a finite-difference time-domain method, we theoretically investigate the optical spectra of crossing perpendicular photonic crystal waveguides with quantum dots embedded in the central rod. The waveguides are designed so that the light mainly propagates along one direction and the cross talk is greatly reduced in the transverse direction. It is shown that when a quantum dot (QD) is resonant with the cavity, strong coupling can be observed via both the transmission and crosstalk spectrum. If the cavity is far off-resonant from the QD, both the cavity mode and the QD signal can be detected in the transverse direction since the laser field is greatly suppressed in this direction. This structure could have strong implications for resonant excitation and in-plane detection of QD optical spectroscopy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Berman, ed., Cavity Quantum Electrodynamics (Academic, 1994).
  2. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
    [CrossRef]
  3. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73(3), 565–582 (2001).
    [CrossRef]
  4. B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
    [CrossRef] [PubMed]
  5. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
    [CrossRef] [PubMed]
  6. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,” Science 303(5666), 1992–1994 (2004).
    [CrossRef] [PubMed]
  7. P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4(4), 499–516 (2010).
    [CrossRef]
  8. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
    [CrossRef] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
    [CrossRef] [PubMed]
  10. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
    [CrossRef] [PubMed]
  11. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
    [CrossRef] [PubMed]
  12. A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99(18), 187402 (2007).
    [CrossRef] [PubMed]
  13. E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5(3), 203–207 (2009).
    [CrossRef]
  14. S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3(12), 724–728 (2009).
    [CrossRef]
  15. D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vucković, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104(7), 073904 (2010).
    [CrossRef] [PubMed]
  16. M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
    [CrossRef] [PubMed]
  17. M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106(22), 227402 (2011).
    [CrossRef] [PubMed]
  18. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
    [CrossRef]
  19. K. Koshino, “Theory of resonance fluorescence from a solid-state cavity QED system: effects of pure dephasing,” Phys. Rev. B 84, 033824 (2011).
  20. A. Majumdar, A. Papageorge, E. D. Kim, M. Bajcsy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84(8), 085310 (2011).
    [CrossRef]
  21. P. Yao and S. Hughes, “Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system,” Phys. Rev. B 80(16), 165128 (2009).
    [CrossRef]
  22. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
    [CrossRef] [PubMed]
  23. P. Yao and S. Hughes, “Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system,” Phys. Rev. B 80(16), 165128 (2009).
    [CrossRef]
  24. F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
    [CrossRef]
  25. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23(23), 1855–1857 (1998).
    [CrossRef] [PubMed]
  26. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005), 3rd edition.
  27. V. S. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99(19), 193901 (2007).
    [CrossRef] [PubMed]
  28. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
    [CrossRef] [PubMed]
  29. A. Mekis, S. Fang, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided W. 9(12), 502–504 (1999).
    [CrossRef]
  30. M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Co. 11(4), 152–154 (2001).
    [CrossRef]
  31. J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media,” Microw. Opt. Technol. Lett. 27(5), 334–339 (2000).
    [CrossRef]
  32. C. Dineen, J. Förstner, A. R. Zakharian, J. V. Moloney, and S. W. Koch, “Electromagnetic field structure and normal mode coupling in photonic crystal nanocavities,” Opt. Express 13(13), 4980–4985 (2005).
    [CrossRef] [PubMed]
  33. S. Declair, T. Meier, and J. Förstner, “Numerical Investigation of the Coupling Between Microdisk Modes and Quantum Dots,” Phys. Status Solidi 8(4c), 1254–1257 (2011).
    [CrossRef]

2011 (4)

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106(22), 227402 (2011).
[CrossRef] [PubMed]

K. Koshino, “Theory of resonance fluorescence from a solid-state cavity QED system: effects of pure dephasing,” Phys. Rev. B 84, 033824 (2011).

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajcsy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84(8), 085310 (2011).
[CrossRef]

S. Declair, T. Meier, and J. Förstner, “Numerical Investigation of the Coupling Between Microdisk Modes and Quantum Dots,” Phys. Status Solidi 8(4c), 1254–1257 (2011).
[CrossRef]

2010 (3)

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vucković, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104(7), 073904 (2010).
[CrossRef] [PubMed]

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4(4), 499–516 (2010).
[CrossRef]

2009 (5)

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef] [PubMed]

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5(3), 203–207 (2009).
[CrossRef]

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3(12), 724–728 (2009).
[CrossRef]

P. Yao and S. Hughes, “Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system,” Phys. Rev. B 80(16), 165128 (2009).
[CrossRef]

P. Yao and S. Hughes, “Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system,” Phys. Rev. B 80(16), 165128 (2009).
[CrossRef]

2008 (1)

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

2007 (4)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99(18), 187402 (2007).
[CrossRef] [PubMed]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[CrossRef] [PubMed]

V. S. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99(19), 193901 (2007).
[CrossRef] [PubMed]

2006 (2)

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[CrossRef]

2005 (2)

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[CrossRef] [PubMed]

C. Dineen, J. Förstner, A. R. Zakharian, J. V. Moloney, and S. W. Koch, “Electromagnetic field structure and normal mode coupling in photonic crystal nanocavities,” Opt. Express 13(13), 4980–4985 (2005).
[CrossRef] [PubMed]

2004 (4)

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,” Science 303(5666), 1992–1994 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

2001 (2)

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73(3), 565–582 (2001).
[CrossRef]

M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Co. 11(4), 152–154 (2001).
[CrossRef]

2000 (1)

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media,” Microw. Opt. Technol. Lett. 27(5), 334–339 (2000).
[CrossRef]

1999 (1)

A. Mekis, S. Fang, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided W. 9(12), 502–504 (1999).
[CrossRef]

1998 (1)

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Ates, S.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3(12), 724–728 (2009).
[CrossRef]

Atlasov, K. A.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106(22), 227402 (2011).
[CrossRef] [PubMed]

Badolato, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Bajcsy, M.

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajcsy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84(8), 085310 (2011).
[CrossRef]

Bergamini, S.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[CrossRef] [PubMed]

Beugnon, J.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[CrossRef] [PubMed]

Beveratos, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef] [PubMed]

Bianucci, P.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99(18), 187402 (2007).
[CrossRef] [PubMed]

Biasiol, G.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106(22), 227402 (2011).
[CrossRef] [PubMed]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,” Science 303(5666), 1992–1994 (2004).
[CrossRef] [PubMed]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,” Science 303(5666), 1992–1994 (2004).
[CrossRef] [PubMed]

Brossard, F. S. F.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Browaeys, A.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[CrossRef] [PubMed]

Brune, M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73(3), 565–582 (2001).
[CrossRef]

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,” Science 303(5666), 1992–1994 (2004).
[CrossRef] [PubMed]

Calic, M.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106(22), 227402 (2011).
[CrossRef] [PubMed]

Chang, H. S.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Chang, W. H.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Chen, W. Y.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Chyi, J. I.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Darquié, B.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[CrossRef] [PubMed]

Declair, S.

S. Declair, T. Meier, and J. Förstner, “Numerical Investigation of the Coupling Between Microdisk Modes and Quantum Dots,” Phys. Status Solidi 8(4c), 1254–1257 (2011).
[CrossRef]

Deppe, D. G.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5(3), 203–207 (2009).
[CrossRef]

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99(18), 187402 (2007).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Dineen, C.

Dingjan, J.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[CrossRef] [PubMed]

Dwir, B.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106(22), 227402 (2011).
[CrossRef] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Englund, D.

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vucković, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104(7), 073904 (2010).
[CrossRef] [PubMed]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Fan, S.

S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23(23), 1855–1857 (1998).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Fang, S.

A. Mekis, S. Fang, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided W. 9(12), 502–504 (1999).
[CrossRef]

Faraon, A.

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vucković, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104(7), 073904 (2010).
[CrossRef] [PubMed]

Felici, M.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106(22), 227402 (2011).
[CrossRef] [PubMed]

Finley, J.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef] [PubMed]

Flagg, E. B.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5(3), 203–207 (2009).
[CrossRef]

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99(18), 187402 (2007).
[CrossRef] [PubMed]

Forchel, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3(12), 724–728 (2009).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Förstner, J.

S. Declair, T. Meier, and J. Förstner, “Numerical Investigation of the Coupling Between Microdisk Modes and Quantum Dots,” Phys. Status Solidi 8(4c), 1254–1257 (2011).
[CrossRef]

C. Dineen, J. Förstner, A. R. Zakharian, J. V. Moloney, and S. W. Koch, “Electromagnetic field structure and normal mode coupling in photonic crystal nanocavities,” Opt. Express 13(13), 4980–4985 (2005).
[CrossRef] [PubMed]

Founta, S.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5(3), 203–207 (2009).
[CrossRef]

Gallo, P.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106(22), 227402 (2011).
[CrossRef] [PubMed]

Gedney, S. D.

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media,” Microw. Opt. Technol. Lett. 27(5), 334–339 (2000).
[CrossRef]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Grangier, P.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[CrossRef] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Hadjipanayi, M.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Haroche, S.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73(3), 565–582 (2001).
[CrossRef]

Haus, H. A.

Hayasaka, K.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
[CrossRef] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Hennessy, K. J.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef] [PubMed]

Höfling, S.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3(12), 724–728 (2009).
[CrossRef]

Hofmann, C.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Hopkinson, M.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Hsieh, T. P.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Hsu, T. M.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

Hu, E. L.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Hughes, S.

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4(4), 499–516 (2010).
[CrossRef]

P. Yao and S. Hughes, “Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system,” Phys. Rev. B 80(16), 165128 (2009).
[CrossRef]

P. Yao and S. Hughes, “Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system,” Phys. Rev. B 80(16), 165128 (2009).
[CrossRef]

V. S. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99(19), 193901 (2007).
[CrossRef] [PubMed]

Hugues, M.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Imamoglu, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Joannopoulos, J. D.

A. Mekis, S. Fang, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided W. 9(12), 502–504 (1999).
[CrossRef]

S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23(23), 1855–1857 (1998).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Johnson, S. G.

Jones, M. P. A.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[CrossRef] [PubMed]

Kapon, E.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106(22), 227402 (2011).
[CrossRef] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Keller, M.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
[CrossRef] [PubMed]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Kim, E. D.

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajcsy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84(8), 085310 (2011).
[CrossRef]

Kim, H.

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajcsy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84(8), 085310 (2011).
[CrossRef]

Kimble, H. J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,” Science 303(5666), 1992–1994 (2004).
[CrossRef] [PubMed]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[CrossRef]

Koch, S. W.

Koshiba, M.

M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Co. 11(4), 152–154 (2001).
[CrossRef]

Koshino, K.

K. Koshino, “Theory of resonance fluorescence from a solid-state cavity QED system: effects of pure dephasing,” Phys. Rev. B 84, 033824 (2011).

Kristensen, P. T.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Kuzmich, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,” Science 303(5666), 1992–1994 (2004).
[CrossRef] [PubMed]

Lange, B.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
[CrossRef] [PubMed]

Lange, W.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
[CrossRef] [PubMed]

Löffler, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3(12), 724–728 (2009).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Ma, W.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5(3), 203–207 (2009).
[CrossRef]

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99(18), 187402 (2007).
[CrossRef] [PubMed]

Majumdar, A.

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajcsy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84(8), 085310 (2011).
[CrossRef]

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vucković, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104(7), 073904 (2010).
[CrossRef] [PubMed]

Manga Rao, V. S. C.

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4(4), 499–516 (2010).
[CrossRef]

Manolatou, C.

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,” Science 303(5666), 1992–1994 (2004).
[CrossRef] [PubMed]

Meier, T.

S. Declair, T. Meier, and J. Förstner, “Numerical Investigation of the Coupling Between Microdisk Modes and Quantum Dots,” Phys. Status Solidi 8(4c), 1254–1257 (2011).
[CrossRef]

Mekis, A.

A. Mekis, S. Fang, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided W. 9(12), 502–504 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Messin, G.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[CrossRef] [PubMed]

Michler, P.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3(12), 724–728 (2009).
[CrossRef]

Miller, R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,” Science 303(5666), 1992–1994 (2004).
[CrossRef] [PubMed]

Moloney, J. V.

Mørk, J.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

Muller, A.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5(3), 203–207 (2009).
[CrossRef]

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99(18), 187402 (2007).
[CrossRef] [PubMed]

Naesby, A.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

Painter, O.

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[CrossRef] [PubMed]

Papageorge, A.

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajcsy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84(8), 085310 (2011).
[CrossRef]

Petroff, P.

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajcsy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84(8), 085310 (2011).
[CrossRef]

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vucković, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104(7), 073904 (2010).
[CrossRef] [PubMed]

Portolan, S.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef] [PubMed]

Raimond, J. M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73(3), 565–582 (2001).
[CrossRef]

Rao, V. S.

V. S. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99(19), 193901 (2007).
[CrossRef] [PubMed]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3(12), 724–728 (2009).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Robertson, J. W.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5(3), 203–207 (2009).
[CrossRef]

Roden, J. A.

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media,” Microw. Opt. Technol. Lett. 27(5), 334–339 (2000).
[CrossRef]

Rudra, A.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106(22), 227402 (2011).
[CrossRef] [PubMed]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Salamo, G. J.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5(3), 203–207 (2009).
[CrossRef]

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99(18), 187402 (2007).
[CrossRef] [PubMed]

Sasaki, S.

M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Co. 11(4), 152–154 (2001).
[CrossRef]

Savona, V.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106(22), 227402 (2011).
[CrossRef] [PubMed]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef] [PubMed]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Shih, C. K.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5(3), 203–207 (2009).
[CrossRef]

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99(18), 187402 (2007).
[CrossRef] [PubMed]

Sorba, L.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106(22), 227402 (2011).
[CrossRef] [PubMed]

Sortais, Y.

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[CrossRef] [PubMed]

Srinivasan, K.

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[CrossRef] [PubMed]

Stoltz, N.

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vucković, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104(7), 073904 (2010).
[CrossRef] [PubMed]

Suhr, T.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

Tarel, G.

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106(22), 227402 (2011).
[CrossRef] [PubMed]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef] [PubMed]

Taylor, R. A.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Toishi, M.

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vucković, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104(7), 073904 (2010).
[CrossRef] [PubMed]

Tsuji, Y.

M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Co. 11(4), 152–154 (2001).
[CrossRef]

Ulhaq, A.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3(12), 724–728 (2009).
[CrossRef]

Ulrich, S. M.

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3(12), 724–728 (2009).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23(23), 1855–1857 (1998).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Volz, T.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef] [PubMed]

Vuckovic, J.

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajcsy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84(8), 085310 (2011).
[CrossRef]

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vucković, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104(7), 073904 (2010).
[CrossRef] [PubMed]

Walther, H.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
[CrossRef] [PubMed]

Wang, X.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Wang, X. Y.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99(18), 187402 (2007).
[CrossRef] [PubMed]

Williams, D. A.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Winger, M.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Xiao, M.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5(3), 203–207 (2009).
[CrossRef]

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99(18), 187402 (2007).
[CrossRef] [PubMed]

Xu, X. L.

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

Yao, P.

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4(4), 499–516 (2010).
[CrossRef]

P. Yao and S. Hughes, “Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system,” Phys. Rev. B 80(16), 165128 (2009).
[CrossRef]

P. Yao and S. Hughes, “Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system,” Phys. Rev. B 80(16), 165128 (2009).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Zakharian, A. R.

Zhang, J.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99(18), 187402 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett. 97(11), 111101 (2010).
[CrossRef]

IEEE Microw. Guided W. (1)

A. Mekis, S. Fang, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided W. 9(12), 502–504 (1999).
[CrossRef]

IEEE Microw. Wirel. Co. (1)

M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Co. 11(4), 152–154 (2001).
[CrossRef]

Laser Photon. Rev. (1)

P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev. 4(4), 499–516 (2010).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media,” Microw. Opt. Technol. Lett. 27(5), 334–339 (2000).
[CrossRef]

Nat. Photonics (1)

S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics 3(12), 724–728 (2009).
[CrossRef]

Nat. Phys. (2)

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5(3), 203–207 (2009).
[CrossRef]

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[CrossRef]

Nature (5)

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[CrossRef]

Phys. Rev. B (4)

K. Koshino, “Theory of resonance fluorescence from a solid-state cavity QED system: effects of pure dephasing,” Phys. Rev. B 84, 033824 (2011).

A. Majumdar, A. Papageorge, E. D. Kim, M. Bajcsy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84(8), 085310 (2011).
[CrossRef]

P. Yao and S. Hughes, “Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system,” Phys. Rev. B 80(16), 165128 (2009).
[CrossRef]

P. Yao and S. Hughes, “Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system,” Phys. Rev. B 80(16), 165128 (2009).
[CrossRef]

Phys. Rev. Lett. (7)

V. S. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99(19), 193901 (2007).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99(18), 187402 (2007).
[CrossRef] [PubMed]

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[CrossRef] [PubMed]

D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vucković, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104(7), 073904 (2010).
[CrossRef] [PubMed]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103(20), 207403 (2009).
[CrossRef] [PubMed]

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett. 106(22), 227402 (2011).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

S. Declair, T. Meier, and J. Förstner, “Numerical Investigation of the Coupling Between Microdisk Modes and Quantum Dots,” Phys. Status Solidi 8(4c), 1254–1257 (2011).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73(3), 565–582 (2001).
[CrossRef]

Science (2)

B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309(5733), 454–456 (2005).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,” Science 303(5666), 1992–1994 (2004).
[CrossRef] [PubMed]

Other (2)

P. R. Berman, ed., Cavity Quantum Electrodynamics (Academic, 1994).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005), 3rd edition.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic view of the computational cell containing the structure. The red area is a PC-based convolutional perfectly matched layer (CPML) used in the FDTD approach; EI/T/C are the incident/transmitted/crosstalk electric field signals. The blue lines denote the positions where we detect the electric field signals. (b) Zoomed in image of the intersection part. (c) Electric field pattern polarized along z axis. (d) The position of the QD with respect to the cavity mode.

Fig. 2
Fig. 2

Calculated spectra for structure without QD. (a) Spectra profile of the input pulse (EI), (b) transmission spectrum (ET), and (c) the crosstalk spectrum (EC).

Fig. 3
Fig. 3

Throughput (a) and crosstalk (b) spectra when QD is resonant with the cavity (λc = λq). In the inset, the larger wavelength range is shown.

Fig. 4
Fig. 4

Throughput spectra when the cavity mode is far off-resonance from the QD transition frequency (λq-λc = 6nm). (a): the dipole moment of the QD μ = 60D; (b): μ = 90D.

Fig. 5
Fig. 5

(a)-(c): crosstalk spectra when the cavity mode is far off-resonance from the QD transition frequency (λq-λc = 6nm). (a): μ = 60D, γ = 1 × 1011; (b): μ = 90D, γ = 1 × 1011; (c): μ = 60D, γ = 2 × 108. (d)-(e) same with (a)-(c), but for the emission spectra of the cavity and QD.

Metrics