Abstract

We present a theoretical concept which may lead to quantitative photoacoustic mapping of chromophore concentrations. The approach supposes a technique capable of tagging light in a well-defined tagging volume at a specific location deep in the medium. We derive a formula that expresses the local absorption coefficient inside a medium in terms of noninvasively measured quantities and experimental parameters and we validate the theory using Monte Carlo simulations. Furthermore, we performed an experiment to basically validate the concept as a strategy to correct for fluence variations in photoacoustics. In the experiment we exploit the possibility of acousto-optic modulation, using focused ultrasound, to tag photons. Results show that the variation in photoacoustic signals of absorbing insertions embedded at different depths in a phantom, caused by fluence variations of more than one order of magnitude, can be corrected for to an accuracy of 5%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).
  2. J. R. Rajian, P. L. Carson, and X. D. Wang, “Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent,” Opt. Express 17(6), 4879–4889 (2009).
    [CrossRef] [PubMed]
  3. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative optoacoustic signal extraction using sparse signal representation,” IEEE Trans. Med. Imaging 28(12), 1997–2006 (2009).
    [CrossRef] [PubMed]
  4. R. J. Zemp, “Quantitative photoacoustic tomography with multiple optical sources,” Appl. Opt. 49(18), 3566–3572 (2010).
    [CrossRef] [PubMed]
  5. B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26(2), 443–455 (2009).
    [CrossRef] [PubMed]
  6. B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45(8), 1866–1875 (2006).
    [CrossRef] [PubMed]
  7. J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt. 49(8), 1219–1233 (2010).
    [CrossRef] [PubMed]
  8. L. Yao, Y. Sun, and H. B. Jiang, “Transport-based quantitative photoacoustic tomography: simulations and experiments,” Phys. Med. Biol. 55(7), 1917–1934 (2010).
    [CrossRef] [PubMed]
  9. L. Yin, Q. Wang, Q. Z. Zhang, and H. B. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett. 32(17), 2556–2558 (2007).
    [CrossRef] [PubMed]
  10. Z. Yuan, Q. Wang, and H. B. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton Method,” Opt. Express 15(26), 18076–18081 (2007).
    [CrossRef] [PubMed]
  11. A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
    [CrossRef] [PubMed]
  12. X. Q. Li, L. Xi, R. X. Jiang, L. Yao, and H. B. Jiang, “Integrated diffuse optical tomography and photoacoustic tomography: phantom validations,” Biomed. Opt. Express 2(8), 2348–2353 (2011).
    [CrossRef] [PubMed]
  13. L. H. Wang, S. L. Jacques, and X. M. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20(6), 629–631 (1995).
    [CrossRef] [PubMed]
  14. L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87(4), 043903 (2001).
    [CrossRef] [PubMed]
  15. X. A. Xu, H. L. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
    [CrossRef] [PubMed]
  16. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml - monte-carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
    [CrossRef]
  17. M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28(24), 2482–2484 (2003).
    [CrossRef] [PubMed]
  18. A. Bratchenia, R. Molenaar, T. G. van Leeuwen, and R. P. H. Kooyman, “Acousto-optic-assisted diffuse optical tomography,” Opt. Lett. 36(9), 1539–1541 (2011).
    [CrossRef] [PubMed]
  19. A. R. Selfridge, “Approximate material properties in isotropic materials,” IEEE Trans. Sonics Ultrason. 32(3), 381–394 (1985).
    [CrossRef]
  20. M. Lesaffre, F. Jean, A. Bordes, F. Ramaz, E. Bossy, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Sub-millisecond in situ measurement of the photorefractive response in a self adaptive wavefront holography setup developped for acousto-optic imaging,” Proc. SPIE 6086, 8612 (2006).
  21. Y. Z. Li, P. Hemmer, C. H. Kim, H. L. Zhang, and L. V. Wang, “Detection of ultrasound-modulated diffuse photons using spectral-hole burning,” Opt. Express 16(19), 14862–14874 (2008).
    [CrossRef] [PubMed]

2011 (4)

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[CrossRef] [PubMed]

X. Q. Li, L. Xi, R. X. Jiang, L. Yao, and H. B. Jiang, “Integrated diffuse optical tomography and photoacoustic tomography: phantom validations,” Biomed. Opt. Express 2(8), 2348–2353 (2011).
[CrossRef] [PubMed]

X. A. Xu, H. L. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[CrossRef] [PubMed]

A. Bratchenia, R. Molenaar, T. G. van Leeuwen, and R. P. H. Kooyman, “Acousto-optic-assisted diffuse optical tomography,” Opt. Lett. 36(9), 1539–1541 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (3)

2008 (1)

2007 (2)

2006 (2)

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45(8), 1866–1875 (2006).
[CrossRef] [PubMed]

M. Lesaffre, F. Jean, A. Bordes, F. Ramaz, E. Bossy, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Sub-millisecond in situ measurement of the photorefractive response in a self adaptive wavefront holography setup developped for acousto-optic imaging,” Proc. SPIE 6086, 8612 (2006).

2003 (1)

2001 (1)

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87(4), 043903 (2001).
[CrossRef] [PubMed]

1995 (2)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml - monte-carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
[CrossRef]

L. H. Wang, S. L. Jacques, and X. M. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20(6), 629–631 (1995).
[CrossRef] [PubMed]

1985 (1)

A. R. Selfridge, “Approximate material properties in isotropic materials,” IEEE Trans. Sonics Ultrason. 32(3), 381–394 (1985).
[CrossRef]

Al-Koussa, M.

Arridge, S. R.

Bauer, A. Q.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[CrossRef] [PubMed]

Beard, P.

Beard, P. C.

Boccara, A. C.

M. Lesaffre, F. Jean, A. Bordes, F. Ramaz, E. Bossy, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Sub-millisecond in situ measurement of the photorefractive response in a self adaptive wavefront holography setup developped for acousto-optic imaging,” Proc. SPIE 6086, 8612 (2006).

Bordes, A.

M. Lesaffre, F. Jean, A. Bordes, F. Ramaz, E. Bossy, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Sub-millisecond in situ measurement of the photorefractive response in a self adaptive wavefront holography setup developped for acousto-optic imaging,” Proc. SPIE 6086, 8612 (2006).

Bossy, E.

M. Lesaffre, F. Jean, A. Bordes, F. Ramaz, E. Bossy, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Sub-millisecond in situ measurement of the photorefractive response in a self adaptive wavefront holography setup developped for acousto-optic imaging,” Proc. SPIE 6086, 8612 (2006).

Bratchenia, A.

Carson, P. L.

Cox, B.

Cox, B. T.

Culver, J. P.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[CrossRef] [PubMed]

Delaye, P.

M. Lesaffre, F. Jean, A. Bordes, F. Ramaz, E. Bossy, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Sub-millisecond in situ measurement of the photorefractive response in a self adaptive wavefront holography setup developped for acousto-optic imaging,” Proc. SPIE 6086, 8612 (2006).

Erpelding, T. N.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[CrossRef] [PubMed]

Goy, P.

Gross, M.

M. Lesaffre, F. Jean, A. Bordes, F. Ramaz, E. Bossy, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Sub-millisecond in situ measurement of the photorefractive response in a self adaptive wavefront holography setup developped for acousto-optic imaging,” Proc. SPIE 6086, 8612 (2006).

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28(24), 2482–2484 (2003).
[CrossRef] [PubMed]

Hemmer, P.

Jacques, S. L.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml - monte-carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
[CrossRef]

L. H. Wang, S. L. Jacques, and X. M. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20(6), 629–631 (1995).
[CrossRef] [PubMed]

Jean, F.

M. Lesaffre, F. Jean, A. Bordes, F. Ramaz, E. Bossy, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Sub-millisecond in situ measurement of the photorefractive response in a self adaptive wavefront holography setup developped for acousto-optic imaging,” Proc. SPIE 6086, 8612 (2006).

Jiang, H. B.

Jiang, R. X.

Kim, C. H.

Kooyman, R. P. H.

Köstli, K. P.

Laufer, J.

Lesaffre, M.

M. Lesaffre, F. Jean, A. Bordes, F. Ramaz, E. Bossy, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Sub-millisecond in situ measurement of the photorefractive response in a self adaptive wavefront holography setup developped for acousto-optic imaging,” Proc. SPIE 6086, 8612 (2006).

Li, X. Q.

Li, Y. Z.

Liu, H. L.

X. A. Xu, H. L. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[CrossRef] [PubMed]

Molenaar, R.

Nothdurft, R. E.

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[CrossRef] [PubMed]

Ntziachristos, V.

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative optoacoustic signal extraction using sparse signal representation,” IEEE Trans. Med. Imaging 28(12), 1997–2006 (2009).
[CrossRef] [PubMed]

Rajian, J. R.

Ramaz, F.

M. Lesaffre, F. Jean, A. Bordes, F. Ramaz, E. Bossy, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Sub-millisecond in situ measurement of the photorefractive response in a self adaptive wavefront holography setup developped for acousto-optic imaging,” Proc. SPIE 6086, 8612 (2006).

Razansky, D.

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative optoacoustic signal extraction using sparse signal representation,” IEEE Trans. Med. Imaging 28(12), 1997–2006 (2009).
[CrossRef] [PubMed]

Roosen, G.

M. Lesaffre, F. Jean, A. Bordes, F. Ramaz, E. Bossy, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Sub-millisecond in situ measurement of the photorefractive response in a self adaptive wavefront holography setup developped for acousto-optic imaging,” Proc. SPIE 6086, 8612 (2006).

Rosenthal, A.

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative optoacoustic signal extraction using sparse signal representation,” IEEE Trans. Med. Imaging 28(12), 1997–2006 (2009).
[CrossRef] [PubMed]

Selfridge, A. R.

A. R. Selfridge, “Approximate material properties in isotropic materials,” IEEE Trans. Sonics Ultrason. 32(3), 381–394 (1985).
[CrossRef]

Sun, Y.

L. Yao, Y. Sun, and H. B. Jiang, “Transport-based quantitative photoacoustic tomography: simulations and experiments,” Phys. Med. Biol. 55(7), 1917–1934 (2010).
[CrossRef] [PubMed]

van Leeuwen, T. G.

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml - monte-carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
[CrossRef]

L. H. Wang, S. L. Jacques, and X. M. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20(6), 629–631 (1995).
[CrossRef] [PubMed]

Wang, L. V.

X. A. Xu, H. L. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[CrossRef] [PubMed]

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[CrossRef] [PubMed]

Y. Z. Li, P. Hemmer, C. H. Kim, H. L. Zhang, and L. V. Wang, “Detection of ultrasound-modulated diffuse photons using spectral-hole burning,” Opt. Express 16(19), 14862–14874 (2008).
[CrossRef] [PubMed]

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87(4), 043903 (2001).
[CrossRef] [PubMed]

Wang, Q.

Wang, X. D.

Xi, L.

Xu, X. A.

X. A. Xu, H. L. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[CrossRef] [PubMed]

Yao, L.

X. Q. Li, L. Xi, R. X. Jiang, L. Yao, and H. B. Jiang, “Integrated diffuse optical tomography and photoacoustic tomography: phantom validations,” Biomed. Opt. Express 2(8), 2348–2353 (2011).
[CrossRef] [PubMed]

L. Yao, Y. Sun, and H. B. Jiang, “Transport-based quantitative photoacoustic tomography: simulations and experiments,” Phys. Med. Biol. 55(7), 1917–1934 (2010).
[CrossRef] [PubMed]

Yin, L.

Yuan, Z.

Zemp, R. J.

Zhang, E.

Zhang, H. L.

Zhang, Q. Z.

Zhao, X. M.

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml - monte-carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
[CrossRef]

Appl. Opt. (3)

Biomed. Opt. Express (1)

Comput. Meth. Prog. Biol. (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml - monte-carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
[CrossRef]

IEEE Trans. Med. Imaging (1)

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Quantitative optoacoustic signal extraction using sparse signal representation,” IEEE Trans. Med. Imaging 28(12), 1997–2006 (2009).
[CrossRef] [PubMed]

IEEE Trans. Sonics Ultrason. (1)

A. R. Selfridge, “Approximate material properties in isotropic materials,” IEEE Trans. Sonics Ultrason. 32(3), 381–394 (1985).
[CrossRef]

J. Biomed. Opt. (1)

A. Q. Bauer, R. E. Nothdurft, T. N. Erpelding, L. V. Wang, and J. P. Culver, “Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography,” J. Biomed. Opt. 16(9), 096016 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

X. A. Xu, H. L. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Phys. Med. Biol. (1)

L. Yao, Y. Sun, and H. B. Jiang, “Transport-based quantitative photoacoustic tomography: simulations and experiments,” Phys. Med. Biol. 55(7), 1917–1934 (2010).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87(4), 043903 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Lesaffre, F. Jean, A. Bordes, F. Ramaz, E. Bossy, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Sub-millisecond in situ measurement of the photorefractive response in a self adaptive wavefront holography setup developped for acousto-optic imaging,” Proc. SPIE 6086, 8612 (2006).

Other (1)

L. V. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of photon trajectories from injection point i to a point j deep in scattering medium. Pi is the injected power and Pij is the power measured at position j through an aperture with area Aj and solid angle Ωj at point j.

Fig. 2
Fig. 2

a) Stress generation in internal point 2 as a consequence of light absorption, with light injection in surface points i = 1 or 3 (solid arrows), leading to Fi2 fluence in point 2. b) Pl,3 the detected part of light PL,2 labeled at point 2 (dashed arrows) in response to the injected power P1. Detection is through an aperture A3 and solid angle Ω3.

Fig. 3
Fig. 3

Estimation of the absorption coefficient in a symmetrically placed absorbing sphere with diameter 2mm, vs. the real absorption coefficient, for a range of bulk absorption levels and a reduced bulk scattering coefficient of 5 cm−1; the medium is a 2*2*2 cm3 optically homogeneous object. The solid line represents perfect estimation.

Fig. 4
Fig. 4

(a) Schematic of different absorber positions deep in the medium for both directions. (b) Estimated absorption coefficient in a 2mm sphere shifting along the x- and z-axis. (c) The associated absorbed energy for injection in point 1, normalized with the number of injected photons, and equivalent to μ a Φ V 2 and representing photoacoustic image levels, varies with 2 orders of magnitude.

Fig. 5
Fig. 5

Schematic of PA Set-up (top view). M: flipping mirror, L: lens and UST: Ultrasound transducer.

Fig. 6
Fig. 6

(a) peak to peak values of PA signal from insertions vs. their depth in phantom for excitation at position 1. (b) peak to peak values of PA signal from insertions vs. their depth in phantom for excitation at position 3. The insets are the detected PA signals for different insertions. (c) AO signal along the line of insertions when light is injected at point 1 and detected at point 3. (d) relative absorption coefficient for all insertions obtained by using Eq. (11).

Fig. 7
Fig. 7

(a-b) peak to peak values of PA signal from tubes vs. their depth in phantom for excitation at position 1 and 3, respectively. (c) AO signal along the straight line between injected point at 1 and detection point at 3. (d) relative absorption coefficient for solutions contained in tube 1 and 2 obtained by using Eq. (11).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P ij = A j Ω j P i Pr( i,j )
Φ ij =4π P i Pr( i,j )
F ij =4π E p,i Pr( i,j )
E a,i2 = F i2 μ a,2 =4π E p,i Pr( i,2 ) μ a,2
σ 2i =Γ F i2 μ a,2 =4πΓ E p,i Pr( i,2 ) μ a,2
P L,i2 = Φ i2 A 2 =4π P i Pr( i,2 ) A 2
P L,i2j =4π P i Pr( i,2 )Pr( 2,j ) A 2 A j Ω j
P L,123 =4π P 1 Pr( 1,2 )Pr( 2,3 ) A 2 A 3 Ω 3
μ a,2 = 1 Γ A 2 A 3 Ω 3 4π P 1 E p,1 E p,3 σ 21 σ 23 P L,123
μ a,2 = A 2 A 3 Ω 3 4π V 2 2 E a,12 * E a,32 * P L,3 *
μ a,2 =C p 21 p 23 P L,13

Metrics