Abstract

A novel distributed fiber optic pressure sensor based on an all-solid photonic band gap fiber is proposed and experimentally demonstrated. The sensor is fabricated by splicing a piece of the photonic crystal fiber (PCF) with a single-mode fiber (SMF), and the free end face of the PCF is filmed with a reflectivity of 99%. The cladding mode is excited at the fiber splice, resulting in the interference between the cladding mode and the core mode. The pressure position can be located by measuring the phase difference of the interferometer, and the pressure can be interrogated by measuring the height of the valley in the white-light optical spectrum. The experimental results show that the pressure and its position along the PCF can be simultaneously interrogated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett. 31(23), 3414–3416 (2006).
    [CrossRef] [PubMed]
  2. A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, “Amplification properties of Er3+-doped photonic crystal fibers,” J. Lightwave Technol. 21(3), 782–788 (2003).
    [CrossRef]
  3. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance,” Opt. Express 14(2), 914–925 (2006).
    [CrossRef] [PubMed]
  4. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  5. T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81(2-3), 325–331 (2005).
    [CrossRef]
  6. M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers,” Appl. Opt. 43(24), 4739–4744 (2004).
    [CrossRef] [PubMed]
  7. F. C. Fávero, S. M. M. Quintero, V. V. Silva, C. Martelli, A. M. B. Braga, I. C. S. Carvalho, and R. W. A. Llerena, “Photonic crystal fiber pressure sensor,” Proc. SPIE 7503, 750364, 750364–4 (2009).
    [CrossRef]
  8. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
    [CrossRef] [PubMed]
  9. C. M. Jewart, S. M. Quintero, A. M. B. Braga, and K. P. Chen, “Design of a highly-birefringent microstructured photonic crystal fiber for pressure monitoring,” Opt. Express 18(25), 25657–25664 (2010).
    [CrossRef] [PubMed]
  10. S. Liang, C. X. Zhang, W. T. Lin, L. J. Li, C. Li, X. J. Feng, and B. Lin, “Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring,” Opt. Lett. 34(12), 1858–1860 (2009).
    [CrossRef] [PubMed]
  11. X. B. Hong, J. Wu, C. Zuo, F. S. Liu, H. X. Guo, and K. Xu, “Dual Michelson interferometers for distributed vibration detection,” Appl. Opt. 50(22), 4333–4338 (2011).
    [CrossRef] [PubMed]
  12. X. L. Li, Q. Z. Sun, J. H. Wo, M. L. Zhang, and D. M. Liu, “Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection,” J. Lightwave Technol. 30(8), 1113–1120 (2012).
    [CrossRef]
  13. K. Hotate and S. O. S. Leng, “Transversal force sensor using polarization-maintaining fiber independent of direction of applied force: proposal and experiment,” in OFS 2002: 15th Optical Fiber Sensors Conference Technical Digest (2002), Vol. 1, pp. 363–366.
  14. P. L. D. Julian, J. Zhang, V. A. Handerek, and A. J. Rogers, “Polarization switching for distributed transverse stress sensing in optical fibers using the optical Kerr effect,” J. Lightwave Technol. 16(12), 2378–2384 (1998).
    [CrossRef]
  15. N. Shibata, A. Nakazono, and Y. Inoue, “Interference between two orthogonally polarized modes traversing a highly birefringent air-silica microstructure fiber,” J. Lightwave Technol. 23(3), 1244–1252 (2005).
    [CrossRef]
  16. C. A. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
    [CrossRef] [PubMed]
  17. S. O. Konorov, A. M. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express 13(9), 3454–3459 (2005).
    [CrossRef] [PubMed]
  18. H. Y. Fu, A. C. L. Wong, P. A. Childs, H. Y. Tam, Y. B. Liao, C. Lu, and P. K. A. Wai, “Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors,” Opt. Express 17(21), 18501–18512 (2009).
    [CrossRef] [PubMed]
  19. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
    [CrossRef] [PubMed]
  20. G. A. Cárdenas-Sevilla, V. Finazzi, J. Villatoro, and V. Pruneri, “Photonic crystal fiber sensor array based on modes overlapping,” Opt. Express 19(8), 7596–7602 (2011).
    [CrossRef] [PubMed]
  21. M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
    [CrossRef]
  22. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: Microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
    [CrossRef]
  23. W. C. Wong, C. C. Chan, L. H. Chen, Z. Q. Tou, and K. C. Leong, “Highly sensitive miniature photonic crystal fiber refractive index sensor based on mode field excitation,” Opt. Lett. 36(9), 1731–1733 (2011).
    [CrossRef] [PubMed]
  24. Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors,” IEEE Photon. Technol. Lett. 20(2), 75–77 (2008).
    [CrossRef]
  25. M. Tsubokawa, T. Higashi, and Y. Negishi, “Mode couplings due to external forces distributed along a polarization-maintaining fiber: an evaluation,” Appl. Opt. 27(1), 166–173 (1988).
    [CrossRef] [PubMed]
  26. Z. Y. Zhang and X. J. Zhou, “Experimental study on white light interferential distributed fiber optic press sensor by multi-points pressed,” J. China Acad. Electron. Inf. Technol. 1(4), 364–368 (2006).
  27. Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method,” Appl. Opt. 47(7), 925–932 (2008).
    [CrossRef] [PubMed]
  28. Y. Li, L. A. Chen, E. Harris, and X. Y. Bao, “Double-pass in-line fiber taper Mach-Zehnder interferometer sensor,” IEEE Photon. Technol. Lett. 22(23), 1750–1752 (2010).
    [CrossRef]

2012 (1)

2011 (4)

2010 (3)

2009 (4)

F. C. Fávero, S. M. M. Quintero, V. V. Silva, C. Martelli, A. M. B. Braga, I. C. S. Carvalho, and R. W. A. Llerena, “Photonic crystal fiber pressure sensor,” Proc. SPIE 7503, 750364, 750364–4 (2009).
[CrossRef]

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

S. Liang, C. X. Zhang, W. T. Lin, L. J. Li, C. Li, X. J. Feng, and B. Lin, “Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring,” Opt. Lett. 34(12), 1858–1860 (2009).
[CrossRef] [PubMed]

H. Y. Fu, A. C. L. Wong, P. A. Childs, H. Y. Tam, Y. B. Liao, C. Lu, and P. K. A. Wai, “Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors,” Opt. Express 17(21), 18501–18512 (2009).
[CrossRef] [PubMed]

2008 (2)

Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method,” Appl. Opt. 47(7), 925–932 (2008).
[CrossRef] [PubMed]

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors,” IEEE Photon. Technol. Lett. 20(2), 75–77 (2008).
[CrossRef]

2007 (1)

2006 (5)

2005 (3)

N. Shibata, A. Nakazono, and Y. Inoue, “Interference between two orthogonally polarized modes traversing a highly birefringent air-silica microstructure fiber,” J. Lightwave Technol. 23(3), 1244–1252 (2005).
[CrossRef]

S. O. Konorov, A. M. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express 13(9), 3454–3459 (2005).
[CrossRef] [PubMed]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81(2-3), 325–331 (2005).
[CrossRef]

2004 (1)

2003 (1)

1998 (1)

1988 (1)

Anuszkiewicz, A.

Bang, O.

Bao, X. Y.

Y. Li, L. A. Chen, E. Harris, and X. Y. Bao, “Double-pass in-line fiber taper Mach-Zehnder interferometer sensor,” IEEE Photon. Technol. Lett. 22(23), 1750–1752 (2010).
[CrossRef]

Berghmans, F.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[CrossRef] [PubMed]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81(2-3), 325–331 (2005).
[CrossRef]

Braga, A. M. B.

C. M. Jewart, S. M. Quintero, A. M. B. Braga, and K. P. Chen, “Design of a highly-birefringent microstructured photonic crystal fiber for pressure monitoring,” Opt. Express 18(25), 25657–25664 (2010).
[CrossRef] [PubMed]

F. C. Fávero, S. M. M. Quintero, V. V. Silva, C. Martelli, A. M. B. Braga, I. C. S. Carvalho, and R. W. A. Llerena, “Photonic crystal fiber pressure sensor,” Proc. SPIE 7503, 750364, 750364–4 (2009).
[CrossRef]

Cárdenas-Sevilla, G. A.

Carvalho, I. C. S.

F. C. Fávero, S. M. M. Quintero, V. V. Silva, C. Martelli, A. M. B. Braga, I. C. S. Carvalho, and R. W. A. Llerena, “Photonic crystal fiber pressure sensor,” Proc. SPIE 7503, 750364, 750364–4 (2009).
[CrossRef]

Chan, C. C.

Chen, K. P.

Chen, L. A.

Y. Li, L. A. Chen, E. Harris, and X. Y. Bao, “Double-pass in-line fiber taper Mach-Zehnder interferometer sensor,” IEEE Photon. Technol. Lett. 22(23), 1750–1752 (2010).
[CrossRef]

Chen, L. H.

Childs, P. A.

Cucinotta, A.

Demokan, M. S.

Dong, L.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Dufva, M.

Fávero, F. C.

F. C. Fávero, S. M. M. Quintero, V. V. Silva, C. Martelli, A. M. B. Braga, I. C. S. Carvalho, and R. W. A. Llerena, “Photonic crystal fiber pressure sensor,” Proc. SPIE 7503, 750364, 750364–4 (2009).
[CrossRef]

Feng, X. J.

Finazzi, V.

Fu, H. Y.

Fu, L. B.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Geernaert, T.

Golojuch, G.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81(2-3), 325–331 (2005).
[CrossRef]

Guan, B. O.

Guo, H. X.

Handerek, V. A.

Harris, E.

Y. Li, L. A. Chen, E. Harris, and X. Y. Bao, “Double-pass in-line fiber taper Mach-Zehnder interferometer sensor,” IEEE Photon. Technol. Lett. 22(23), 1750–1752 (2010).
[CrossRef]

Higashi, T.

Høiby, P. E.

Hong, X. B.

Inoue, Y.

Jensen, J. B.

Jewart, C. M.

Jiang, Y.

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors,” IEEE Photon. Technol. Lett. 20(2), 75–77 (2008).
[CrossRef]

Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method,” Appl. Opt. 47(7), 925–932 (2008).
[CrossRef] [PubMed]

Jin, W.

Julian, P. L. D.

Klimek, J.

Konorov, S. O.

Kriezis, E. E.

Leong, K. C.

Li, C.

Li, L. J.

Li, X. L.

Li, Y.

Y. Li, L. A. Chen, E. Harris, and X. Y. Bao, “Double-pass in-line fiber taper Mach-Zehnder interferometer sensor,” IEEE Photon. Technol. Lett. 22(23), 1750–1752 (2010).
[CrossRef]

Liang, S.

Liao, Y. B.

Lin, B.

Lin, W. T.

Liu, D. M.

Liu, F. S.

Llerena, R. W. A.

F. C. Fávero, S. M. M. Quintero, V. V. Silva, C. Martelli, A. M. B. Braga, I. C. S. Carvalho, and R. W. A. Llerena, “Photonic crystal fiber pressure sensor,” Proc. SPIE 7503, 750364, 750364–4 (2009).
[CrossRef]

Lu, C.

H. Y. Fu, A. C. L. Wong, P. A. Childs, H. Y. Tam, Y. B. Liao, C. Lu, and P. K. A. Wai, “Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors,” Opt. Express 17(21), 18501–18512 (2009).
[CrossRef] [PubMed]

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Makara, M.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[CrossRef] [PubMed]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81(2-3), 325–331 (2005).
[CrossRef]

Martelli, C.

F. C. Fávero, S. M. M. Quintero, V. V. Silva, C. Martelli, A. M. B. Braga, I. C. S. Carvalho, and R. W. A. Llerena, “Photonic crystal fiber pressure sensor,” Proc. SPIE 7503, 750364, 750364–4 (2009).
[CrossRef]

Martynkien, T.

Mergo, P.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[CrossRef] [PubMed]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81(2-3), 325–331 (2005).
[CrossRef]

Nakazono, A.

Nasilowski, T.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[CrossRef] [PubMed]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81(2-3), 325–331 (2005).
[CrossRef]

Negishi, Y.

Olszewski, J.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[CrossRef] [PubMed]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81(2-3), 325–331 (2005).
[CrossRef]

Pedersen, L. H.

Poli, F.

Poturaj, K.

Pruneri, V.

Quintero, S. M.

Quintero, S. M. M.

F. C. Fávero, S. M. M. Quintero, V. V. Silva, C. Martelli, A. M. B. Braga, I. C. S. Carvalho, and R. W. A. Llerena, “Photonic crystal fiber pressure sensor,” Proc. SPIE 7503, 750364, 750364–4 (2009).
[CrossRef]

Qureshi, K. K.

Rindorf, L.

Rogers, A. J.

Russell, P. S. J.

Scalora, M.

Selleri, S.

Shibata, N.

Silva, V. V.

F. C. Fávero, S. M. M. Quintero, V. V. Silva, C. Martelli, A. M. B. Braga, I. C. S. Carvalho, and R. W. A. Llerena, “Photonic crystal fiber pressure sensor,” Proc. SPIE 7503, 750364, 750364–4 (2009).
[CrossRef]

Skorupski, K.

Sonnenfeld, C.

Statkiewicz, G.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81(2-3), 325–331 (2005).
[CrossRef]

Statkiewicz-Barabach, G.

Sun, Q. Z.

Szczurowski, M. K.

Szpulak, M.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81(2-3), 325–331 (2005).
[CrossRef]

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers,” Appl. Opt. 43(24), 4739–4744 (2004).
[CrossRef] [PubMed]

Tam, H. Y.

Tarnowski, K.

Thienpont, H.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[CrossRef] [PubMed]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81(2-3), 325–331 (2005).
[CrossRef]

Thomas, B. K.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Tou, Z. Q.

Tse, M. L. V.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Tsiboukis, T. D.

Tsubokawa, M.

Urbanczyk, W.

Villatoro, J.

Vincetti, L.

Wai, P. K. A.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

H. Y. Fu, A. C. L. Wong, P. A. Childs, H. Y. Tam, Y. B. Liao, C. Lu, and P. K. A. Wai, “Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors,” Opt. Express 17(21), 18501–18512 (2009).
[CrossRef] [PubMed]

Wang, D. N.

Wang, Y.

Wang, Y. P.

Wo, J. H.

Wojcik, J.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[CrossRef] [PubMed]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81(2-3), 325–331 (2005).
[CrossRef]

Wong, A. C. L.

Wong, W. C.

Wu, C. A.

Wu, J.

Xiao, L.

Xiao, L. M.

Xu, K.

Zhang, C. X.

Zhang, J.

Zhang, M. L.

Zhang, Z. Y.

Z. Y. Zhang and X. J. Zhou, “Experimental study on white light interferential distributed fiber optic press sensor by multi-points pressed,” J. China Acad. Electron. Inf. Technol. 1(4), 364–368 (2006).

Zhao, C. L.

Zheltikov, A. M.

Zhou, X. J.

Z. Y. Zhang and X. J. Zhou, “Experimental study on white light interferential distributed fiber optic press sensor by multi-points pressed,” J. China Acad. Electron. Inf. Technol. 1(4), 364–368 (2006).

Zoboli, M.

Zografopoulos, D. C.

Zuo, C.

Appl. Opt. (4)

Appl. Phys. B (1)

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81(2-3), 325–331 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors,” IEEE Photon. Technol. Lett. 20(2), 75–77 (2008).
[CrossRef]

Y. Li, L. A. Chen, E. Harris, and X. Y. Bao, “Double-pass in-line fiber taper Mach-Zehnder interferometer sensor,” IEEE Photon. Technol. Lett. 22(23), 1750–1752 (2010).
[CrossRef]

J. China Acad. Electron. Inf. Technol. (1)

Z. Y. Zhang and X. J. Zhou, “Experimental study on white light interferential distributed fiber optic press sensor by multi-points pressed,” J. China Acad. Electron. Inf. Technol. 1(4), 364–368 (2006).

J. Lightwave Technol. (6)

Opt. Express (7)

G. A. Cárdenas-Sevilla, V. Finazzi, J. Villatoro, and V. Pruneri, “Photonic crystal fiber sensor array based on modes overlapping,” Opt. Express 19(8), 7596–7602 (2011).
[CrossRef] [PubMed]

H. Y. Fu, A. C. L. Wong, P. A. Childs, H. Y. Tam, Y. B. Liao, C. Lu, and P. K. A. Wai, “Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors,” Opt. Express 17(21), 18501–18512 (2009).
[CrossRef] [PubMed]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[CrossRef] [PubMed]

C. M. Jewart, S. M. Quintero, A. M. B. Braga, and K. P. Chen, “Design of a highly-birefringent microstructured photonic crystal fiber for pressure monitoring,” Opt. Express 18(25), 25657–25664 (2010).
[CrossRef] [PubMed]

S. O. Konorov, A. M. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express 13(9), 3454–3459 (2005).
[CrossRef] [PubMed]

D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance,” Opt. Express 14(2), 914–925 (2006).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. SPIE (1)

F. C. Fávero, S. M. M. Quintero, V. V. Silva, C. Martelli, A. M. B. Braga, I. C. S. Carvalho, and R. W. A. Llerena, “Photonic crystal fiber pressure sensor,” Proc. SPIE 7503, 750364, 750364–4 (2009).
[CrossRef]

Other (1)

K. Hotate and S. O. S. Leng, “Transversal force sensor using polarization-maintaining fiber independent of direction of applied force: proposal and experiment,” in OFS 2002: 15th Optical Fiber Sensors Conference Technical Digest (2002), Vol. 1, pp. 363–366.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The cross section of the all-solid photonic band gap fiber. (a) Without the reflector, (b) With the reflector.

Fig. 2
Fig. 2

The fiber splice of the sensor.

Fig. 3
Fig. 3

The principle of the mode coupling. (a) The PCF is not pressed, (b) The PCF is pressed.

Fig. 4
Fig. 4

The relationship between the normalization light power and the coupling coefficient.

Fig. 5
Fig. 5

The schematic diagram of experimental setup.

Fig. 6
Fig. 6

The interference pattern without pressure.

Fig. 7
Fig. 7

The interference patterns with pressure on different points, the distances from the pressure point to the filmed end are: (a) 1cm, (b) 2cm, (c) 3cm, (d) 4cm, (e) 5cm, (f) 6cm.

Fig. 8
Fig. 8

The relationships between the pressure and the valley at different pressure location, apart from the fiber splice: (a) 1cm, (b) 2cm, (c) 3cm, (d) 4cm, (e) 5cm, (f) 6cm.

Tables (1)

Tables Icon

Table 1 Identification of Pressure Position

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δφ= 2πΔ n eff 2L( λ 2 λ 1 ) λ 1 λ 2
Δφ= 2πΔ n eff (L+ L )( λ 2 λ 1 ) λ 1 λ 2
I=rRe[ E co * ( t ) E cl ( t+τ ) ] =r h(1h) cos[ 2π λ Δ n eff0 (L L ) ω 0 τ ] e ( 2 S 2 Δ ω 2 c 2 ) ; S= 2π λ ( Δ n eff /ω )(L L )cτc=( D(L L )τ )c
I S =r(1h)
I N = I I S = h 1h cos[ 2π λ Δ n eff0 z ω 0 τ ]exp( S 2 Δ ω 2 2 c 2 )
I N h 1h
I N k 2 1 k 2

Metrics