Abstract

Surface plasmon-coupled emission (SPCE) from emitters in a close proximity to a plasmonic Bragg grating is investigated. In this study, the directional fluorescence emission mediated by Bragg-scattered surface plasmons and surface plasmons diffraction cross-coupled through a thin metallic film is observed by using the reverse Kretschmann configuration. We show that controlling of dispersion relation of these surface plasmon modes by tuning the refractive index at upper and lower interfaces of a dense sub-wavelength metallic grating enables selective reducing or increasing the intensity of the light emitted to certain directions. These observations may provide important leads for design of advanced plasmonic structures in applications areas of plasmon-enhanced fluorescence spectroscopy and nanoscale optical sources.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
    [CrossRef] [PubMed]
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [CrossRef]
  3. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1393–1396 (2002).
    [CrossRef]
  4. S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8(2-3), 136–147 (2007).
    [CrossRef]
  5. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons,” Opt. Express 17(10), 8294–8301 (2009).
    [CrossRef] [PubMed]
  6. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
    [CrossRef] [PubMed]
  7. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
    [CrossRef] [PubMed]
  8. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
    [CrossRef]
  9. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
    [CrossRef]
  10. P. Andrew and W. L. Barnes, “Molecular fluorescence above metallic gratings,” Phys. Rev. B 64(12), 125405 (2001).
    [CrossRef]
  11. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
    [CrossRef] [PubMed]
  12. W. Knoll, M. R. Philpott, and J. D. Swalen, “Emission of Light from Ag Metal Gratings Coated with Dye Monolayer Assemblies,” J. Chem. Phys. 75(10), 4795–4799 (1981).
    [CrossRef]
  13. R. M. Amos and W. L. Barnes, “Modification of spontaneous emission lifetimes in the presence of corrugated metallic surfaces,” Phys. Rev. B 59(11), 7708–7714 (1999).
    [CrossRef]
  14. K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
    [CrossRef] [PubMed]
  15. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-Plasmon Energy Gaps and Photoluminescence,” Phys. Rev. B Condens. Matter 52(15), 11441–11445 (1995).
    [CrossRef] [PubMed]
  16. M. Kreiter, S. Mittler, W. Knoll, and J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65(12), 125415 (2002).
    [CrossRef]
  17. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004).
    [CrossRef] [PubMed]
  18. W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4(8), 236–238 (1979).
    [CrossRef] [PubMed]
  19. E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Multi-wavelength immunoassays using surface plasmon-coupled emission,” Biochem. Biophys. Res. Commun. 313(3), 721–726 (2004).
    [CrossRef] [PubMed]
  20. K. Toma, J. Dostalek, and W. Knoll, “Long range surface plasmon-coupled fluorescence emission for biosensor applications,” Opt. Express 19(12), 11090–11099 (2011).
    [CrossRef] [PubMed]
  21. Y. Wang, J. Dostalek, and W. Knoll, “Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance,” Anal. Chem. 83(16), 6202–6207 (2011).
    [CrossRef] [PubMed]
  22. E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen,” Z. Phys. 241(4), 313–324 (1971).
    [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  24. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
    [CrossRef] [PubMed]
  25. F. Romanato, L. Hong, H. K. Kang, C. C. Wong, Y. Zong, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
    [CrossRef]

2011

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[CrossRef] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

K. Toma, J. Dostalek, and W. Knoll, “Long range surface plasmon-coupled fluorescence emission for biosensor applications,” Opt. Express 19(12), 11090–11099 (2011).
[CrossRef] [PubMed]

Y. Wang, J. Dostalek, and W. Knoll, “Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance,” Anal. Chem. 83(16), 6202–6207 (2011).
[CrossRef] [PubMed]

2009

2008

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
[CrossRef] [PubMed]

F. Romanato, L. Hong, H. K. Kang, C. C. Wong, Y. Zong, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[CrossRef]

2007

S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8(2-3), 136–147 (2007).
[CrossRef]

2004

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004).
[CrossRef] [PubMed]

E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Multi-wavelength immunoassays using surface plasmon-coupled emission,” Biochem. Biophys. Res. Commun. 313(3), 721–726 (2004).
[CrossRef] [PubMed]

2003

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

2002

M. Kreiter, S. Mittler, W. Knoll, and J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65(12), 125415 (2002).
[CrossRef]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1393–1396 (2002).
[CrossRef]

2001

P. Andrew and W. L. Barnes, “Molecular fluorescence above metallic gratings,” Phys. Rev. B 64(12), 125405 (2001).
[CrossRef]

1999

R. M. Amos and W. L. Barnes, “Modification of spontaneous emission lifetimes in the presence of corrugated metallic surfaces,” Phys. Rev. B 59(11), 7708–7714 (1999).
[CrossRef]

1998

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

1996

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

1995

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-Plasmon Energy Gaps and Photoluminescence,” Phys. Rev. B Condens. Matter 52(15), 11441–11445 (1995).
[CrossRef] [PubMed]

1984

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

1981

W. Knoll, M. R. Philpott, and J. D. Swalen, “Emission of Light from Ag Metal Gratings Coated with Dye Monolayer Assemblies,” J. Chem. Phys. 75(10), 4795–4799 (1981).
[CrossRef]

1979

1971

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen,” Z. Phys. 241(4), 313–324 (1971).
[CrossRef]

Amos, R. M.

R. M. Amos and W. L. Barnes, “Modification of spontaneous emission lifetimes in the presence of corrugated metallic surfaces,” Phys. Rev. B 59(11), 7708–7714 (1999).
[CrossRef]

Andrew, P.

P. Andrew and W. L. Barnes, “Molecular fluorescence above metallic gratings,” Phys. Rev. B 64(12), 125405 (2001).
[CrossRef]

Aouani, H.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[CrossRef] [PubMed]

Barnes, W. L.

S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8(2-3), 136–147 (2007).
[CrossRef]

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004).
[CrossRef] [PubMed]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1393–1396 (2002).
[CrossRef]

P. Andrew and W. L. Barnes, “Molecular fluorescence above metallic gratings,” Phys. Rev. B 64(12), 125405 (2001).
[CrossRef]

R. M. Amos and W. L. Barnes, “Modification of spontaneous emission lifetimes in the presence of corrugated metallic surfaces,” Phys. Rev. B 59(11), 7708–7714 (1999).
[CrossRef]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-Plasmon Energy Gaps and Photoluminescence,” Phys. Rev. B Condens. Matter 52(15), 11441–11445 (1995).
[CrossRef] [PubMed]

Bonod, N.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[CrossRef] [PubMed]

Chowdhury, M.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Devaux, E.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[CrossRef] [PubMed]

Dostalek, J.

K. Toma, J. Dostalek, and W. Knoll, “Long range surface plasmon-coupled fluorescence emission for biosensor applications,” Opt. Express 19(12), 11090–11099 (2011).
[CrossRef] [PubMed]

Y. Wang, J. Dostalek, and W. Knoll, “Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance,” Anal. Chem. 83(16), 6202–6207 (2011).
[CrossRef] [PubMed]

Dostálek, J.

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

Eagen, C. F.

Ebbesen, T. W.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[CrossRef] [PubMed]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Fu, Y.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Giannattasio, A.

S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8(2-3), 136–147 (2007).
[CrossRef]

Gryczynski, I.

E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Multi-wavelength immunoassays using surface plasmon-coupled emission,” Biochem. Biophys. Res. Commun. 313(3), 721–726 (2004).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

Gryczynski, Z.

E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Multi-wavelength immunoassays using surface plasmon-coupled emission,” Biochem. Biophys. Res. Commun. 313(3), 721–726 (2004).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

Hobson, P. A.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1393–1396 (2002).
[CrossRef]

Hong, L.

F. Romanato, L. Hong, H. K. Kang, C. C. Wong, Y. Zong, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[CrossRef]

Hori, H.

Kang, H. K.

F. Romanato, L. Hong, H. K. Kang, C. C. Wong, Y. Zong, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[CrossRef]

Kawata, S.

Kintaka, K.

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-Plasmon Energy Gaps and Photoluminescence,” Phys. Rev. B Condens. Matter 52(15), 11441–11445 (1995).
[CrossRef] [PubMed]

Kiyosue, K.

Knoll, W.

Y. Wang, J. Dostalek, and W. Knoll, “Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance,” Anal. Chem. 83(16), 6202–6207 (2011).
[CrossRef] [PubMed]

K. Toma, J. Dostalek, and W. Knoll, “Long range surface plasmon-coupled fluorescence emission for biosensor applications,” Opt. Express 19(12), 11090–11099 (2011).
[CrossRef] [PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

F. Romanato, L. Hong, H. K. Kang, C. C. Wong, Y. Zong, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[CrossRef]

M. Kreiter, S. Mittler, W. Knoll, and J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65(12), 125415 (2002).
[CrossRef]

W. Knoll, M. R. Philpott, and J. D. Swalen, “Emission of Light from Ag Metal Gratings Coated with Dye Monolayer Assemblies,” J. Chem. Phys. 75(10), 4795–4799 (1981).
[CrossRef]

Kreiter, M.

M. Kreiter, S. Mittler, W. Knoll, and J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65(12), 125415 (2002).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen,” Z. Phys. 241(4), 313–324 (1971).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Multi-wavelength immunoassays using surface plasmon-coupled emission,” Biochem. Biophys. Res. Commun. 313(3), 721–726 (2004).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

Mahboub, O.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[CrossRef] [PubMed]

Malicka, J.

E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Multi-wavelength immunoassays using surface plasmon-coupled emission,” Biochem. Biophys. Res. Commun. 313(3), 721–726 (2004).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

Matveeva, E.

E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Multi-wavelength immunoassays using surface plasmon-coupled emission,” Biochem. Biophys. Res. Commun. 313(3), 721–726 (2004).
[CrossRef] [PubMed]

Mittler, S.

M. Kreiter, S. Mittler, W. Knoll, and J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65(12), 125415 (2002).
[CrossRef]

Nishii, J.

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

Nowaczyk, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Okamoto, T.

Philpott, M. R.

W. Knoll, M. R. Philpott, and J. D. Swalen, “Emission of Light from Ag Metal Gratings Coated with Dye Monolayer Assemblies,” J. Chem. Phys. 75(10), 4795–4799 (1981).
[CrossRef]

Popov, E.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[CrossRef] [PubMed]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Ray, K.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Rigneault, H.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[CrossRef] [PubMed]

Romanato, F.

F. Romanato, L. Hong, H. K. Kang, C. C. Wong, Y. Zong, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[CrossRef]

Sage, I.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1393–1396 (2002).
[CrossRef]

Sambles, J. R.

M. Kreiter, S. Mittler, W. Knoll, and J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65(12), 125415 (2002).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-Plasmon Energy Gaps and Photoluminescence,” Phys. Rev. B Condens. Matter 52(15), 11441–11445 (1995).
[CrossRef] [PubMed]

Simonen, J.

Swalen, J. D.

W. Knoll, M. R. Philpott, and J. D. Swalen, “Emission of Light from Ag Metal Gratings Coated with Dye Monolayer Assemblies,” J. Chem. Phys. 75(10), 4795–4799 (1981).
[CrossRef]

Szmacinski, H.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Tatsu, Y.

Tawa, K.

Toma, K.

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

Wang, Y.

Y. Wang, J. Dostalek, and W. Knoll, “Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance,” Anal. Chem. 83(16), 6202–6207 (2011).
[CrossRef] [PubMed]

Wasey, J. A. E.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1393–1396 (2002).
[CrossRef]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4(8), 236–238 (1979).
[CrossRef] [PubMed]

Wedge, S.

S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8(2-3), 136–147 (2007).
[CrossRef]

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004).
[CrossRef] [PubMed]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1393–1396 (2002).
[CrossRef]

Wenger, J.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[CrossRef] [PubMed]

Wong, C. C.

F. Romanato, L. Hong, H. K. Kang, C. C. Wong, Y. Zong, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[CrossRef]

Zhang, J.

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Zong, Y.

F. Romanato, L. Hong, H. K. Kang, C. C. Wong, Y. Zong, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1393–1396 (2002).
[CrossRef]

Anal. Chem.

Y. Wang, J. Dostalek, and W. Knoll, “Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance,” Anal. Chem. 83(16), 6202–6207 (2011).
[CrossRef] [PubMed]

Analyst (Lond.)

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.) 133(10), 1308–1346 (2008).
[CrossRef] [PubMed]

Biochem. Biophys. Res. Commun.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Multi-wavelength immunoassays using surface plasmon-coupled emission,” Biochem. Biophys. Res. Commun. 313(3), 721–726 (2004).
[CrossRef] [PubMed]

Biointerphases

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

J. Chem. Phys.

W. Knoll, M. R. Philpott, and J. D. Swalen, “Emission of Light from Ag Metal Gratings Coated with Dye Monolayer Assemblies,” J. Chem. Phys. 75(10), 4795–4799 (1981).
[CrossRef]

J. Mod. Opt.

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

Nano Lett.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[CrossRef] [PubMed]

Nat. Photonics

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Org. Electron.

S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8(2-3), 136–147 (2007).
[CrossRef]

Phys. Rep.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Phys. Rev. B

P. Andrew and W. L. Barnes, “Molecular fluorescence above metallic gratings,” Phys. Rev. B 64(12), 125405 (2001).
[CrossRef]

M. Kreiter, S. Mittler, W. Knoll, and J. R. Sambles, “Surface plasmon-related resonances on deep and asymmetric gold gratings,” Phys. Rev. B 65(12), 125415 (2002).
[CrossRef]

R. M. Amos and W. L. Barnes, “Modification of spontaneous emission lifetimes in the presence of corrugated metallic surfaces,” Phys. Rev. B 59(11), 7708–7714 (1999).
[CrossRef]

F. Romanato, L. Hong, H. K. Kang, C. C. Wong, Y. Zong, and W. Knoll, “Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons,” Phys. Rev. B 77(24), 245435 (2008).
[CrossRef]

Phys. Rev. B Condens. Matter

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-Plasmon Energy Gaps and Photoluminescence,” Phys. Rev. B Condens. Matter 52(15), 11441–11445 (1995).
[CrossRef] [PubMed]

Z. Phys.

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen,” Z. Phys. 241(4), 313–324 (1971).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diffraction grating supporting surface plasmons that serve as emission channels for DiD dyes dispersed in a PMMA layer. Refractive indices of layers at the wavelength λem = 670 nm are shown for each layer.

Fig. 2
Fig. 2

Optical setup used for the measurement of (a) reflectivity spectra R as a function of angle of incidence θI, polar angle ϕ, and wavelength λ and (b) spatial distribution of surface plasmon-coupled emission in the glass substrate.

Fig. 3
Fig. 3

Simulated average energy dissipation density dP/dk// of dyes dispersed in the 40 nm thick PMMA layer on the top of gold film with (t3 = 100 nm, black line) or without (t3 = 0 nm, red line) Ta2O5 layer. LaSFN9 (black line) and BK7 (red line) substrates were assumed. The PMMA layer is in contact with water (n6 = 1.33).

Fig. 4
Fig. 4

Simulated reflectivity for grating modulation depth d = 30 nm and Ta2O5 layer with the thickness of (a) t3 = 100 nm and (b) t3 = 0 nm. The reflectivity (a) was calculated for LASFN9 substrate and (b) for BK7 substrate. Water on the top of PMMA layer and the azimuth angle ϕ = 0 deg are assumed.

Fig. 5
Fig. 5

Electric field intensity across the Bragg grating |E|2 normalized with the maximum intensity |(E)max|2 calculated for (a) ATR–coupled BSSP mode ω+ and (b) ATR–coupled BSSP mode ω- at the outer gold interface, (c) grating-coupled propagating SP at the inner gold interface, and (d) coupled surface plasmon at the inner and outer interfaces. The respective angles and wavelengths are noted as circles in Fig. 4.

Fig. 6
Fig. 6

(a) Dispersion relation of surface plasmons and (b) corresponding fluorescence emission image for flat layer structure on LaSFN9 substrate without Ta2O5 layer (t3 = 0 nm) and air on the top n6 = 1.

Fig. 7
Fig. 7

Dispersion relations of surface plasmon modes on a gold grating surface with the Ta2O5 layer (t3 = 100 nm) and water on the top (n6 = 1.33) for the modulation depth of (a) d = 10 nm and (c) d = 30 nm. Corresponding spatial distribution of fluorescence light emitted into a LaSFN9 glass substrate for grating with the modulation depth of (b) d = 10 nm and (d) d = 30 nm.

Fig. 8
Fig. 8

Azimuth dependence of surface plasmon dispersion relation on a grating with the modulation depth d = 30 nm, Ta2O5 layer thickness t3 = 100 nm, and water medium on the top n6 = 1.33: (a) ϕ = 0 deg, (b) ϕ = 30 deg, (c) ϕ = 50 deg and (d) ϕ = 90 deg. Polar angles in LaSFN9 glass were measured. Momentum vector scheme for azimuth dependence of (e) Bragg-scaterred SPouter and (f) diffraction grating-coupled SPinner.

Fig. 9
Fig. 9

Dispersion relation of cross-coupled surface plasmon modes for grating with the modulation depth of d = 30 nm and without Ta2O5 layer t3 = 0 nm and the refractive index of upper medium (a) n6 = 1 and (c) n6 = 1.33 and respective fluorescence distributions emitted through the substrate (b) and (d).

Metrics