Abstract

A continuously tunable microwave phase shifter based on slow and fast light effects in a tilted fiber Bragg grating (TFBG) written in an erbium/ytterbium (Er/Yb) co-doped fiber is proposed and experimentally demonstrated. By optically pumping the TFBG, the magnitude and phase responses of the cladding mode resonances are changed, which is used to introduce a tunable phase shift to the optical carrier of a single-sideband modulated signal. The beating between the phase-shifted optical carrier and the sideband will generate a microwave signal with the phase shift from the optical carrier directly translated to the generated microwave signal. A tunable phase shifter with a tunable phase shift of 280° at a microwave frequency tunable from 24 to 36 GHz is experimentally demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  2. G. Ball, W. H. Glenn, and W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6(6), 741–743 (1994).
    [CrossRef]
  3. J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg grating for phased array antennas,” Electron. Lett. 33(7), 545–546 (1997).
    [CrossRef]
  4. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
    [CrossRef]
  5. M. Fisher and S. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
    [CrossRef]
  6. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
    [CrossRef]
  7. P. K. Kondratko and S. L. Chuang, “Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier,” Opt. Express 15(16), 9963–9969 (2007).
    [CrossRef] [PubMed]
  8. F. Öhman, K. Yvind, and J. Mørk, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photon. Technol. Lett. 19(15), 1145–1147 (2007).
    [CrossRef]
  9. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009).
    [CrossRef] [PubMed]
  10. J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
    [CrossRef] [PubMed]
  11. D. Sáez-Rodriguez, J. L. Cruz, A. Díez, and M. V. Andrés, “Coupling between counterpropagating cladding modes in fiber Bragg gratings,” Opt. Lett. 36(8), 1518–1520 (2011).
    [CrossRef] [PubMed]
  12. M. K. Davis, M. J. Digonnet, and R. Pantell, “Thermal effects in doped fibers,” J. Lightwave Technol. 16(6), 1013–1023 (1998).
    [CrossRef]
  13. H. Shahoei, M. Li, and J. P. Yao, “Continuously tunable time delay using an optically pumped linearly chirped fiber Bragg grating,” J. Lightwave Technol. 29(10), 1465–1472 (2011).
    [CrossRef]
  14. L. Dong, B. Ortega, and L. Reekie, “Coupling characteristics of cladding modes in tilted optical fiber Bragg grating,” Appl. Opt. 37(22), 5099–5105 (1998).
    [CrossRef]

2011

2009

2007

P. K. Kondratko and S. L. Chuang, “Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier,” Opt. Express 15(16), 9963–9969 (2007).
[CrossRef] [PubMed]

F. Öhman, K. Yvind, and J. Mørk, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photon. Technol. Lett. 19(15), 1145–1147 (2007).
[CrossRef]

2006

M. Fisher and S. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

2005

1998

1997

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg grating for phased array antennas,” Electron. Lett. 33(7), 545–546 (1997).
[CrossRef]

1994

G. Ball, W. H. Glenn, and W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6(6), 741–743 (1994).
[CrossRef]

Andres, M. V.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg grating for phased array antennas,” Electron. Lett. 33(7), 545–546 (1997).
[CrossRef]

Andrés, M. V.

Ball, G.

G. Ball, W. H. Glenn, and W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6(6), 741–743 (1994).
[CrossRef]

Capmany, J.

Chuang, S.

M. Fisher and S. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
[CrossRef]

Chuang, S. L.

Cruz, J. L.

D. Sáez-Rodriguez, J. L. Cruz, A. Díez, and M. V. Andrés, “Coupling between counterpropagating cladding modes in fiber Bragg gratings,” Opt. Lett. 36(8), 1518–1520 (2011).
[CrossRef] [PubMed]

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg grating for phased array antennas,” Electron. Lett. 33(7), 545–546 (1997).
[CrossRef]

Davis, M. K.

Díez, A.

Digonnet, M. J.

Dong, L.

L. Dong, B. Ortega, and L. Reekie, “Coupling characteristics of cladding modes in tilted optical fiber Bragg grating,” Appl. Opt. 37(22), 5099–5105 (1998).
[CrossRef]

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg grating for phased array antennas,” Electron. Lett. 33(7), 545–546 (1997).
[CrossRef]

Fisher, M.

M. Fisher and S. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
[CrossRef]

Gasulla, I.

Gimeno, B.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg grating for phased array antennas,” Electron. Lett. 33(7), 545–546 (1997).
[CrossRef]

Glenn, W. H.

G. Ball, W. H. Glenn, and W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6(6), 741–743 (1994).
[CrossRef]

Kondratko, P. K.

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

Li, M.

Lloret, J.

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

Morey, W. W.

G. Ball, W. H. Glenn, and W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6(6), 741–743 (1994).
[CrossRef]

Mørk, J.

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009).
[CrossRef] [PubMed]

F. Öhman, K. Yvind, and J. Mørk, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photon. Technol. Lett. 19(15), 1145–1147 (2007).
[CrossRef]

Öhman, F.

F. Öhman, K. Yvind, and J. Mørk, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photon. Technol. Lett. 19(15), 1145–1147 (2007).
[CrossRef]

Ortega, B.

Pantell, R.

Pastor, D.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
[CrossRef]

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg grating for phased array antennas,” Electron. Lett. 33(7), 545–546 (1997).
[CrossRef]

Reekie, L.

Sáez-Rodriguez, D.

Sales, S.

Sancho, J.

Shahoei, H.

Xue, W.

Yao, J. P.

Yvind, K.

F. Öhman, K. Yvind, and J. Mørk, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photon. Technol. Lett. 19(15), 1145–1147 (2007).
[CrossRef]

Appl. Opt.

Electron. Lett.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fiber Bragg grating for phased array antennas,” Electron. Lett. 33(7), 545–546 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Ball, W. H. Glenn, and W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6(6), 741–743 (1994).
[CrossRef]

M. Fisher and S. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

F. Öhman, K. Yvind, and J. Mørk, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photon. Technol. Lett. 19(15), 1145–1147 (2007).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The transmission spectrum of a TFBG with a tilt angle of 6°, and a Bragg wavelength of 1560 nm.

Fig. 2
Fig. 2

(a) The magnitude response, and (b) the phase response of one cladding-mode resonance channel of the TFBG. PP: pumping power.

Fig. 3
Fig. 3

Schematic block diagram of the proposed phase shifter. OSSB: optical signal-sideband, PD: photodetector.

Fig. 4
Fig. 4

Experimental setup. TLS: tunable laser source, PC: polarization controller, MZM: Mach–Zehnder modulator, LD: laser diode, WDM: 980/1550 nm wavelength division multiplexer, EDFA: erbium-doped fiber amplifier, PD: photo-detector, OSC: oscilloscope.

Fig. 5
Fig. 5

The detected signals at pump power levels of 30, 60 and 95 mW for the RF frequency of 28 GHz, and (b) 34 GHz. PP: pumping power.

Fig. 6
Fig. 6

Measured phase shifts at different pumping power levels. The phase shifts are independent of the microwave frequency.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ Bragg = 2 n eff,core Λ g cosθ ,
λ coupling =( n eff,cladding + n eff,core ) Λ g cosθ
Δn(z) dp(z) dz ,
E in (t)= A 0 exp(j2π v 0 t)+ A 1 exp[ j2π( v 0 + f RF )t ],
E out (t)= A 0 Aexp(jφ)exp(j2π v 0 t)+ A 1 exp[ j2π( v 0 + f RF )t ].
I(t)=R | E out | 2 =RA A 0 cos(2π f RF t+φ)

Metrics