Abstract

Fibre Bragg gratings are written across all 120 single-mode cores of a multi-core optical fibre. The fibre is interfaced to multimode ports by tapering it within a depressed-index glass jacket. The result is a compact multimode “photonic lantern” filter with astrophotonic applications. The tapered structure is also an effective mode scrambler.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett. 30(19), 2545–2547 (2005).
    [CrossRef] [PubMed]
  2. D. Noordegraaf, P. M. W. Skovgaard, M. D. Nielsen, and J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express 17(3), 1988–1994 (2009).
    [CrossRef] [PubMed]
  3. S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18(8), 8430–8439 (2010).
    [CrossRef] [PubMed]
  4. J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun 2, 581 (2011).
    [CrossRef] [PubMed]
  5. J. Bland-Hawthorn, M. Englund, and G. Edvell, “New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating,” Opt. Express 12(24), 5902–5909 (2004).
    [CrossRef] [PubMed]
  6. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
    [CrossRef] [PubMed]
  7. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
    [CrossRef] [PubMed]
  8. C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of Fiber Bragg Gratings in Multicore Fiber,” in Nonlinear Photonics, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWA39.
  9. T. A. Birks, A. Diez, J. L. Cruz, S. G. Leon-Saval, and D. F. Murphy, “Fibers are looking up: optical fibre transition structures in astrophotonics,”in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FTuU1.
  10. T. A. Birks, B. J. Mangan, A. Diez, J. L. Cruz, S. G. Leon-Saval, J. Bland-Hawthorn, and D. F. Murphy, “Multicore optical fibres for astrophotonics,”inCLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JSIII2_1.
  11. E. Carrasco and I. R. Parry, “A method for determining the focal ratio degradation of optical fibres for astronomy,” Mon. Not. R. Astron. Soc. 271, 1–12 (1994).
  12. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  13. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971).
    [CrossRef] [PubMed]
  14. M. Olivero, G. Perrone, and A. Vallan, “Near-field measurements and mode power distribution of multimode optical fibers,” IEEE Trans. Instrum. Meas. 59(5), 1382–1388 (2010).
    [CrossRef]
  15. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomodephotosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [CrossRef]
  16. H. F. Taylor, “Bending effects in optical fibers,” J. Lightwave Technol. 2(5), 617–628 (1984).
    [CrossRef]
  17. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. Pt. J 138, 343–354 (1991).
  18. BeamPROP by RSoft, http://www.rsoftdesign.com .
  19. MMF preform supplied by j-fiber, http://www.j-fiber.com .
  20. M. Ohashi, M. Tateda, K. Tajima, and K. Shiraki, “Fluorine concentration dependence of viscosity in F-doped silica glass,” Electron. Lett. 28(11), 1008–1010 (1992).
    [CrossRef]

2011 (2)

J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun 2, 581 (2011).
[CrossRef] [PubMed]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[CrossRef] [PubMed]

2010 (2)

M. Olivero, G. Perrone, and A. Vallan, “Near-field measurements and mode power distribution of multimode optical fibers,” IEEE Trans. Instrum. Meas. 59(5), 1382–1388 (2010).
[CrossRef]

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18(8), 8430–8439 (2010).
[CrossRef] [PubMed]

2009 (1)

2005 (1)

2004 (1)

2003 (1)

1994 (1)

E. Carrasco and I. R. Parry, “A method for determining the focal ratio degradation of optical fibres for astronomy,” Mon. Not. R. Astron. Soc. 271, 1–12 (1994).

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomodephotosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

1992 (1)

M. Ohashi, M. Tateda, K. Tajima, and K. Shiraki, “Fluorine concentration dependence of viscosity in F-doped silica glass,” Electron. Lett. 28(11), 1008–1010 (1992).
[CrossRef]

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. Pt. J 138, 343–354 (1991).

1984 (1)

H. F. Taylor, “Bending effects in optical fibers,” J. Lightwave Technol. 2(5), 617–628 (1984).
[CrossRef]

1971 (1)

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomodephotosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Argyros, A.

Barton, J. S.

Bennion, I.

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomodephotosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Birks, T. A.

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[CrossRef] [PubMed]

J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun 2, 581 (2011).
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett. 30(19), 2545–2547 (2005).
[CrossRef] [PubMed]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. Pt. J 138, 343–354 (1991).

Bland-Hawthorn, J.

Carrasco, E.

E. Carrasco and I. R. Parry, “A method for determining the focal ratio degradation of optical fibres for astronomy,” Mon. Not. R. Astron. Soc. 271, 1–12 (1994).

Cuby, J.-G.

J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun 2, 581 (2011).
[CrossRef] [PubMed]

Edvell, G.

Ellis, S. C.

J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun 2, 581 (2011).
[CrossRef] [PubMed]

Englund, M.

Flockhart, G. M. H.

Gillingham, P.

J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun 2, 581 (2011).
[CrossRef] [PubMed]

Gloge, D.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. Pt. J 138, 343–354 (1991).

Haynes, R.

J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun 2, 581 (2011).
[CrossRef] [PubMed]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. Pt. J 138, 343–354 (1991).

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomodephotosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Horton, A. J.

J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun 2, 581 (2011).
[CrossRef] [PubMed]

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomodephotosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Jones, J. D. C.

Kar, A. K.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. Pt. J 138, 343–354 (1991).

Lawrence, J. S.

J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun 2, 581 (2011).
[CrossRef] [PubMed]

Leon-Saval, S. G.

Löhmannsröben, H.-G.

J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun 2, 581 (2011).
[CrossRef] [PubMed]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. Pt. J 138, 343–354 (1991).

MacPherson, W. N.

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomodephotosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Nielsen, M. D.

Noordegraaf, D.

Ohashi, M.

M. Ohashi, M. Tateda, K. Tajima, and K. Shiraki, “Fluorine concentration dependence of viscosity in F-doped silica glass,” Electron. Lett. 28(11), 1008–1010 (1992).
[CrossRef]

Olivero, M.

M. Olivero, G. Perrone, and A. Vallan, “Near-field measurements and mode power distribution of multimode optical fibers,” IEEE Trans. Instrum. Meas. 59(5), 1382–1388 (2010).
[CrossRef]

Parry, I. R.

E. Carrasco and I. R. Parry, “A method for determining the focal ratio degradation of optical fibres for astronomy,” Mon. Not. R. Astron. Soc. 271, 1–12 (1994).

Perrone, G.

M. Olivero, G. Perrone, and A. Vallan, “Near-field measurements and mode power distribution of multimode optical fibers,” IEEE Trans. Instrum. Meas. 59(5), 1382–1388 (2010).
[CrossRef]

Roth, M. M.

J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun 2, 581 (2011).
[CrossRef] [PubMed]

Ryder, S. D.

J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun 2, 581 (2011).
[CrossRef] [PubMed]

Shiraki, K.

M. Ohashi, M. Tateda, K. Tajima, and K. Shiraki, “Fluorine concentration dependence of viscosity in F-doped silica glass,” Electron. Lett. 28(11), 1008–1010 (1992).
[CrossRef]

Skovgaard, P. M. W.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. Pt. J 138, 343–354 (1991).

Tajima, K.

M. Ohashi, M. Tateda, K. Tajima, and K. Shiraki, “Fluorine concentration dependence of viscosity in F-doped silica glass,” Electron. Lett. 28(11), 1008–1010 (1992).
[CrossRef]

Tateda, M.

M. Ohashi, M. Tateda, K. Tajima, and K. Shiraki, “Fluorine concentration dependence of viscosity in F-doped silica glass,” Electron. Lett. 28(11), 1008–1010 (1992).
[CrossRef]

Taylor, H. F.

H. F. Taylor, “Bending effects in optical fibers,” J. Lightwave Technol. 2(5), 617–628 (1984).
[CrossRef]

Thomson, R. R.

Trinh, C.

J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun 2, 581 (2011).
[CrossRef] [PubMed]

Vallan, A.

M. Olivero, G. Perrone, and A. Vallan, “Near-field measurements and mode power distribution of multimode optical fibers,” IEEE Trans. Instrum. Meas. 59(5), 1382–1388 (2010).
[CrossRef]

Zhang, L.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomodephotosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Electron. Lett. (1)

M. Ohashi, M. Tateda, K. Tajima, and K. Shiraki, “Fluorine concentration dependence of viscosity in F-doped silica glass,” Electron. Lett. 28(11), 1008–1010 (1992).
[CrossRef]

IEEE Proc. Pt. J (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. Pt. J 138, 343–354 (1991).

IEEE Trans. Instrum. Meas. (1)

M. Olivero, G. Perrone, and A. Vallan, “Near-field measurements and mode power distribution of multimode optical fibers,” IEEE Trans. Instrum. Meas. 59(5), 1382–1388 (2010).
[CrossRef]

J. Lightwave Technol. (1)

H. F. Taylor, “Bending effects in optical fibers,” J. Lightwave Technol. 2(5), 617–628 (1984).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

E. Carrasco and I. R. Parry, “A method for determining the focal ratio degradation of optical fibres for astronomy,” Mon. Not. R. Astron. Soc. 271, 1–12 (1994).

Nat Commun (1)

J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat Commun 2, 581 (2011).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Other (6)

BeamPROP by RSoft, http://www.rsoftdesign.com .

MMF preform supplied by j-fiber, http://www.j-fiber.com .

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of Fiber Bragg Gratings in Multicore Fiber,” in Nonlinear Photonics, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWA39.

T. A. Birks, A. Diez, J. L. Cruz, S. G. Leon-Saval, and D. F. Murphy, “Fibers are looking up: optical fibre transition structures in astrophotonics,”in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FTuU1.

T. A. Birks, B. J. Mangan, A. Diez, J. L. Cruz, S. G. Leon-Saval, J. Bland-Hawthorn, and D. F. Murphy, “Multicore optical fibres for astrophotonics,”inCLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JSIII2_1.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Supplementary Material (2)

» Media 1: MOV (1728 KB)     
» Media 2: MOV (1664 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a photonic lantern filter. It is formed from a multicore fibre tapered at both ends in a jacket of low-index glass to form MMF ports. Fibre Bragg gratings are written in the SM cores in the middle section of the MCF.

Fig. 2
Fig. 2

(a) Calculated mode-number mismatch loss for a lantern device designed for λ = 1550 nm operation, if all input modes are equally excited. (b) Calculated Λ dependence of supermode splitting for a MCF with NA = 0.22, λ = 1550 nm and d = 3.9 µm, where Λ is the core spacing.

Fig. 3
Fig. 3

(a) Side view of a model MCF lantern. The transitions are surrounded by depressed-index material (shown black) along most of their lengths to mimic a MMF at the ends, but the central section (including 2 mm of uniform fibre) is surrounded by matched-index material (shown orange) to strip away cladding modes. (b) Cross-section of the 85-core MCF. (c) BPM simulation of an LP4,3-like MMF mode propagating along the left transition: red and blue represent opposite phases. (d) Simulated L dependence of loss. The broken blue line represents 0.25 dB of mode number mismatch loss. Lengthening the uniform section to 10 mm had < 0.02 dB impact on the loss for L = 4 mm.

Fig. 4
Fig. 4

Optical micrographs (to the same scale) of (a) fibre A and (b) fibre B. The diameter of fibre A is 230 µm. The flat edges are due to imperfect cleaving. (c, d) Micrographs (a, b) overlaid with ray traces for a plane wave incident from the left. The focused wave overlaps all the cores in (d) but avoids some cores in the upper- and lower-right of (c).

Fig. 5
Fig. 5

(a) Experimental setup used to measure the grating spectra in each MCF core - see text for details. (b) Typical IR near-field image of the MCF output when several cores were illuminated. The absent core image near the center of the pattern overlies the hole in the screen. (c) A typical normalized grating loss spectrum, indicating the grating depth and center wavelength (bisecting 3 dB points).

Fig. 6
Fig. 6

Maps of (upper) notch depth and (lower) offset of center wavelength λB from the mean, for the FBGs in (a-c) three samples of fibre A and (d-e) two samples of fibre B. Each colored dot in a map summarizes the FBG in one core of the MCF, at the corresponding location in the fibre cross-section. The maps are oriented (and if necessary reflected) so that each core is in the same position for each fibre: the missing core is at the end of the bottom row in (a-c), and distinct patterns of cores with anomalous λB are co-aligned in (d-e).

Fig. 7
Fig. 7

(a-c) Cross-sectional optical micrographs (transmitted illumination, to the same scale) of (a) uncoated fibre A with outer diameter 230 µm, (b) fibre A jacketed with F-doped silica and (c) the jacketed MCF tapered down to mimic a MMF with a 50 µm core. (d) Montage of side-view micrographs of the transition.

Fig. 8
Fig. 8

(a) Un-normalized transmission spectrum of a complete lantern device made from a length of MCF with the FBGs of Fig. 6(b). (b) Linear-average loss spectrum calculated from the FBG spectra summarized in Fig. 6(b).

Fig. 9
Fig. 9

Near-field images at 1550 nm (time constant ~30 ms) at the output of (a) a graded-index MMF butt-coupled to (b) a step-index MMF (Media 1) or (c) a MCF photonic lantern with similar step-index MMF ports (Media 2). (d) repeats (c) while the fibre was disturbed by hand and the camera time constant was 0.1 s. The media for (b) and (c) are corresponding movies where a loop of the fibre was gently oscillated.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

N MM V MM 2 4 = π 2 d MM 2 N A MM 2 4 λ 2 ,
loss=| 10 log 10 ( N MM N SM ) | dB.
Δ λ B λ B = ( NA n 0 ) 2 { η ΔNA NA +( η W 2 V 2 ) Δd d },
Δ λ B λ B =(1+χ) D R = ( 2 3 π ) 1/2 (1+χ)Λ N SM R ,
D= ( 2 3 π ) 1/2 Λ N SM .
Δ λ B λ B = 9 2 n 0 2 ( λV W N A 3 Λ ) 1/2 U 2 V 4 K 1 2 (W) exp( 2πWΛNA λV ),
| 2 β 1 β 2 Ψ 1 Ψ 2 z dA |<<1,

Metrics