Abstract

We propose a novel method for generating broadband spontaneous parametric fluorescence by using a set of bulk nonlinear crystals (NLCs). We also demonstrate this scheme experimentally. Our method employs a superposition of spontaneous parametric fluorescence spectra generated using multiple bulk NLCs. A typical bandwidth of 160 nm (73 THz) with a degenerate wavelength of 808 nm was achieved using two β-barium-borate (BBO) crystals, whereas a typical bandwidth of 75 nm (34 THz) was realized using a single BBO crystal. We also observed coincidence counts of generated photon pairs in a non-collinear configuration. The bandwidth could be further broadened by increasing the number of NLCs. Our demonstration suggests that a set of four BBO crystals could realize a bandwidth of approximately 215 nm (100 THz). We also discuss the stability of Hong-Ou-Mandel two-photon interference between the parametric fluorescence generated by this scheme. Our simple scheme is easy to implement with conventional NLCs and does not require special devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
    [CrossRef] [PubMed]
  2. L. -M. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
    [CrossRef] [PubMed]
  3. S. E. Harris, “Chirp and compress: Toward single-cycle biphotons,” Phys. Rev. Lett. 98(6), 063602 (2007).
    [CrossRef] [PubMed]
  4. G. Brida, V. Caricato, M. V. Fedorov, M. Genovese, M. Gramegna, and S. P. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett. 87(6), 64003 (2009).
    [CrossRef]
  5. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91(8), 083601 (2003).
    [CrossRef] [PubMed]
  6. B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Two photon absorption and coherent control with broadband down-converted light,” Phys. Rev. Lett. 93(2), 023005 (2004).
    [CrossRef] [PubMed]
  7. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
    [CrossRef]
  8. V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. 87(11), 117902 (2001).
    [CrossRef] [PubMed]
  9. N. Mohan, O. Minaeva, G. Goltsman, M. Saleh, M. Nasr, A. Sergienko, B. Saleh, and M. Teich, “Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm,” Appl. Opt. 48(20), 4009–4017 (2009).
    [CrossRef] [PubMed]
  10. M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultra-broadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100(18), 183601 (2008).
    [CrossRef] [PubMed]
  11. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19(1), 55–65 (2011).
    [CrossRef]
  12. K. G. Katamadze and S. P. Kulik, “Control of the spectrum of the biphoton field,” JETP 112(1), 20–37 (2011).
    [CrossRef]
  13. E. Dauler, G. Jaeger, A. Muller, A. Migdall, and A. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104(1), 1–10 (1999).
    [CrossRef]
  14. S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by non-collinear parametric downconversion,” Opt. Lett. 31(2), 253–255 (2006).
    [CrossRef] [PubMed]
  15. M. Hendrych, X. Shi, A. Valencia, and J. Torres, “Broadening the bandwidth of entangled photons: A step towards the generation of extremely short biphotons,” Phys. Rev. A 79(2), 023817 (2009).
    [CrossRef]
  16. K. O’Donnell and A. U’Ren, “Observation of ultrabroadband, beamlike parametric downconversion,” Opt. Lett. 32(7), 817–819 (2007).
    [CrossRef]
  17. C. Hong, Z. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
    [CrossRef] [PubMed]
  18. R. Boyd, Nonlinear optics (Academic Press, 2003).
  19. S. Baek and Y. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-i spontaneous parametric down-conversion,” Phys. Rev. A 77(4), 043807 (2008).
    [CrossRef]
  20. G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon generation from parametric down-conversion in media with inhomogeneous nonlinearity,” Phys. Rev. A 66(1), 013801 (2002).
    [CrossRef]
  21. Y. -H. Kim, S. P. Kulik, and Y. Shih, “High-intensity pulsed source of space-time and polarization double-entangled photon pairs,” Phys. Rev. A 62(1), 011802 (2000).
    [CrossRef]
  22. R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-I polarization-entangled photons,” Opt. Express 17(21), 18920–18933 (2009).
    [CrossRef]
  23. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
    [CrossRef]
  24. Y. Kawabe, H. Fujiwara, R. Okamoto, K. Sasaki, and S. Takeuchi, “Quantum interference fringes beating the diffraction limit,” Opt. Express 15(21), 14244–14250 (2007).
    [CrossRef] [PubMed]
  25. H. Fujiwara, Y. Kawabe, R. Okamoto, S. Takeuchi, and K. Sasaki, “Quantum lithography under imperfect conditions effects of loss and dephasing on two-photon interference fringes,” J. Opt. Soc. Am. B 28(3), 422–431 (2011).
    [CrossRef]
  26. M. Atatüre, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entanglement in cascaded-crystal parametric down-conversion,” Phys. Rev. Lett. 86(18), 4013–4016 (2002).
    [CrossRef]
  27. A. Steinberg, P. Kwiat, and R. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45(9), 6659–6665 (1992).
    [CrossRef] [PubMed]
  28. A. Pe’er, Y. Bromberg, B. Dayan, Y. Silberberg, and A. A. Friesem, “Broadband sum-frequency generation as an efficient two-photon detector for optical tomography,” Opt. Express 15(14), 8760–8769 (2007).
    [CrossRef]
  29. R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4(11), 864–868 (2008).
    [CrossRef]

2011

2010

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef]

2009

G. Brida, V. Caricato, M. V. Fedorov, M. Genovese, M. Gramegna, and S. P. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett. 87(6), 64003 (2009).
[CrossRef]

N. Mohan, O. Minaeva, G. Goltsman, M. Saleh, M. Nasr, A. Sergienko, B. Saleh, and M. Teich, “Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm,” Appl. Opt. 48(20), 4009–4017 (2009).
[CrossRef] [PubMed]

M. Hendrych, X. Shi, A. Valencia, and J. Torres, “Broadening the bandwidth of entangled photons: A step towards the generation of extremely short biphotons,” Phys. Rev. A 79(2), 023817 (2009).
[CrossRef]

R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-I polarization-entangled photons,” Opt. Express 17(21), 18920–18933 (2009).
[CrossRef]

2008

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4(11), 864–868 (2008).
[CrossRef]

S. Baek and Y. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-i spontaneous parametric down-conversion,” Phys. Rev. A 77(4), 043807 (2008).
[CrossRef]

M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultra-broadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100(18), 183601 (2008).
[CrossRef] [PubMed]

2007

2006

2004

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Two photon absorption and coherent control with broadband down-converted light,” Phys. Rev. Lett. 93(2), 023005 (2004).
[CrossRef] [PubMed]

2003

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91(8), 083601 (2003).
[CrossRef] [PubMed]

2002

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon generation from parametric down-conversion in media with inhomogeneous nonlinearity,” Phys. Rev. A 66(1), 013801 (2002).
[CrossRef]

M. Atatüre, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entanglement in cascaded-crystal parametric down-conversion,” Phys. Rev. Lett. 86(18), 4013–4016 (2002).
[CrossRef]

2001

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

L. -M. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. 87(11), 117902 (2001).
[CrossRef] [PubMed]

2000

Y. -H. Kim, S. P. Kulik, and Y. Shih, “High-intensity pulsed source of space-time and polarization double-entangled photon pairs,” Phys. Rev. A 62(1), 011802 (2000).
[CrossRef]

1999

E. Dauler, G. Jaeger, A. Muller, A. Migdall, and A. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104(1), 1–10 (1999).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

1992

A. Steinberg, P. Kwiat, and R. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45(9), 6659–6665 (1992).
[CrossRef] [PubMed]

1987

C. Hong, Z. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[CrossRef] [PubMed]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

Atatüre, M.

M. Atatüre, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entanglement in cascaded-crystal parametric down-conversion,” Phys. Rev. Lett. 86(18), 4013–4016 (2002).
[CrossRef]

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon generation from parametric down-conversion in media with inhomogeneous nonlinearity,” Phys. Rev. A 66(1), 013801 (2002).
[CrossRef]

Baek, S.

S. Baek and Y. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-i spontaneous parametric down-conversion,” Phys. Rev. A 77(4), 043807 (2008).
[CrossRef]

Biggerstaff, D. N.

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4(11), 864–868 (2008).
[CrossRef]

Boyd, R.

R. Boyd, Nonlinear optics (Academic Press, 2003).

Branczyk, A. M.

Brida, G.

G. Brida, V. Caricato, M. V. Fedorov, M. Genovese, M. Gramegna, and S. P. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett. 87(6), 64003 (2009).
[CrossRef]

Bromberg, Y.

Caricato, V.

G. Brida, V. Caricato, M. V. Fedorov, M. Genovese, M. Gramegna, and S. P. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett. 87(6), 64003 (2009).
[CrossRef]

Carrasco, S.

M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultra-broadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100(18), 183601 (2008).
[CrossRef] [PubMed]

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by non-collinear parametric downconversion,” Opt. Lett. 31(2), 253–255 (2006).
[CrossRef] [PubMed]

Chiao, R.

A. Steinberg, P. Kwiat, and R. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45(9), 6659–6665 (1992).
[CrossRef] [PubMed]

Cirac, J.

L. -M. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

Dauler, E.

E. Dauler, G. Jaeger, A. Muller, A. Migdall, and A. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104(1), 1–10 (1999).
[CrossRef]

Dayan, B.

A. Pe’er, Y. Bromberg, B. Dayan, Y. Silberberg, and A. A. Friesem, “Broadband sum-frequency generation as an efficient two-photon detector for optical tomography,” Opt. Express 15(14), 8760–8769 (2007).
[CrossRef]

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Two photon absorption and coherent control with broadband down-converted light,” Phys. Rev. Lett. 93(2), 023005 (2004).
[CrossRef] [PubMed]

Duan, L. -M.

L. -M. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

Fedorov, M. V.

G. Brida, V. Caricato, M. V. Fedorov, M. Genovese, M. Gramegna, and S. P. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett. 87(6), 64003 (2009).
[CrossRef]

Fedrizzi, A.

Fejer, M.

M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultra-broadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100(18), 183601 (2008).
[CrossRef] [PubMed]

Franson, J. D.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef]

Friesem, A. A.

A. Pe’er, Y. Bromberg, B. Dayan, Y. Silberberg, and A. A. Friesem, “Broadband sum-frequency generation as an efficient two-photon detector for optical tomography,” Opt. Express 15(14), 8760–8769 (2007).
[CrossRef]

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Two photon absorption and coherent control with broadband down-converted light,” Phys. Rev. Lett. 93(2), 023005 (2004).
[CrossRef] [PubMed]

Fujiwara, H.

Genovese, M.

G. Brida, V. Caricato, M. V. Fedorov, M. Genovese, M. Gramegna, and S. P. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett. 87(6), 64003 (2009).
[CrossRef]

Giovannetti, V.

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. 87(11), 117902 (2001).
[CrossRef] [PubMed]

Giuseppe, G. D.

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon generation from parametric down-conversion in media with inhomogeneous nonlinearity,” Phys. Rev. A 66(1), 013801 (2002).
[CrossRef]

Goggin, M.

Goltsman, G.

Gramegna, M.

G. Brida, V. Caricato, M. V. Fedorov, M. Genovese, M. Gramegna, and S. P. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett. 87(6), 64003 (2009).
[CrossRef]

Harris, S. E.

S. E. Harris, “Chirp and compress: Toward single-cycle biphotons,” Phys. Rev. Lett. 98(6), 063602 (2007).
[CrossRef] [PubMed]

Hendrickson, S. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef]

Hendrych, M.

M. Hendrych, X. Shi, A. Valencia, and J. Torres, “Broadening the bandwidth of entangled photons: A step towards the generation of extremely short biphotons,” Phys. Rev. A 79(2), 023817 (2009).
[CrossRef]

Hong, C.

C. Hong, Z. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[CrossRef] [PubMed]

Hum, D.

M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultra-broadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100(18), 183601 (2008).
[CrossRef] [PubMed]

Jaeger, G.

E. Dauler, G. Jaeger, A. Muller, A. Migdall, and A. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104(1), 1–10 (1999).
[CrossRef]

Kaltenbaek, R.

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4(11), 864–868 (2008).
[CrossRef]

Katamadze, K. G.

K. G. Katamadze and S. P. Kulik, “Control of the spectrum of the biphoton field,” JETP 112(1), 20–37 (2011).
[CrossRef]

Kawabe, Y.

Kim, Y.

S. Baek and Y. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-i spontaneous parametric down-conversion,” Phys. Rev. A 77(4), 043807 (2008).
[CrossRef]

Kim, Y. -H.

Y. -H. Kim, S. P. Kulik, and Y. Shih, “High-intensity pulsed source of space-time and polarization double-entangled photon pairs,” Phys. Rev. A 62(1), 011802 (2000).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Kulik, S. P.

K. G. Katamadze and S. P. Kulik, “Control of the spectrum of the biphoton field,” JETP 112(1), 20–37 (2011).
[CrossRef]

G. Brida, V. Caricato, M. V. Fedorov, M. Genovese, M. Gramegna, and S. P. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett. 87(6), 64003 (2009).
[CrossRef]

Y. -H. Kim, S. P. Kulik, and Y. Shih, “High-intensity pulsed source of space-time and polarization double-entangled photon pairs,” Phys. Rev. A 62(1), 011802 (2000).
[CrossRef]

Kwiat, P.

R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-I polarization-entangled photons,” Opt. Express 17(21), 18920–18933 (2009).
[CrossRef]

A. Steinberg, P. Kwiat, and R. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45(9), 6659–6665 (1992).
[CrossRef] [PubMed]

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

Laflamme, R.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Lai, M. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef]

Lavoie, J.

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4(11), 864–868 (2008).
[CrossRef]

Lloyd, S.

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. 87(11), 117902 (2001).
[CrossRef] [PubMed]

Lukin, M.

L. -M. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

Maccone, L.

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. 87(11), 117902 (2001).
[CrossRef] [PubMed]

Mandel, L.

C. Hong, Z. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[CrossRef] [PubMed]

Migdall, A.

E. Dauler, G. Jaeger, A. Muller, A. Migdall, and A. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104(1), 1–10 (1999).
[CrossRef]

Milburn, G.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Minaeva, O.

Mohan, N.

Muller, A.

E. Dauler, G. Jaeger, A. Muller, A. Migdall, and A. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104(1), 1–10 (1999).
[CrossRef]

Nasr, M.

N. Mohan, O. Minaeva, G. Goltsman, M. Saleh, M. Nasr, A. Sergienko, B. Saleh, and M. Teich, “Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm,” Appl. Opt. 48(20), 4009–4017 (2009).
[CrossRef] [PubMed]

M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultra-broadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100(18), 183601 (2008).
[CrossRef] [PubMed]

Nasr, M. B.

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by non-collinear parametric downconversion,” Opt. Lett. 31(2), 253–255 (2006).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91(8), 083601 (2003).
[CrossRef] [PubMed]

O’Donnell, K.

Okamoto, R.

Ou, Z.

C. Hong, Z. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[CrossRef] [PubMed]

Pe’er, A.

A. Pe’er, Y. Bromberg, B. Dayan, Y. Silberberg, and A. A. Friesem, “Broadband sum-frequency generation as an efficient two-photon detector for optical tomography,” Opt. Express 15(14), 8760–8769 (2007).
[CrossRef]

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Two photon absorption and coherent control with broadband down-converted light,” Phys. Rev. Lett. 93(2), 023005 (2004).
[CrossRef] [PubMed]

Pittman, T. B.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef]

Ralph, T. C.

Rangarajan, R.

Resch, K. J.

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4(11), 864–868 (2008).
[CrossRef]

Saleh, B.

N. Mohan, O. Minaeva, G. Goltsman, M. Saleh, M. Nasr, A. Sergienko, B. Saleh, and M. Teich, “Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm,” Appl. Opt. 48(20), 4009–4017 (2009).
[CrossRef] [PubMed]

M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultra-broadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100(18), 183601 (2008).
[CrossRef] [PubMed]

Saleh, B. E. A.

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by non-collinear parametric downconversion,” Opt. Lett. 31(2), 253–255 (2006).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91(8), 083601 (2003).
[CrossRef] [PubMed]

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon generation from parametric down-conversion in media with inhomogeneous nonlinearity,” Phys. Rev. A 66(1), 013801 (2002).
[CrossRef]

M. Atatüre, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entanglement in cascaded-crystal parametric down-conversion,” Phys. Rev. Lett. 86(18), 4013–4016 (2002).
[CrossRef]

Saleh, M.

Sasaki, K.

Sergienko, A.

N. Mohan, O. Minaeva, G. Goltsman, M. Saleh, M. Nasr, A. Sergienko, B. Saleh, and M. Teich, “Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm,” Appl. Opt. 48(20), 4009–4017 (2009).
[CrossRef] [PubMed]

M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultra-broadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100(18), 183601 (2008).
[CrossRef] [PubMed]

E. Dauler, G. Jaeger, A. Muller, A. Migdall, and A. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104(1), 1–10 (1999).
[CrossRef]

Sergienko, A. V.

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by non-collinear parametric downconversion,” Opt. Lett. 31(2), 253–255 (2006).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91(8), 083601 (2003).
[CrossRef] [PubMed]

M. Atatüre, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entanglement in cascaded-crystal parametric down-conversion,” Phys. Rev. Lett. 86(18), 4013–4016 (2002).
[CrossRef]

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon generation from parametric down-conversion in media with inhomogeneous nonlinearity,” Phys. Rev. A 66(1), 013801 (2002).
[CrossRef]

Shaw, M. D.

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon generation from parametric down-conversion in media with inhomogeneous nonlinearity,” Phys. Rev. A 66(1), 013801 (2002).
[CrossRef]

Shi, X.

M. Hendrych, X. Shi, A. Valencia, and J. Torres, “Broadening the bandwidth of entangled photons: A step towards the generation of extremely short biphotons,” Phys. Rev. A 79(2), 023817 (2009).
[CrossRef]

Shih, Y.

Y. -H. Kim, S. P. Kulik, and Y. Shih, “High-intensity pulsed source of space-time and polarization double-entangled photon pairs,” Phys. Rev. A 62(1), 011802 (2000).
[CrossRef]

Silberberg, Y.

A. Pe’er, Y. Bromberg, B. Dayan, Y. Silberberg, and A. A. Friesem, “Broadband sum-frequency generation as an efficient two-photon detector for optical tomography,” Opt. Express 15(14), 8760–8769 (2007).
[CrossRef]

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Two photon absorption and coherent control with broadband down-converted light,” Phys. Rev. Lett. 93(2), 023005 (2004).
[CrossRef] [PubMed]

Stace, T. M.

Steinberg, A.

A. Steinberg, P. Kwiat, and R. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45(9), 6659–6665 (1992).
[CrossRef] [PubMed]

Takeuchi, S.

Teich, M.

N. Mohan, O. Minaeva, G. Goltsman, M. Saleh, M. Nasr, A. Sergienko, B. Saleh, and M. Teich, “Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm,” Appl. Opt. 48(20), 4009–4017 (2009).
[CrossRef] [PubMed]

M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultra-broadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100(18), 183601 (2008).
[CrossRef] [PubMed]

Teich, M. C.

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by non-collinear parametric downconversion,” Opt. Lett. 31(2), 253–255 (2006).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91(8), 083601 (2003).
[CrossRef] [PubMed]

M. Atatüre, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entanglement in cascaded-crystal parametric down-conversion,” Phys. Rev. Lett. 86(18), 4013–4016 (2002).
[CrossRef]

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon generation from parametric down-conversion in media with inhomogeneous nonlinearity,” Phys. Rev. A 66(1), 013801 (2002).
[CrossRef]

Torner, L.

M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultra-broadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100(18), 183601 (2008).
[CrossRef] [PubMed]

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by non-collinear parametric downconversion,” Opt. Lett. 31(2), 253–255 (2006).
[CrossRef] [PubMed]

Torres, J.

M. Hendrych, X. Shi, A. Valencia, and J. Torres, “Broadening the bandwidth of entangled photons: A step towards the generation of extremely short biphotons,” Phys. Rev. A 79(2), 023817 (2009).
[CrossRef]

M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultra-broadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100(18), 183601 (2008).
[CrossRef] [PubMed]

Torres, J. P.

U’Ren, A.

Valencia, A.

M. Hendrych, X. Shi, A. Valencia, and J. Torres, “Broadening the bandwidth of entangled photons: A step towards the generation of extremely short biphotons,” Phys. Rev. A 79(2), 023817 (2009).
[CrossRef]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

White, A. G.

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19(1), 55–65 (2011).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

Wong, F. N. C.

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. 87(11), 117902 (2001).
[CrossRef] [PubMed]

Zoller, P.

L. -M. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

Appl. Opt.

Europhys. Lett.

G. Brida, V. Caricato, M. V. Fedorov, M. Genovese, M. Gramegna, and S. P. Kulik, “Characterization of spectral entanglement of spontaneous parametric-down conversion biphotons in femtosecond pulsed regime,” Europhys. Lett. 87(6), 64003 (2009).
[CrossRef]

J. Opt. Soc. Am. B

J. Res. Natl. Inst. Stand. Technol.

E. Dauler, G. Jaeger, A. Muller, A. Migdall, and A. Sergienko, “Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision,” J. Res. Natl. Inst. Stand. Technol. 104(1), 1–10 (1999).
[CrossRef]

JETP

K. G. Katamadze and S. P. Kulik, “Control of the spectrum of the biphoton field,” JETP 112(1), 20–37 (2011).
[CrossRef]

Nat. Phys.

R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4(11), 864–868 (2008).
[CrossRef]

Nature

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

L. -M. Duan, M. Lukin, J. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. Baek and Y. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-i spontaneous parametric down-conversion,” Phys. Rev. A 77(4), 043807 (2008).
[CrossRef]

G. D. Giuseppe, M. Atatüre, M. D. Shaw, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon generation from parametric down-conversion in media with inhomogeneous nonlinearity,” Phys. Rev. A 66(1), 013801 (2002).
[CrossRef]

Y. -H. Kim, S. P. Kulik, and Y. Shih, “High-intensity pulsed source of space-time and polarization double-entangled photon pairs,” Phys. Rev. A 62(1), 011802 (2000).
[CrossRef]

M. Hendrych, X. Shi, A. Valencia, and J. Torres, “Broadening the bandwidth of entangled photons: A step towards the generation of extremely short biphotons,” Phys. Rev. A 79(2), 023817 (2009).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

A. Steinberg, P. Kwiat, and R. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45(9), 6659–6665 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. Atatüre, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entanglement in cascaded-crystal parametric down-conversion,” Phys. Rev. Lett. 86(18), 4013–4016 (2002).
[CrossRef]

C. Hong, Z. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[CrossRef] [PubMed]

S. E. Harris, “Chirp and compress: Toward single-cycle biphotons,” Phys. Rev. Lett. 98(6), 063602 (2007).
[CrossRef] [PubMed]

M. Nasr, S. Carrasco, B. Saleh, A. Sergienko, M. Teich, J. Torres, L. Torner, D. Hum, and M. Fejer, “Ultra-broadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100(18), 183601 (2008).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91(8), 083601 (2003).
[CrossRef] [PubMed]

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, “Two photon absorption and coherent control with broadband down-converted light,” Phys. Rev. Lett. 93(2), 023005 (2004).
[CrossRef] [PubMed]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef]

V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett. 87(11), 117902 (2001).
[CrossRef] [PubMed]

Other

R. Boyd, Nonlinear optics (Academic Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of proposed method to generate spontaneous parametric fluorescence by using multiple bulk NLCs. Multiple (three in figure) bulk NLCs are aligned in parallel; the pump beam passes through all the NLCs. The optic axes of the NLCs have different tilt angles θt (θta, θtb, θtc) to control the phase-matching condition for each NLC. Generated parametric fluorescence is collected at the emission angle ±θ as signal and idler photons.

Fig. 2
Fig. 2

Illustration of proposed scheme for generating spontaneous parametric fluorescence using three bulk NLCs. Upper left figure shows tuning curves of three NLCs with tilt angles θt of θta, θtb, and θtc. Lower left figure shows corresponding parametric fluorescence spectra from these three NLCs for a detection angle θ = ±θd. Lower right figure shows broadened spectrum as a superposition of these spectra.

Fig. 3
Fig. 3

Experimental setup to measure spontaneous parametric fluorescence spectra generated from one or two BBO crystals (BBO1 and BBO2). θt1 and θt2 are the tilt angles of the optic axes of BBO1 and BBO2 crystals relative to the cut angle, respectively. The two BBO crystals are aligned in parallel along the pump beam with a separation of 10 mm. Generated signal and idler photons are collected at an emission angle of ±1° by fiber couplers and are transferred to the spectrograph to obtain the spectra. DPSS laser: diode-pumped solid-state laser, SHG: second-harmonic generation system, LPF: long pass filter, FC: fiber coupler, PMF: polarization-maintaining fiber.

Fig. 4
Fig. 4

(a) Measured spontaneous parametric fluorescence spectra generated from one BBO crystal (BBO2) with a tilt angle θt2 varied between −0.05° and −0.40°. (b) Calculated spectra as a superposition of measured spectra of two BBO crystals with θt2 of −0.05° and −0.15° (blue line) and four BBO crystals with θt2 of −0.10, −0.20, −0.30, and −0.40° (red line).

Fig. 5
Fig. 5

Measured spectra of signal (red line) and idler (blue line) photons of spontaneous parametric fluorescence generated from two BBO crystals. Spectra of signal and idler photons had measured bandwidths of approximately 160 nm (73 THz). Tilt angles θt1 and θt2 were set to −0.10° and −0.20°, respectively.

Fig. 6
Fig. 6

(a) Frequency spectra Fi(Ω) of photons generated from ith NLC (i = a (blue line), b (red line)) and a sum of two spectra (black line) with the bandwidth of approximately 70 THz. (b) Coincidence rate Pc(τ) in a HOM two-photon interferometer with the case (1) ϕd = 0 (solid black line), case (2) ϕd ∼ 0.37π (dashed blue line) and case (3) ϕd = π (dashed-dotted red line). The width of the HOM dip with the case (1) is approximately 3 μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F ( Ω ) | 0 L d z exp [ i Δ k ( Ω ) z ] | 2 = L 2 sinc 2 [ Δ k ( Ω ) L 2 ] ,
F ( Ω , θ d ) = i = a , b , c F i ( Ω , θ d , θ ti ) i = a , b , c L 2 sinc 2 [ Δ k i ( Ω , θ d , θ ti ) L 2 ] ,
| Ψ > = d Ω F a ( Ω ) | + Ω > s | Ω > i + d Ω exp [ i ϕ d ( Ω ) ] F b ( Ω ) | + Ω > s | Ω > i ,
P c ( τ ) d ω A d ω B < Ψ | a A ( ω A ) a B ( ω B ) a A ( ω A ) a B ( ω B ) | Ψ >
= d Ω A d Ω B < 0 | a s ( Ω A ) a i ( Ω B ) e i Ω B τ a s ( Ω B ) a i ( Ω A ) e i Ω A τ | Ψ > 2
= d Ω | F a ( Ω ) + exp [ i ϕ d ( Ω ) ] F b ( Ω ) | 2 ( 1 cos ( 2 Ω τ ) ) ,

Metrics