Abstract

We have proposed, fabricated and demonstrated experimentally a set of Coherent Direct Sequence-OCDMA en/decoders based on Super Structured Fiber Bragg Gratings (SSFBGs) which are able to compensate the fiber chromatic dispersion at the same time that they perform the en/decoding task. The proposed devices avoid the use of additional dispersion compensation stages reducing system complexity and losses. This performance was evaluated for 5.4, 11.4 and 16.8 km of SSMF. The twofold performance was verified in Low Reflectivity regime employing only one GVD compensating device at decoder or sharing out the function between encoder and decoder devices. Shared functionality requires shorter SSFBGs designs and also provides added flexibility to the optical network design. Moreover, dispersion compensated en/decoders were also designed into the High Reflectivity regime employing synthesis methods achieving more than 9 dB reduction of insertion loss for each device.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON—solution path to gigabit-symmetric FTTH,” J. Lightwave Technol. 24(4), 1654–1662 (2006).
    [CrossRef]
  2. X. Wang and N. Wada, “Experimental demonstration of OCDMA traffic over optical packet switching network with hybrid PLC and SSFBG En/decoders,” J. Lightwave Technol. 24(8), 3012–3020 (2006).
    [CrossRef]
  3. H. Sotobayashi, W. Chujo, and K. Kitayama, “Transparent virtual optical code/wavelength path network,” IEEE J. Sel. Top. Quantum Electron. 8(3), 699–704 (2002).
    [CrossRef]
  4. R. Paul Prucnal, Optical Code Division Multiple Access: Fundamentals and Applications (CRC Taylor & Francis, 2006)
  5. D. Pastor, W. Amaya, and R. Garcia-Olcina, “Effect of group velocity dispersion on all-optical encoded labels in optical packet networks,” in Proceedings of International Conference on Transparent Optical Networks (Azores, 2009), 1–4
  6. B. Dai and X. Wang, “Novel FBG decoder for simultaneous time domain coherent optical code recognition and chromatic dispersion compensation,” IEEE Photon. Technol. Lett. 22, 1671–1673 (2010).
  7. D. Pastor, W. Amaya, R. Baños, and V. Garcia-Munoz, “Simultaneous chromatic dispersion compensation and coherent direct-sequence OCDMA encoding on a single SSFBG device,” in Proceedings of International Conference on Transparent Optical Networks (Stockholm, 2011), 1–4
  8. D. Pastor, W. Amaya, R. García-Olcina, and S. Sales, “Coherent direct sequence optical code multiple Access encoding-decoding efficiency versus wavelength detuning,” Opt. Lett. 32(13), 1896–1898 (2007).
    [CrossRef] [PubMed]
  9. X. Wang, K. Matsushima, A. Nishiki, N. Wada, and K. Kitayama, “High reflectivity superstructured FBG for coherent optical code generation and recognition,” Opt. Express 12(22), 5457–5468 (2004).
    [CrossRef] [PubMed]
  10. D. Pastor, W. Amaya, and R. Garcia-Olcina, “Design of high reflectivity superstructured FBG for coherent OCDMA employing synthesis approach,” Electron. Lett. 43(15), 824–825 (2007).
    [CrossRef]
  11. J. Skaar, Ligang Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
    [CrossRef]
  12. W. Amaya, D. Pastor, R. Baños, and V. Garcia-Munoz, “WDM-Coherent OCDMA over one single device based on short chip Super Structured Fiber Bragg Gratings,” Opt. Express 19(24), 24627–24637 (2011).
    [CrossRef] [PubMed]
  13. W. Amaya, D. Pastor, and J. Capmany,“Modeling of a time-spreading OCDMA system including non-perfect time gating, optical thresholding, and fully asynchronous signal/interference overlapping,” J. Lightwave Technol. 26, 768–776 (2008).
    [CrossRef]

2011 (1)

2010 (1)

B. Dai and X. Wang, “Novel FBG decoder for simultaneous time domain coherent optical code recognition and chromatic dispersion compensation,” IEEE Photon. Technol. Lett. 22, 1671–1673 (2010).

2008 (1)

2007 (2)

D. Pastor, W. Amaya, and R. Garcia-Olcina, “Design of high reflectivity superstructured FBG for coherent OCDMA employing synthesis approach,” Electron. Lett. 43(15), 824–825 (2007).
[CrossRef]

D. Pastor, W. Amaya, R. García-Olcina, and S. Sales, “Coherent direct sequence optical code multiple Access encoding-decoding efficiency versus wavelength detuning,” Opt. Lett. 32(13), 1896–1898 (2007).
[CrossRef] [PubMed]

2006 (2)

2004 (1)

2002 (1)

H. Sotobayashi, W. Chujo, and K. Kitayama, “Transparent virtual optical code/wavelength path network,” IEEE J. Sel. Top. Quantum Electron. 8(3), 699–704 (2002).
[CrossRef]

2001 (1)

J. Skaar, Ligang Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

Amaya, W.

Baños, R.

Capmany, J.

Chujo, W.

H. Sotobayashi, W. Chujo, and K. Kitayama, “Transparent virtual optical code/wavelength path network,” IEEE J. Sel. Top. Quantum Electron. 8(3), 699–704 (2002).
[CrossRef]

Dai, B.

B. Dai and X. Wang, “Novel FBG decoder for simultaneous time domain coherent optical code recognition and chromatic dispersion compensation,” IEEE Photon. Technol. Lett. 22, 1671–1673 (2010).

Erdogan, T.

J. Skaar, Ligang Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

Garcia-Munoz, V.

Garcia-Olcina, R.

D. Pastor, W. Amaya, and R. Garcia-Olcina, “Design of high reflectivity superstructured FBG for coherent OCDMA employing synthesis approach,” Electron. Lett. 43(15), 824–825 (2007).
[CrossRef]

García-Olcina, R.

Kitayama, K.

Ligang Wang,

J. Skaar, Ligang Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

Matsushima, K.

Nishiki, A.

Pastor, D.

Sales, S.

Skaar, J.

J. Skaar, Ligang Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

Sotobayashi, H.

H. Sotobayashi, W. Chujo, and K. Kitayama, “Transparent virtual optical code/wavelength path network,” IEEE J. Sel. Top. Quantum Electron. 8(3), 699–704 (2002).
[CrossRef]

Wada, N.

Wang, X.

Electron. Lett. (1)

D. Pastor, W. Amaya, and R. Garcia-Olcina, “Design of high reflectivity superstructured FBG for coherent OCDMA employing synthesis approach,” Electron. Lett. 43(15), 824–825 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Skaar, Ligang Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Sotobayashi, W. Chujo, and K. Kitayama, “Transparent virtual optical code/wavelength path network,” IEEE J. Sel. Top. Quantum Electron. 8(3), 699–704 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Dai and X. Wang, “Novel FBG decoder for simultaneous time domain coherent optical code recognition and chromatic dispersion compensation,” IEEE Photon. Technol. Lett. 22, 1671–1673 (2010).

J. Lightwave Technol. (3)

Opt. Express (2)

Opt. Lett. (1)

Other (3)

D. Pastor, W. Amaya, R. Baños, and V. Garcia-Munoz, “Simultaneous chromatic dispersion compensation and coherent direct-sequence OCDMA encoding on a single SSFBG device,” in Proceedings of International Conference on Transparent Optical Networks (Stockholm, 2011), 1–4

R. Paul Prucnal, Optical Code Division Multiple Access: Fundamentals and Applications (CRC Taylor & Francis, 2006)

D. Pastor, W. Amaya, and R. Garcia-Olcina, “Effect of group velocity dispersion on all-optical encoded labels in optical packet networks,” in Proceedings of International Conference on Transparent Optical Networks (Azores, 2009), 1–4

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Amplitude of complex coupling coefficient in the Low Reflectivity regime. (a) Standard non GVD compensated encoder C1, (b) Compensated decoder C1* + GVD (amplitude and phase),(c) Compensated decoder C2* + GVD, (d) Shared compensated encoder C1 + GVD/2,(e) Shared compensated encoder C2 + GVD/2.

Fig. 2
Fig. 2

(a) Spectral amplitude of high reflectivity encoder, (b) Spectral amplitude of high reflectivity compensated decoder, (c) Group delay of the standard decoder, (d) Group delay of the high reflectivity compensated decoder.

Fig. 3
Fig. 3

Squared Amplitude temporal responses: (a) Encoder low reflectivity (C1) and (b) high reflectivity encoder (C1H). (c) Compensated decoder low reflectivity (C1DB*) and (d) high reflectivity compensated decoder (C1DH*). (e) Optical fiber link (11.4 km) + compensated decoder for low reflectivity (C1DB*) and (f) and optical fiber link (11.4 km) + high reflectivity decoder (C1DH*).

Fig. 4
Fig. 4

Experimental system setup. Mode locked laser (MLL), Electro-Optical modulator (EOM), Pulse pattern generator (PPG), Optical amplifier (O.A.), Optical circulator (O.C.), Variable optical amplifier (V.O.A.), Standard single mode fiber (SSMF).

Fig. 5
Fig. 5

Experimental results for the combinations: (a) encoder C1 with decoder C1DB* (ACP), (b) C2 with C1DB* (XC).

Fig. 6
Fig. 6

Experimental results for the configurations of encoder and decoder devices with code 1 (a) and with code 2 (b).

Tables (2)

Tables Icon

Table 1 List and Description of En/Decoder Devices Fabricated

Tables Icon

Table 2 Encoder and decoder combinations characterized. Colors indicate the correspondence with traces in following figures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H tot (ω)= H encod (ω) H f (ω) H decod (ω)= H encod (ω)exp[ j β 2 L (ω ω 0 ) 2 /2 ] H decod (ω)
s out (t)= s in (t) h encod (t) h f (t) h decod (t)

Metrics