Abstract

A large scale wavelength division multiplexed passive optical network is proposed and experimentally demonstrated. 124 bidirectional optical channels with 10-Gb/s downstream and 1.25-Gb/s upstream transmission are simultaneously distributed by a single 32*32 cyclic AWG. The effect of the extinction ratio and seeding power to BER performance are experimentally investigated. The selection of the subcarrier frequency is also analyzed by simulation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yu, O. Akanbi, Y. Luo, Z. Zong, T. Wang, Z. Jia, and G.-K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett.19(8), 571–573 (2007).
    [CrossRef]
  2. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited],” J. Opt. Netw.4(11), 737–758 (2005).
    [CrossRef]
  3. S-G. Mun, H-S. Cho, and C-H. Lee, “A cost-effective WDM-PON using a multiple contact Fabry-Perot laser diode,” in proceeding of ECOC2010, (Torino, Italy, 2010), paper Mo.1.B.3.
  4. C-K. Chan, L-K. Chen, and C. Lin, “WDM PON for next-generation optical broadband access networks,” in proceeding of OECC2006, (Kaohsiung, Taiwan, 2006) paper 5E2–1-1.
  5. J-H. Park, J-S. Baik, and C-H. Lee, “Fault-localization in WDM-PONs,” in the proceeding of OFC2006, 2006, paper JThB79.
  6. Z. Xu, Y. J. Wen, W.-D. Zhong, C.-J. Chae, X. F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007).
    [CrossRef] [PubMed]
  7. S. P. Jung, Y. Takushima, and Y.C. Chung, “Generation of 5-Gps QPSK signal using directly modulated RSOA for 100-km coherent WDM-PON” in proceeding of OFC2011, (Los Angeles, California, 2011), paper OTuB3.
  8. L. Ana, S. Aleksic, J.A. Lazaro, G.M. Tosi Beleffi, F. Bonada, J. Prat, and A.L.J. Texeira, “Influence of broadcast traffic on energy efficiency of long-reach SARDANA access network, ” in proceeding of OFC2011, (Los Angeles, California, 2011), paper OThB5.
  9. Z. Xu, X. Cheng, Y-K. Yeo, L. Zhou, X. Shao, “60-channel bidirectional WDM-PON using a single 32*32 AWGR for 120 wavelengths distribution,” in Proceeding of OFC2011, (Los Angeles, California, 2011), paper JWA65.
  10. S. Jang, C-S. Lee, D-M. Seol, E-S. Jung, and B. W. Kim, “A bidirectional RSOA based WDM-PON utilizing a SCM signal for down-link and a baseband signal for up-link,” in proceeding of OFC2007 (Anaheim, California, 2007), Paper JThA78.
  11. F. Ponzini, F. Cavaliere, G. Berrettini, M. Presi, E. Ciaramella, N. Calabretta, and A. Bogoni, “Evolution scenario toward WDM-PON [Invited],” J. Opt. Commun. Netw.1(4), C25–C34 (2009).
    [CrossRef]
  12. J. Ingenhoff, “Athermal AWG devices for WDM-PON architectures,” in the proceeding of LEOS 2006, 26–27 (2006).
  13. K. Y. Cho, Y. J. Lee, H. Y. Choi, A. Murakami, A. Agata, Y. Takushima, and Y. C. Chung, “Effects of reflection in RSOA-based WDM PON utilizing remodulation technique,” J. Lightwave Technol.27(10), 1286–1295 (2009).
    [CrossRef]
  14. C. Bock and J. Prat, “WDM/TDM PON experiments using the AWG free spectral range periodicity to transmit unicast and multicast data,” Opt. Express13(8), 2887–2891 (2005).
    [CrossRef] [PubMed]
  15. H. Takesue and T. Sugie, “Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources,” J. Lightwave Technol.21(11), 2546–2556 (2003).
    [CrossRef]
  16. C. Bock, J. Prat, and S. D. Walker, “Hybrid WDM/TDM PON using the AWG FSR and featuring centralized light generation and dynamic bandwidth allocation,” J. Lightwave Technol.23(12), 3981–3988 (2005).
    [CrossRef]

2009

2007

Z. Xu, Y. J. Wen, W.-D. Zhong, C.-J. Chae, X. F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007).
[CrossRef] [PubMed]

J. Yu, O. Akanbi, Y. Luo, Z. Zong, T. Wang, Z. Jia, and G.-K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett.19(8), 571–573 (2007).
[CrossRef]

2005

2003

Agata, A.

Akanbi, O.

J. Yu, O. Akanbi, Y. Luo, Z. Zong, T. Wang, Z. Jia, and G.-K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett.19(8), 571–573 (2007).
[CrossRef]

Banerjee, A.

Berrettini, G.

Bock, C.

Bogoni, A.

Calabretta, N.

Cavaliere, F.

Chae, C.-J.

Chang, G.-K.

J. Yu, O. Akanbi, Y. Luo, Z. Zong, T. Wang, Z. Jia, and G.-K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett.19(8), 571–573 (2007).
[CrossRef]

Cheng, X. F.

Cho, K. Y.

Choi, H. Y.

Chung, Y. C.

Ciaramella, E.

Clarke, F.

Jia, Z.

J. Yu, O. Akanbi, Y. Luo, Z. Zong, T. Wang, Z. Jia, and G.-K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett.19(8), 571–573 (2007).
[CrossRef]

Kim, K.

Kramer, G.

Lee, Y. J.

Lu, C.

Luo, Y.

J. Yu, O. Akanbi, Y. Luo, Z. Zong, T. Wang, Z. Jia, and G.-K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett.19(8), 571–573 (2007).
[CrossRef]

Mukherjee, B.

Murakami, A.

Park, Y.

Ponzini, F.

Prat, J.

Presi, M.

Shankar, J.

Song, H.

Sugie, T.

Takesue, H.

Takushima, Y.

Walker, S. D.

Wang, T.

J. Yu, O. Akanbi, Y. Luo, Z. Zong, T. Wang, Z. Jia, and G.-K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett.19(8), 571–573 (2007).
[CrossRef]

Wang, Y.

Wen, Y. J.

Xu, Z.

Yang, S.

Yu, J.

J. Yu, O. Akanbi, Y. Luo, Z. Zong, T. Wang, Z. Jia, and G.-K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett.19(8), 571–573 (2007).
[CrossRef]

Zhong, W.-D.

Zong, Z.

J. Yu, O. Akanbi, Y. Luo, Z. Zong, T. Wang, Z. Jia, and G.-K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett.19(8), 571–573 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Yu, O. Akanbi, Y. Luo, Z. Zong, T. Wang, Z. Jia, and G.-K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett.19(8), 571–573 (2007).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

J. Opt. Netw.

Opt. Express

Other

J. Ingenhoff, “Athermal AWG devices for WDM-PON architectures,” in the proceeding of LEOS 2006, 26–27 (2006).

S-G. Mun, H-S. Cho, and C-H. Lee, “A cost-effective WDM-PON using a multiple contact Fabry-Perot laser diode,” in proceeding of ECOC2010, (Torino, Italy, 2010), paper Mo.1.B.3.

C-K. Chan, L-K. Chen, and C. Lin, “WDM PON for next-generation optical broadband access networks,” in proceeding of OECC2006, (Kaohsiung, Taiwan, 2006) paper 5E2–1-1.

J-H. Park, J-S. Baik, and C-H. Lee, “Fault-localization in WDM-PONs,” in the proceeding of OFC2006, 2006, paper JThB79.

S. P. Jung, Y. Takushima, and Y.C. Chung, “Generation of 5-Gps QPSK signal using directly modulated RSOA for 100-km coherent WDM-PON” in proceeding of OFC2011, (Los Angeles, California, 2011), paper OTuB3.

L. Ana, S. Aleksic, J.A. Lazaro, G.M. Tosi Beleffi, F. Bonada, J. Prat, and A.L.J. Texeira, “Influence of broadcast traffic on energy efficiency of long-reach SARDANA access network, ” in proceeding of OFC2011, (Los Angeles, California, 2011), paper OThB5.

Z. Xu, X. Cheng, Y-K. Yeo, L. Zhou, X. Shao, “60-channel bidirectional WDM-PON using a single 32*32 AWGR for 120 wavelengths distribution,” in Proceeding of OFC2011, (Los Angeles, California, 2011), paper JWA65.

S. Jang, C-S. Lee, D-M. Seol, E-S. Jung, and B. W. Kim, “A bidirectional RSOA based WDM-PON utilizing a SCM signal for down-link and a baseband signal for up-link,” in proceeding of OFC2007 (Anaheim, California, 2007), Paper JThA78.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Remote node (RN) structure. (a) general case, (b) enhanced case

Fig. 2
Fig. 2

Proposed architecture of the large scale WDM PON

Fig. 3
Fig. 3

experiment setup

Fig. 4
Fig. 4

Frequency alignment

Fig. 5
Fig. 5

Optical spectra. (a) 62 C-band optical subcarriers (b) Enlarged one optical subcarrier pair.

Fig. 6
Fig. 6

Measured downlink BERs for the two optical subcarriers located in wavelength channel 1549.98nm. (a), optical subcarrier at shorter wavelength, (b) Optical subcarrier at longer wavelength (◊: back to back (BTB), + : 26-km without crosstalk from neighbor subcarrier □: 26-km with crosstalk). Below are the eye diagrams for BTB (c), two subcarriers (d,e).

Fig. 7
Fig. 7

Measured uplink BERs. (◊:BTB with CW light, □: BTB seeded by downlink signal + : 25-km seeded by downlink signal)

Fig. 8
Fig. 8

Receiver sensitivities vs. extinction ratio. ■: Downstream signal, ●: Upstream signal.

Fig. 9
Fig. 9

Influence of seeding power on uplink receiver sensitivity

Fig. 10
Fig. 10

Downlink BER performance with different subcarrier frequencies, fsc.

Metrics