Abstract

A highly efficient (~80%), high power (18.45 W) in-band, core pumped erbium/ytterbium co-doped fiber laser is demonstrated. To the best of our knowledge, this is the highest reported efficiency from an in-band pumped 1.5 µm fiber laser operating in the tens of watts regime. Using a fitted simulation model, we show that the significantly sub-quantum limit conversion efficiency of in-band pumped erbium doped fiber amplifiers observed experimentally can be explained by concentration quenching. We then numerically study and experimentally validate the optimum pumping configuration for power scaling of in-band, cladding pumped erbium doped fiber amplifiers. Our simulation results indicate that a ~77% power conversion efficiency with high output power should be possible through cladding pumping of current commercially available pure Erbium doped active fibers providing the loss experienced by the cladding guided 1535 nm pump due to the coating absorption can be reduced to an acceptable level by better coating material choice. The power conversion efficiency has the potential to exceed 90% if concentration quenching of erbium ions can be reduced via improvements in fiber design and fabrication.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
    [CrossRef]
  2. M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Record-efficient, resonantly-pumped, Er-doped single mode fibre amplifier,” Electron. Lett. 45(8), 400–401 (2009).
    [CrossRef]
  3. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, 1999).
  4. P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photon. Technol. Lett. 3(11), 996–998 (1991).
    [CrossRef]
  5. E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
    [CrossRef]
  6. P. Myslinski, D. Nguyen, and J. Chrostowski, “Effects of concentration on the performance of erbium-doped fiber amplifiers,” J. Lightwave Technol. 15(1), 112–120 (1997).
    [CrossRef]
  7. J. Nilsson, B. Jaskorzynska, and P. Blixt, “Performance reduction and design modification of erbium-doped fiber amplifiers resulting from pair-induced quenching,” IEEE Photon. Technol. Lett. 5(12), 1427–1429 (1993).
    [CrossRef]
  8. D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc, SPIE 7580, 75802B-1–75802B-9(2010).
    [CrossRef]
  9. S. Sergeyev, S. Popov, and A. T. Friberg, “Influence of the short-range coordination order of erbium ions on excitation migration and upconversion in multicomponent glasses,” Opt. Lett. 30(11), 1258–1260 (2005).
    [CrossRef] [PubMed]
  10. S. Sergeyev, S. Popov, D. Khoptyar, A. T. Friberg, and D. Flavin, “Statistical model of migration-assisted upconversion in a high-concentration erbium-doped fiber amplifier,” J. Opt. Soc. Am. B 23(8), 1540–1543 (2006).
    [CrossRef]
  11. J. Zhang, V. Fromzel, and M. Dubinskii, “Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency,” Opt. Express 19(6), 5574–5578 (2011).
    [CrossRef] [PubMed]
  12. J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Vrallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-Limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
    [CrossRef]
  13. E. L. Lim, S. U. Alam, and D. J. Richardson, “Highly efficient, high power, inband-pumped erbium/ytterbium-codoped fiber laser,” in CLEO, p. CTuI1 (2011).
  14. S. U. Alam, A. T. Harker, R. J. Horley, F. Ghiringhelli, M. P. Varnham, P. W. Turner, M. N. Zervas, and S. R. Norman,“All-fibre, high power, cladding-pumped 1565nm MOPA pumped by high brightness 1535 nm pump sources,” in CLEO, p. CWJ4 (2008).
  15. M. Laroche, S. Girard, J. K. Sahu, W. A. Clarkson, and J. Nilsson, “Accurate efficiency evaluation of energy-transfer processes in phosphosilicate Er3+-Yb3+-codoped fibers,” J. Opt. Soc. Am. B 23(2), 195–202 (2006).
    [CrossRef]
  16. K. Aiso, Y. Tashiro, T. Suzuki, and T. Yagi, “Development of er/yb co-doped fiber for high-power optical amplifiers,” Furukawa Review 20 (2001).
  17. S. Tammela, M. Hotoleanu, P. Kiiveri, H. Valkonen, S. Sarkilahti, and K. Janka, “Very short Er-doped silica glass fiber for L-band amplifiers”, in Proc. Optical Fiber Comm.(OFC), paper WK3 (2003).

2011 (1)

2010 (1)

D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc, SPIE 7580, 75802B-1–75802B-9(2010).
[CrossRef]

2009 (2)

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Vrallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-Limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[CrossRef]

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Record-efficient, resonantly-pumped, Er-doped single mode fibre amplifier,” Electron. Lett. 45(8), 400–401 (2009).
[CrossRef]

2007 (1)

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[CrossRef]

2006 (2)

2005 (1)

2001 (1)

K. Aiso, Y. Tashiro, T. Suzuki, and T. Yagi, “Development of er/yb co-doped fiber for high-power optical amplifiers,” Furukawa Review 20 (2001).

1997 (1)

P. Myslinski, D. Nguyen, and J. Chrostowski, “Effects of concentration on the performance of erbium-doped fiber amplifiers,” J. Lightwave Technol. 15(1), 112–120 (1997).
[CrossRef]

1993 (2)

J. Nilsson, B. Jaskorzynska, and P. Blixt, “Performance reduction and design modification of erbium-doped fiber amplifiers resulting from pair-induced quenching,” IEEE Photon. Technol. Lett. 5(12), 1427–1429 (1993).
[CrossRef]

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
[CrossRef]

1991 (1)

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photon. Technol. Lett. 3(11), 996–998 (1991).
[CrossRef]

Aiso, K.

K. Aiso, Y. Tashiro, T. Suzuki, and T. Yagi, “Development of er/yb co-doped fiber for high-power optical amplifiers,” Furukawa Review 20 (2001).

Andrejco, M. J.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Vrallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-Limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[CrossRef]

Bayon, J. F.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
[CrossRef]

Blixt, P.

J. Nilsson, B. Jaskorzynska, and P. Blixt, “Performance reduction and design modification of erbium-doped fiber amplifiers resulting from pair-induced quenching,” IEEE Photon. Technol. Lett. 5(12), 1427–1429 (1993).
[CrossRef]

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photon. Technol. Lett. 3(11), 996–998 (1991).
[CrossRef]

Boivin, D.

D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc, SPIE 7580, 75802B-1–75802B-9(2010).
[CrossRef]

Burov, E.

D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc, SPIE 7580, 75802B-1–75802B-9(2010).
[CrossRef]

Carlnas, T.

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photon. Technol. Lett. 3(11), 996–998 (1991).
[CrossRef]

Cavani, O.

D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc, SPIE 7580, 75802B-1–75802B-9(2010).
[CrossRef]

Chrostowski, J.

P. Myslinski, D. Nguyen, and J. Chrostowski, “Effects of concentration on the performance of erbium-doped fiber amplifiers,” J. Lightwave Technol. 15(1), 112–120 (1997).
[CrossRef]

Clarkson, W. A.

Codemard, C. A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[CrossRef]

Collet, C.

D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc, SPIE 7580, 75802B-1–75802B-9(2010).
[CrossRef]

Delevaque, E.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
[CrossRef]

DeSantolo, A.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Vrallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-Limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[CrossRef]

DiGiovanni, D. J.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Vrallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-Limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[CrossRef]

DiMarcello, F. V.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Vrallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-Limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[CrossRef]

Dubinskii, M.

J. Zhang, V. Fromzel, and M. Dubinskii, “Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency,” Opt. Express 19(6), 5574–5578 (2011).
[CrossRef] [PubMed]

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Record-efficient, resonantly-pumped, Er-doped single mode fibre amplifier,” Electron. Lett. 45(8), 400–401 (2009).
[CrossRef]

Fini, J. M.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Vrallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-Limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[CrossRef]

Flavin, D.

Fohn, T.

D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc, SPIE 7580, 75802B-1–75802B-9(2010).
[CrossRef]

Friberg, A. T.

Fromzel, V.

Georges, T.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
[CrossRef]

Girard, S.

Gonnet, C.

D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc, SPIE 7580, 75802B-1–75802B-9(2010).
[CrossRef]

Harker, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[CrossRef]

Headley, C.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Vrallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-Limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[CrossRef]

Hickey, L.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[CrossRef]

Horley, R.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[CrossRef]

Jasapara, J. C.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Vrallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-Limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[CrossRef]

Jaskorzynska, B.

J. Nilsson, B. Jaskorzynska, and P. Blixt, “Performance reduction and design modification of erbium-doped fiber amplifiers resulting from pair-induced quenching,” IEEE Photon. Technol. Lett. 5(12), 1427–1429 (1993).
[CrossRef]

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photon. Technol. Lett. 3(11), 996–998 (1991).
[CrossRef]

Jeong, Y.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[CrossRef]

Khoptyar, D.

Lamouler, P.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
[CrossRef]

Laroche, M.

Lempereur, S.

D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc, SPIE 7580, 75802B-1–75802B-9(2010).
[CrossRef]

Lovelady, M.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[CrossRef]

Monberg, E.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Vrallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-Limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[CrossRef]

Monerie, M.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
[CrossRef]

Myslinski, P.

P. Myslinski, D. Nguyen, and J. Chrostowski, “Effects of concentration on the performance of erbium-doped fiber amplifiers,” J. Lightwave Technol. 15(1), 112–120 (1997).
[CrossRef]

Nguyen, D.

P. Myslinski, D. Nguyen, and J. Chrostowski, “Effects of concentration on the performance of erbium-doped fiber amplifiers,” J. Lightwave Technol. 15(1), 112–120 (1997).
[CrossRef]

Nicholson, J. W.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Vrallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-Limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[CrossRef]

Nilsson, J.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[CrossRef]

M. Laroche, S. Girard, J. K. Sahu, W. A. Clarkson, and J. Nilsson, “Accurate efficiency evaluation of energy-transfer processes in phosphosilicate Er3+-Yb3+-codoped fibers,” J. Opt. Soc. Am. B 23(2), 195–202 (2006).
[CrossRef]

J. Nilsson, B. Jaskorzynska, and P. Blixt, “Performance reduction and design modification of erbium-doped fiber amplifiers resulting from pair-induced quenching,” IEEE Photon. Technol. Lett. 5(12), 1427–1429 (1993).
[CrossRef]

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photon. Technol. Lett. 3(11), 996–998 (1991).
[CrossRef]

Pastouret, A.

D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc, SPIE 7580, 75802B-1–75802B-9(2010).
[CrossRef]

Payne, D. N.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[CrossRef]

Piper, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[CrossRef]

Popov, S.

Sahu, J. K.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[CrossRef]

M. Laroche, S. Girard, J. K. Sahu, W. A. Clarkson, and J. Nilsson, “Accurate efficiency evaluation of energy-transfer processes in phosphosilicate Er3+-Yb3+-codoped fibers,” J. Opt. Soc. Am. B 23(2), 195–202 (2006).
[CrossRef]

Sergeyev, S.

Suzuki, T.

K. Aiso, Y. Tashiro, T. Suzuki, and T. Yagi, “Development of er/yb co-doped fiber for high-power optical amplifiers,” Furukawa Review 20 (2001).

Tashiro, Y.

K. Aiso, Y. Tashiro, T. Suzuki, and T. Yagi, “Development of er/yb co-doped fiber for high-power optical amplifiers,” Furukawa Review 20 (2001).

Ter-Mikirtychev, V.

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Record-efficient, resonantly-pumped, Er-doped single mode fibre amplifier,” Electron. Lett. 45(8), 400–401 (2009).
[CrossRef]

Turner, P. W.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[CrossRef]

Vrallyay, Z.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Vrallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-Limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[CrossRef]

Yablon, A. D.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Vrallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-Limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[CrossRef]

Yagi, T.

K. Aiso, Y. Tashiro, T. Suzuki, and T. Yagi, “Development of er/yb co-doped fiber for high-power optical amplifiers,” Furukawa Review 20 (2001).

Yoo, S.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[CrossRef]

Zhang, J.

J. Zhang, V. Fromzel, and M. Dubinskii, “Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency,” Opt. Express 19(6), 5574–5578 (2011).
[CrossRef] [PubMed]

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Record-efficient, resonantly-pumped, Er-doped single mode fibre amplifier,” Electron. Lett. 45(8), 400–401 (2009).
[CrossRef]

Electron. Lett. (1)

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Record-efficient, resonantly-pumped, Er-doped single mode fibre amplifier,” Electron. Lett. 45(8), 400–401 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Vrallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. DiMarcello, “Diffraction-Limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[CrossRef]

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium: ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Nilsson, B. Jaskorzynska, and P. Blixt, “Performance reduction and design modification of erbium-doped fiber amplifiers resulting from pair-induced quenching,” IEEE Photon. Technol. Lett. 5(12), 1427–1429 (1993).
[CrossRef]

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photon. Technol. Lett. 3(11), 996–998 (1991).
[CrossRef]

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5(1), 73–75 (1993).
[CrossRef]

J. Lightwave Technol. (1)

P. Myslinski, D. Nguyen, and J. Chrostowski, “Effects of concentration on the performance of erbium-doped fiber amplifiers,” J. Lightwave Technol. 15(1), 112–120 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (1)

SPIE (1)

D. Boivin, T. Fohn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” in Proc, SPIE 7580, 75802B-1–75802B-9(2010).
[CrossRef]

Other (5)

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, 1999).

E. L. Lim, S. U. Alam, and D. J. Richardson, “Highly efficient, high power, inband-pumped erbium/ytterbium-codoped fiber laser,” in CLEO, p. CTuI1 (2011).

S. U. Alam, A. T. Harker, R. J. Horley, F. Ghiringhelli, M. P. Varnham, P. W. Turner, M. N. Zervas, and S. R. Norman,“All-fibre, high power, cladding-pumped 1565nm MOPA pumped by high brightness 1535 nm pump sources,” in CLEO, p. CWJ4 (2008).

K. Aiso, Y. Tashiro, T. Suzuki, and T. Yagi, “Development of er/yb co-doped fiber for high-power optical amplifiers,” Furukawa Review 20 (2001).

S. Tammela, M. Hotoleanu, P. Kiiveri, H. Valkonen, S. Sarkilahti, and K. Janka, “Very short Er-doped silica glass fiber for L-band amplifiers”, in Proc. Optical Fiber Comm.(OFC), paper WK3 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the FP-CRS configuration. Cladding mode stripper was used only for Fiber 2.

Fig. 3
Fig. 3

Simulated signal power distribution along the gain fiber for 5 different k-values with 0.5 W 1565 nm input signal power and 20 W input pump power in FP-CRS configuration.

Fig. 2
Fig. 2

Experimental (circles) and simulation (lines) results for (a) Fiber 1 and (b) Fiber 2. The inset in (a) is the output spectrum of Fiber 1 at the maximum output signal power. The inset in (b) is the simulated signal power distribution along Fiber 2 for the case of 563 mW input signal power and 7.05 W input pump power.

Fig. 4
Fig. 4

Signal distribution at two different k-values (0.2% (solid lines) and 4.1% (dashed lines) under (a) forward-pumping scheme (FP) and (b) backward-pumping scheme (BP). Blue lines are 1565 nm-CRS, green-lines are 1565 nm-CLS and red lines are 1605 nm-CLS. The input signal power is 1 W and the input pump is 100 W.

Fig. 5
Fig. 5

The simulated (solid lines) and the experimental (circles) output signal power with respect to the absorbed pump power for the cladding pumped MOPA with input signals of 0.61 W at 1565 nm and 1605 nm.

Tables (1)

Tables Icon

Table 1 Summary of key results for various schemes for 1 W input signal and 100 W input pump

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N 2 i = R 12 i N t i A i + R 12 i + R 21 i +(1+ 1 m )C N 2 i .
N 2 k = R 12 i N t k A i +2 R 12 i + R 21 i .
N 2 = N 2 i + N 2 k = R 12 i N t (12k) A i + R 12 i + R 21 i +(1+ 1 m )C N 2 i + R 12 i 2k N t A i +2 R 12 i + R 21 i .

Metrics