Abstract

We demonstrate a high-efficiency optical modulator at ~1323 nm using the quantum Zeno effect in a ladder transition in a Rb vapor cell. The lower leg of the transitions represents the control beam while the upper leg of the transitions represents the signal beam. The cross-modulation of the signal beam transmission is observed as the control beam is intensity modulated, and is explained in terms of the quantum Zeno effect. We observe a modulation depth of near 100% at frequencies up to 1MHz and demonstrate modulation at speeds up to 75 MHz, with a 3 dB bandwidth of about 5 MHz, limited by the homogeneous linewidth of the intermediate state. We also describe how much higher modulation speeds could be realized by using a buffer gas to broaden the transitions. We identify and explain the special conditions needed for optimizing the modulation efficiency. Numerical simulations of modulation at ~1GHz are presented. The maximum modulation speed is found to scale with the pressure-broadened linewidth of the intermediate state, so that much higher speeds should be attainable.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
    [CrossRef]
  2. R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
    [CrossRef]
  3. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
    [CrossRef] [PubMed]
  4. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
    [CrossRef] [PubMed]
  5. V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett. 35(13), 2287–2289 (2010).
    [CrossRef] [PubMed]
  6. K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
    [CrossRef] [PubMed]
  7. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
    [CrossRef] [PubMed]
  8. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [CrossRef] [PubMed]
  9. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
    [CrossRef] [PubMed]
  10. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
    [CrossRef] [PubMed]
  11. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
    [CrossRef] [PubMed]
  12. D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2011).
    [CrossRef]
  13. T. Allsop, F. Floreani, K. P. Jedrzejewski, P. V. S. Marques, R. Romero, D. J. Webb, and I. Bennion, “Spectral characteristics of tapered LPG device as a sensing element for refractive index and temperature,” J. Lightwave Technol. 24(2), 870–878 (2006).
    [CrossRef]
  14. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
    [CrossRef] [PubMed]
  15. K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79(2), 021801 (2009).
    [CrossRef]
  16. V. G. Minogin and S. N. Chormaic, “Manifestation of the van der Waals surface interaction in the spontaneous emission of atoms into an optical nanofiber,” Laser Phys. 20(1), 32–37 (2010).
    [CrossRef]
  17. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
    [CrossRef] [PubMed]
  18. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
    [CrossRef] [PubMed]
  19. J. M. Ward, Y. Wu, V. G. Minogin, and S. N. Chormaic, “Trapping of a microsphere pendulum resonator in an optical potential,” Phys. Rev. A 79(5), 053839 (2009).
    [CrossRef]
  20. B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys. 18(4), 756–763 (1977).
    [CrossRef]
  21. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41(5), 2295–2300 (1990).
    [CrossRef] [PubMed]
  22. Y. Huang, J. B. Altepeter, and P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A 82(6), 063826 (2010).
    [CrossRef]
  23. H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 pm and 1.5 pm,” IEEE Photon. Technol. Lett. 4(11), 1307–1309 (1992).
    [CrossRef]
  24. H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
    [CrossRef]
  25. J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
    [CrossRef]
  26. B. V. Zhdanov and R. J. Knize, “Progress in alkali lasers development,” Proc. SPIE 6874, 68740F, 68740F-12 (2008) (and references therein).
    [CrossRef]

2011 (2)

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2011).
[CrossRef]

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[CrossRef] [PubMed]

2010 (6)

V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett. 35(13), 2287–2289 (2010).
[CrossRef] [PubMed]

V. G. Minogin and S. N. Chormaic, “Manifestation of the van der Waals surface interaction in the spontaneous emission of atoms into an optical nanofiber,” Laser Phys. 20(1), 32–37 (2010).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[CrossRef] [PubMed]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

Y. Huang, J. B. Altepeter, and P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A 82(6), 063826 (2010).
[CrossRef]

2009 (3)

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79(2), 021801 (2009).
[CrossRef]

J. M. Ward, Y. Wu, V. G. Minogin, and S. N. Chormaic, “Trapping of a microsphere pendulum resonator in an optical potential,” Phys. Rev. A 79(5), 053839 (2009).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

2008 (2)

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

B. V. Zhdanov and R. J. Knize, “Progress in alkali lasers development,” Proc. SPIE 6874, 68740F, 68740F-12 (2008) (and references therein).
[CrossRef]

2006 (1)

2005 (2)

J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[CrossRef] [PubMed]

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

2004 (3)

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[CrossRef]

G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
[CrossRef] [PubMed]

2003 (1)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[CrossRef] [PubMed]

2000 (1)

1998 (1)

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

1992 (1)

H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 pm and 1.5 pm,” IEEE Photon. Technol. Lett. 4(11), 1307–1309 (1992).
[CrossRef]

1990 (1)

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41(5), 2295–2300 (1990).
[CrossRef] [PubMed]

1977 (1)

B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys. 18(4), 756–763 (1977).
[CrossRef]

1976 (1)

J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
[CrossRef]

Allsop, T.

Altepeter, J. B.

Y. Huang, J. B. Altepeter, and P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A 82(6), 063826 (2010).
[CrossRef]

Alton, D. J.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2011).
[CrossRef]

Aoki, T.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2011).
[CrossRef]

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[CrossRef] [PubMed]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Beausoleil, R. G.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[CrossRef]

Bennion, I.

Bhagwat, A. R.

Birks, T. A.

Bjorkholm, J. E.

J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
[CrossRef]

Bollinger, J. J.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41(5), 2295–2300 (1990).
[CrossRef] [PubMed]

Brambilla, G.

Chormaic, S. N.

V. G. Minogin and S. N. Chormaic, “Manifestation of the van der Waals surface interaction in the spontaneous emission of atoms into an optical nanofiber,” Laser Phys. 20(1), 32–37 (2010).
[CrossRef]

J. M. Ward, Y. Wu, V. G. Minogin, and S. N. Chormaic, “Trapping of a microsphere pendulum resonator in an optical potential,” Phys. Rev. A 79(5), 053839 (2009).
[CrossRef]

Clark, S. M.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Dawes, A. M. C.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[CrossRef] [PubMed]

Finazzi, V.

Floreani, F.

Franson, J. D.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

Gaeta, A. L.

Gauthier, D. J.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[CrossRef] [PubMed]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Hakuta, K.

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79(2), 021801 (2009).
[CrossRef]

Hall, M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

Harris, S. E.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

Heinzen, D. J.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41(5), 2295–2300 (1990).
[CrossRef] [PubMed]

Hendrickson, S. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Huang, Y.

Y. Huang, J. B. Altepeter, and P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A 82(6), 063826 (2010).
[CrossRef]

Illing, L.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Itano, W. M.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41(5), 2295–2300 (1990).
[CrossRef] [PubMed]

Jedrzejewski, K. P.

Kien, F. L.

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79(2), 021801 (2009).
[CrossRef]

Kim, J. B.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

Kimble, H. J.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2011).
[CrossRef]

Kippenberg, T. J.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[CrossRef] [PubMed]

Knize, R. J.

B. V. Zhdanov and R. J. Knize, “Progress in alkali lasers development,” Proc. SPIE 6874, 68740F, 68740F-12 (2008) (and references therein).
[CrossRef]

Krishnamurthy, S.

Kumar, P.

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[CrossRef] [PubMed]

Y. Huang, J. B. Altepeter, and P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A 82(6), 063826 (2010).
[CrossRef]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

Lai, M. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

Lee, H.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2011).
[CrossRef]

Lee, L.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

Lee, W. K.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

Liao, P. F.

J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
[CrossRef]

Londero, P.

Lukin, M. D.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Marques, P. V. S.

Minogin, V. G.

V. G. Minogin and S. N. Chormaic, “Manifestation of the van der Waals surface interaction in the spontaneous emission of atoms into an optical nanofiber,” Laser Phys. 20(1), 32–37 (2010).
[CrossRef]

J. M. Ward, Y. Wu, V. G. Minogin, and S. N. Chormaic, “Trapping of a microsphere pendulum resonator in an optical potential,” Phys. Rev. A 79(5), 053839 (2009).
[CrossRef]

Misra, B.

B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys. 18(4), 756–763 (1977).
[CrossRef]

Monzón-Hernández, D.

Moon, H. S.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

Morinaga, M.

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79(2), 021801 (2009).
[CrossRef]

Munro, W. J.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[CrossRef]

Nayak, K. P.

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79(2), 021801 (2009).
[CrossRef]

Ostby, E.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2011).
[CrossRef]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[CrossRef] [PubMed]

Pati, G. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Pittman, T. B.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

Rauschenbeutel, A.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

Reitz, D.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

Richardson, D. J.

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[CrossRef] [PubMed]

Rodrigues, D. A.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[CrossRef]

Romero, R.

Russell, P. St. J.

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

Salit, K.

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[CrossRef] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

Salit, M.

Sasada, H.

H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 pm and 1.5 pm,” IEEE Photon. Technol. Lett. 4(11), 1307–1309 (1992).
[CrossRef]

Schliesser, A.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[CrossRef] [PubMed]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

Shahriar, M. S.

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[CrossRef] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

Slepkov, A. D.

Spillane, S. M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[CrossRef] [PubMed]

Spiller, T. P.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[CrossRef]

Stern, N. P.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2011).
[CrossRef]

Sudarshan, E. C. G.

B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys. 18(4), 756–763 (1977).
[CrossRef]

Vahala, K. J.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2011).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[CrossRef] [PubMed]

Venkataraman, V.

Vetsch, E.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

Villatoro, J.

Vuletic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Wadsworth, W. J.

Wang, Y.

Ward, J. M.

J. M. Ward, Y. Wu, V. G. Minogin, and S. N. Chormaic, “Trapping of a microsphere pendulum resonator in an optical potential,” Phys. Rev. A 79(5), 053839 (2009).
[CrossRef]

Webb, D. J.

Weis, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[CrossRef] [PubMed]

Wineland, D. J.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41(5), 2295–2300 (1990).
[CrossRef] [PubMed]

Wu, Y.

J. M. Ward, Y. Wu, V. G. Minogin, and S. N. Chormaic, “Trapping of a microsphere pendulum resonator in an optical potential,” Phys. Rev. A 79(5), 053839 (2009).
[CrossRef]

Yamamoto, Y.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

Zhdanov, B. V.

B. V. Zhdanov and R. J. Knize, “Progress in alkali lasers development,” Proc. SPIE 6874, 68740F, 68740F-12 (2008) (and references therein).
[CrossRef]

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Sasada, “Wavenumber measurements of sub-Doppler spectral lines of Rb at 1.3 pm and 1.5 pm,” IEEE Photon. Technol. Lett. 4(11), 1307–1309 (1992).
[CrossRef]

J. Lightwave Technol. (1)

J. Math. Phys. (1)

B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys. 18(4), 756–763 (1977).
[CrossRef]

J. Mod. Opt. (1)

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[CrossRef]

Laser Phys. (1)

V. G. Minogin and S. N. Chormaic, “Manifestation of the van der Waals surface interaction in the spontaneous emission of atoms into an optical nanofiber,” Laser Phys. 20(1), 32–37 (2010).
[CrossRef]

Nat. Phys. (1)

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (5)

J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
[CrossRef]

W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41(5), 2295–2300 (1990).
[CrossRef] [PubMed]

Y. Huang, J. B. Altepeter, and P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A 82(6), 063826 (2010).
[CrossRef]

J. M. Ward, Y. Wu, V. G. Minogin, and S. N. Chormaic, “Trapping of a microsphere pendulum resonator in an optical potential,” Phys. Rev. A 79(5), 053839 (2009).
[CrossRef]

K. P. Nayak, F. L. Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79(2), 021801 (2009).
[CrossRef]

Phys. Rev. Lett. (6)

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[CrossRef] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[CrossRef] [PubMed]

Proc. SPIE (1)

B. V. Zhdanov and R. J. Knize, “Progress in alkali lasers development,” Proc. SPIE 6874, 68740F, 68740F-12 (2008) (and references therein).
[CrossRef]

Science (2)

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig.
1
Fig. 1

AC-Stark effect in a Ladder Transition: (a) The control beam couples |1> to |2>, and the probe beam couples |2> to |3>; (b) For resonant excitation, the corresponding dressed states are degenerate; (c) When the strong control beam coupling is diagonalized, the resulting states are split by an amount much larger than the natural linewidth of |2>.

Fig.
2
Fig. 2

Schematic illustration of the experimental setup for observing the ladder-transition based QZE modulator. DCM: Dichroic mirror, AOM: Acousto-Optic modulator, EOM: Electro-Optic modulator, BS: Beam Splitter

Fig.
3
Fig. 3

Spectroscopic details of ladder transition in 85Rb (a) Schematic of various hyperfine levels used, along with the transition frequencies. (b) Expected spectrum if both hyperfine states of intermediate level are occupied by zero velocity atoms. (c) Shift of spectrum in (b) due to F = 3 state at the intermediate level being occupied by negative velocity atoms

Fig.
4
Fig. 4

Typical absorption profiles for the ladder transitions (at 1323nm) that are observed in 85Rb. (a) Corresponds to 795 nm laser power ~2mW, data taken in AC mode; the hyperfine transitions corresponding to the absorption dips are α: 3→2, β: 3→3, γ: 2→2, δ: 2→3. Note that the spectrum is seen in the reverse order during the repeat scan. (b) Corresponds to 795 nm laser power ~200mW; we see near 100% absorption and the lines are highly power broadened. The null value of the probe detuning is defined arbitrarily to be at the turn-around point of the scan in each case.

Fig.
5
Fig. 5

Spectroscopic details of ladder transition in 87Rb (a) Schematic of various hyperfine levels used along with the transition frequencies. (b) Absorption corresponding to 795 nm laser power ~50mW; all four transitions can be clearly seen. The hyperfine transitions corresponding to the absorption dips are A: 2→1, B: 1→1, C: 2→2, D: 1→2. (c) Corresponds to 795 nm laser power ~0.5mW; two of the four lines are suppressed and only transitions from F = 1 are observed.

Fig.
6
Fig. 6

Voltage as measured by the probe and pump detectors (top and bottom respectively) at a frequency of ~1 MHz. The intensities are directly proportional to the voltages recorded.

Fig.
7
Fig. 7

Modulation amplitude (normalized to the amplitude at 1 MHz) vs. frequency

Fig.
8
Fig. 8

Schematic of modulator in the presence of buffer gas and auxiliary beam. The reciprocal relaxation rates (γdown and γup) for the 5P1/2 and 5P3/2 states can be controlled by the pressure of the buffer gas. Typically, γup ≈γdown /4. For a pressure of about 1 atm, γdown≈10 GHz. The γmn (m and n integers) relaxation rates along the optical transitions are due to radiative decays, and are not affected by the buffer gas. Specifically, γ34 = γ32 ≈3 MHz and γ21 = γ41 ≈6 MHz. A schematic of the timing sequence of the pump and the auxiliary beam and the expected probe absorption are shown on the right.

Fig.
9
Fig. 9

High speed modulation in the presence of buffer gas, and using an auxiliary (deshelving) beam. The power levels of the pump and the deshelving beam have been re-scaled. The deshelving beam is applied immediately after turning off the pump and for a very short duration. The modulation speed is about 1 GHz. The temporal width of the deshelving π-pulse used for the simulation is 2/γdown.

Fig.
10
Fig. 10

High speed modulation using buffer gas but without any deshelving beam. The power level of the pump has been re-scaled. The switching speed is about 1 GHz.

Metrics