Abstract

We report on the possibilities of nanoscale optical fibers with all-normal dispersion behavior for pulse-preserving and coherent supercontinuum generation at deep ultraviolet wavelengths. We discuss the influence of important parameters such as pump wavelength and fiber diameter, for both optical nanofibers and nanoscale suspended-core optical fibers. Simulations reveal that by appropriate combination of fiber geometry and input pulse parameters, intensive spectral components well below 300 nm are generated. In addition, the impact of preceding taper transitions used for input coupling purposes is discussed in detail.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36(7), 773–779 (2000).
    [CrossRef]
  2. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007).
    [CrossRef] [PubMed]
  3. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers Opt. 92(3), 367–378 (2008).
    [CrossRef]
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
    [CrossRef] [PubMed]
  5. K. Saitoh, M. Koshiba, and N. A. Mortensen, “Nonlinear photonic crystal fibers: pushing the zero-dispersion towards the visible,” New J. Phys. 8(9), 207–215 (2006).
    [CrossRef]
  6. P. N. Prasad, Introduction to Biophotonics (John Wiley & Sons, 2003).
  7. J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77(2-3), 291–298 (2003).
    [CrossRef]
  8. M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a picosecond pumped supercontinuum,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, ed. (Cambridge University Press, 2011).
  9. S. P. Stark, A. Podlipensky, N. Y. Joly, and P. S. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 592–598 (2010).
    [CrossRef]
  10. S. P. Stark, A. Podlipensky, and P. S. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett. 106(8), 083903 (2011).
    [CrossRef] [PubMed]
  11. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett. 30(23), 3132–3134 (2005).
    [CrossRef] [PubMed]
  12. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14(12), 5715–5722 (2006).
    [CrossRef] [PubMed]
  13. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12(11), 113001 (2010).
    [CrossRef]
  14. J. Teipel, D. Türke, H. Giessen, A. Zintl, and B. Braun, “Compact multi-Watt picosecond coherent white light sources using multiple-taper fibers,” Opt. Express 13(5), 1734–1742 (2005).
    [CrossRef] [PubMed]
  15. F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett. 30(12), 1566–1568 (2005).
    [CrossRef] [PubMed]
  16. S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37(5), 770–772 (2012).
    [CrossRef] [PubMed]
  17. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
    [CrossRef] [PubMed]
  18. A. M. Heidt, “Pulse preserving flat top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
    [CrossRef]
  19. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [CrossRef] [PubMed]
  20. A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19(15), 13873–13879 (2011).
    [CrossRef] [PubMed]
  21. S. Demmler, J. Rothhardt, A. Heidt, A. Hartung, E. Rohwer, H. Bartelt, J. Limpert, and A. Tünnermann, “Generation of high quality, 13 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19, 20151–20158 (2011).
    [CrossRef] [PubMed]
  22. A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19(8), 7742–7749 (2011).
    [CrossRef] [PubMed]
  23. A. M. Heidt, A. Hartung, and H. Bartelt, “Deep ultraviolett supercontinuum generation in optical nanofibers by femtosecond-pulses at 400nm wavelength,” Proc. SPIE 7714, 771407, 771407-9 (2010).
    [CrossRef]
  24. J. Hult, “A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25(12), 3770–3775 (2007).
    [CrossRef]
  25. A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27(18), 3984–3991 (2009).
    [CrossRef]
  26. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
    [CrossRef] [PubMed]
  27. A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express 19(13), 12275–12283 (2011).
    [CrossRef] [PubMed]
  28. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEE Proc.: Optoelectron. 138, 343–354 (1991).
  29. T. A. Birks and Y. W. Li, “The Shape of Fiber Tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
    [CrossRef]

2012 (1)

2011 (6)

2010 (4)

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12(11), 113001 (2010).
[CrossRef]

A. M. Heidt, A. Hartung, and H. Bartelt, “Deep ultraviolett supercontinuum generation in optical nanofibers by femtosecond-pulses at 400nm wavelength,” Proc. SPIE 7714, 771407, 771407-9 (2010).
[CrossRef]

A. M. Heidt, “Pulse preserving flat top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
[CrossRef]

S. P. Stark, A. Podlipensky, N. Y. Joly, and P. S. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 592–598 (2010).
[CrossRef]

2009 (2)

2008 (1)

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers Opt. 92(3), 367–378 (2008).
[CrossRef]

2007 (2)

2006 (2)

2005 (3)

2003 (1)

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77(2-3), 291–298 (2003).
[CrossRef]

2001 (1)

2000 (2)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36(7), 773–779 (2000).
[CrossRef]

1992 (1)

T. A. Birks and Y. W. Li, “The Shape of Fiber Tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[CrossRef]

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEE Proc.: Optoelectron. 138, 343–354 (1991).

Afshar V, S.

Baggett, J. C.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77(2-3), 291–298 (2003).
[CrossRef]

Bartelt, H.

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[CrossRef] [PubMed]

A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19(8), 7742–7749 (2011).
[CrossRef] [PubMed]

A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19(15), 13873–13879 (2011).
[CrossRef] [PubMed]

S. Demmler, J. Rothhardt, A. Heidt, A. Hartung, E. Rohwer, H. Bartelt, J. Limpert, and A. Tünnermann, “Generation of high quality, 13 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19, 20151–20158 (2011).
[CrossRef] [PubMed]

A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express 19(13), 12275–12283 (2011).
[CrossRef] [PubMed]

A. M. Heidt, A. Hartung, and H. Bartelt, “Deep ultraviolett supercontinuum generation in optical nanofibers by femtosecond-pulses at 400nm wavelength,” Proc. SPIE 7714, 771407, 771407-9 (2010).
[CrossRef]

Baumberg, J. J.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77(2-3), 291–298 (2003).
[CrossRef]

Belardi, W.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77(2-3), 291–298 (2003).
[CrossRef]

Birks, T. A.

T. A. Birks and Y. W. Li, “The Shape of Fiber Tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[CrossRef]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEE Proc.: Optoelectron. 138, 343–354 (1991).

Bosman, G. W.

Braun, B.

Chudoba, C.

Coyle, S.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77(2-3), 291–298 (2003).
[CrossRef]

Demmler, S.

Deng, Y.

Elder, A. D.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers Opt. 92(3), 367–378 (2008).
[CrossRef]

Frank, J. H.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers Opt. 92(3), 367–378 (2008).
[CrossRef]

Fujimoto, J. G.

Furusawa, K.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77(2-3), 291–298 (2003).
[CrossRef]

George, A. K.

Ghanta, R. K.

Giessen, H.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEE Proc.: Optoelectron. 138, 343–354 (1991).

Hänsch, T. W.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Hartl, I.

Hartung, A.

A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19(8), 7742–7749 (2011).
[CrossRef] [PubMed]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[CrossRef] [PubMed]

A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19(15), 13873–13879 (2011).
[CrossRef] [PubMed]

S. Demmler, J. Rothhardt, A. Heidt, A. Hartung, E. Rohwer, H. Bartelt, J. Limpert, and A. Tünnermann, “Generation of high quality, 13 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19, 20151–20158 (2011).
[CrossRef] [PubMed]

A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express 19(13), 12275–12283 (2011).
[CrossRef] [PubMed]

A. M. Heidt, A. Hartung, and H. Bartelt, “Deep ultraviolett supercontinuum generation in optical nanofibers by femtosecond-pulses at 400nm wavelength,” Proc. SPIE 7714, 771407, 771407-9 (2010).
[CrossRef]

Heidt, A.

Heidt, A. M.

A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19(15), 13873–13879 (2011).
[CrossRef] [PubMed]

A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express 19(13), 12275–12283 (2011).
[CrossRef] [PubMed]

A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19(8), 7742–7749 (2011).
[CrossRef] [PubMed]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[CrossRef] [PubMed]

A. M. Heidt, A. Hartung, and H. Bartelt, “Deep ultraviolett supercontinuum generation in optical nanofibers by femtosecond-pulses at 400nm wavelength,” Proc. SPIE 7714, 771407, 771407-9 (2010).
[CrossRef]

A. M. Heidt, “Pulse preserving flat top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
[CrossRef]

A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27(18), 3984–3991 (2009).
[CrossRef]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEE Proc.: Optoelectron. 138, 343–354 (1991).

Holzwarth, R.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Hult, J.

Joly, N. Y.

Kaminski, C. F.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers Opt. 92(3), 367–378 (2008).
[CrossRef]

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007).
[CrossRef] [PubMed]

Knight, J. C.

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14(12), 5715–5722 (2006).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Knox, W. H.

Ko, T. H.

Koshiba, M.

K. Saitoh, M. Koshiba, and N. A. Mortensen, “Nonlinear photonic crystal fibers: pushing the zero-dispersion towards the visible,” New J. Phys. 8(9), 207–215 (2006).
[CrossRef]

Krok, P.

Kubota, H.

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36(7), 773–779 (2000).
[CrossRef]

Kudlinski, A.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEE Proc.: Optoelectron. 138, 343–354 (1991).

Li, X. D.

Li, Y. W.

T. A. Birks and Y. W. Li, “The Shape of Fiber Tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[CrossRef]

Limpert, J.

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEE Proc.: Optoelectron. 138, 343–354 (1991).

Lu, F.

Monro, T. M.

S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
[CrossRef] [PubMed]

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77(2-3), 291–298 (2003).
[CrossRef]

Mortensen, N. A.

K. Saitoh, M. Koshiba, and N. A. Mortensen, “Nonlinear photonic crystal fibers: pushing the zero-dispersion towards the visible,” New J. Phys. 8(9), 207–215 (2006).
[CrossRef]

Nakazawa, M.

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36(7), 773–779 (2000).
[CrossRef]

Netti, C.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77(2-3), 291–298 (2003).
[CrossRef]

Paschotta, R.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77(2-3), 291–298 (2003).
[CrossRef]

Podlipensky, A.

S. P. Stark, A. Podlipensky, and P. S. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett. 106(8), 083903 (2011).
[CrossRef] [PubMed]

S. P. Stark, A. Podlipensky, N. Y. Joly, and P. S. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 592–598 (2010).
[CrossRef]

Popov, S. V.

Price, J. H. V.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77(2-3), 291–298 (2003).
[CrossRef]

Ranka, J. K.

Richardson, D. J.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77(2-3), 291–298 (2003).
[CrossRef]

Rohwer, E.

Rohwer, E. G.

Rothhardt, J.

Rulkov, A. B.

Russell, P. S. J.

S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37(5), 770–772 (2012).
[CrossRef] [PubMed]

S. P. Stark, A. Podlipensky, and P. S. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett. 106(8), 083903 (2011).
[CrossRef] [PubMed]

S. P. Stark, A. Podlipensky, N. Y. Joly, and P. S. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 592–598 (2010).
[CrossRef]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Saitoh, K.

K. Saitoh, M. Koshiba, and N. A. Mortensen, “Nonlinear photonic crystal fibers: pushing the zero-dispersion towards the visible,” New J. Phys. 8(9), 207–215 (2006).
[CrossRef]

Schwoerer, H.

Stark, S. P.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEE Proc.: Optoelectron. 138, 343–354 (1991).

Tamura, K. R.

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36(7), 773–779 (2000).
[CrossRef]

Taylor, J. R.

Teipel, J.

Travers, J. C.

Tünnermann, A.

Türke, D.

Udem, T.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

Watt, R. S.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers Opt. 92(3), 367–378 (2008).
[CrossRef]

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007).
[CrossRef] [PubMed]

Windeler, R. S.

Zintl, A.

Appl. Phys. B (1)

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77(2-3), 291–298 (2003).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B: Lasers Opt. 92(3), 367–378 (2008).
[CrossRef]

IEE Proc.: Optoelectron. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEE Proc.: Optoelectron. 138, 343–354 (1991).

IEEE J. Quantum Electron. (1)

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36(7), 773–779 (2000).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. (1)

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12(11), 113001 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

New J. Phys. (1)

K. Saitoh, M. Koshiba, and N. A. Mortensen, “Nonlinear photonic crystal fibers: pushing the zero-dispersion towards the visible,” New J. Phys. 8(9), 207–215 (2006).
[CrossRef]

Opt. Express (9)

S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14(12), 5715–5722 (2006).
[CrossRef] [PubMed]

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007).
[CrossRef] [PubMed]

J. Teipel, D. Türke, H. Giessen, A. Zintl, and B. Braun, “Compact multi-Watt picosecond coherent white light sources using multiple-taper fibers,” Opt. Express 13(5), 1734–1742 (2005).
[CrossRef] [PubMed]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[CrossRef] [PubMed]

A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19(8), 7742–7749 (2011).
[CrossRef] [PubMed]

A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express 19(13), 12275–12283 (2011).
[CrossRef] [PubMed]

A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19(15), 13873–13879 (2011).
[CrossRef] [PubMed]

S. Demmler, J. Rothhardt, A. Heidt, A. Hartung, E. Rohwer, H. Bartelt, J. Limpert, and A. Tünnermann, “Generation of high quality, 13 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19, 20151–20158 (2011).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (2)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[CrossRef] [PubMed]

S. P. Stark, A. Podlipensky, and P. S. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett. 106(8), 083903 (2011).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. M. Heidt, A. Hartung, and H. Bartelt, “Deep ultraviolett supercontinuum generation in optical nanofibers by femtosecond-pulses at 400nm wavelength,” Proc. SPIE 7714, 771407, 771407-9 (2010).
[CrossRef]

Other (2)

P. N. Prasad, Introduction to Biophotonics (John Wiley & Sons, 2003).

M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a picosecond pumped supercontinuum,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, ed. (Cambridge University Press, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

ANDi profiles a) of nanofibers for different diameters and b) of tetragonal suspended-core fibers for different incircle diameters with 50 nm wall thickness. The inset of a) is a side view of a nanofiber, and b) shows an exemplary cross-section of a tetragonal suspended-core fiber.

Fig. 2
Fig. 2

Influence of the pump wavelength λpump on the generated SC for a nanofiber 440 nm in diameter. The MDW λMDW is 468 nm. The pulse duration is 50 fs, and the pulse energy is 1 nJ. The white line indicates the pump wavelength.

Fig. 3
Fig. 3

Generated SC as a function of peak power within a) a nanofiber with 450 nm diameter and b) an SCF with 500 nm incircle core diameter and four supporting walls 50 nm in thickness. The pulse duration is 50 fs, and the propagation length is 20 mm in all cases.

Fig. 4
Fig. 4

Influence of fiber diameter on the generated SC for a) a nanofiber and b) a suspended-core fiber. With decreasing fiber diameter, both edges of the spectra shift to shorter wavelengths. The inset shows an increased illustration of the UV edge. The pulse duration is 50 fs, the peak power is 20 kW, and the fiber length is 20 mm.

Fig. 5
Fig. 5

Influence of propagation loss on SC generation. The SCs generated after a nanofiber of 50 mm in length and 440 nm in diameter with and without loss are shown in blue and red, respectively. The propagation losses considered (measurement) of a tetragonal SCF are shown in black. For wavelengths below 350 nm, the linear slope of the attenuation curve was extrapolated.

Fig. 6
Fig. 6

Properties of the taper profiles discussed. Taper angles Ω as a function of fiber radius r are shown in a). Resulting profiles r(z) are shown in b).

Fig. 7
Fig. 7

Nonlinear pulse propagation within the taper transitions and the nanofiber. Spectral evolution is shown along a transition of a) adiabatic, b) linear and c) exponential profile for an input pulse of 25 kW peak power and 100 fs pulse duration. Spectral evolution along these transitions and a subsequent nanofiber is shown in d), e), and f), respectively. The vertical white line marks the end of the taper transition.

Fig. 8
Fig. 8

Typical taper transition properties in case of suspended-core fibers. Taper angle as a function of radius is shown in a), and resulting profiles are shown in b). Spectral evolutions along the adiabatic, linear, and exponential profile and additional 2.5 mm of the nanoscale fiber are shown in c), d), and e), respectively. The transitions start at a radius of 2.5 µm and end at 200 nm. The vertical white line marks the end of the taper transition.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω FWM =2 ω SPM - ω 0 ,
Ω=dr/dzrΔβ/2π.

Metrics