Abstract

We have developed an optical frequency comb using a mode-locked fiber ring laser with an intra-cavity waveguide electro-optic modulator controlling the optical length in the laser cavity. The mode-locking is achieved with a simple ring configuration and a nonlinear polarization rotation mechanism. The beat note between the laser and a reference laser and the carrier envelope offset frequency of the comb were simultaneously phase locked with servo bandwidths of 1.3 MHz and 900 kHz, respectively. We observed an out-of-loop beat between two identical combs, and obtained a coherent δ-function peak with a signal to noise ratio of 70 dB/Hz.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [CrossRef] [PubMed]
  2. K. M. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249(2), 95–99 (2008).
    [CrossRef]
  3. Q. Quraishi, M. Griebel, T. Kleine-Ostmann, and R. Bratschitsch, “Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime,” Opt. Lett. 30(23), 3231–3233 (2005).
    [CrossRef] [PubMed]
  4. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
    [CrossRef] [PubMed]
  5. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010).
    [CrossRef] [PubMed]
  6. C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors (Basel Switzerland) 2009, 8231–8262 (2009).
  7. A. Bartels, C. W. Oates, L. Hollberg, and S. A. Diddams, “Stabilization of femtosecond laser frequency combs with subhertz residual linewidths,” Opt. Lett. 29(10), 1081–1083 (2004).
    [CrossRef] [PubMed]
  8. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
    [CrossRef] [PubMed]
  9. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
    [CrossRef]
  10. M. J. Martin, S. M. Foreman, T. R. Schibli, and J. Ye, “Testing ultrafast mode-locking at microhertz relative optical linewidth,” Opt. Express 17(2), 558–568 (2009).
    [CrossRef] [PubMed]
  11. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
    [CrossRef] [PubMed]
  12. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [CrossRef] [PubMed]
  13. T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18(10), 9739–9746 (2010).
    [CrossRef] [PubMed]
  14. D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
    [CrossRef] [PubMed]
  15. E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
    [CrossRef] [PubMed]
  16. Y. Nakajima, H. Inaba, K. Iwakuni, K. Hosaka, A. Onae, K. Minoshima, and F. L. Hong, “All-fiber-based frequency comb with an intra-cavity waveguide electro-optic modulator,” Conference on Lasers and Electro-Optics (CLEO), San Jose (2010).
  17. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
    [CrossRef] [PubMed]
  18. Y. Nakajima, H. Inaba, F. L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
    [CrossRef]
  19. F. L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, and M. Yoshida, “Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser,” Opt. Lett. 28(17), 1516–1518 (2003).
    [CrossRef] [PubMed]
  20. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
    [CrossRef] [PubMed]
  21. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f (ceo) phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
    [CrossRef]
  22. B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
    [CrossRef] [PubMed]

2011 (1)

2010 (3)

2009 (3)

2008 (5)

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

Y. Nakajima, H. Inaba, F. L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[CrossRef]

K. M. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249(2), 95–99 (2008).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

2007 (1)

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f (ceo) phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

2006 (1)

2005 (3)

2004 (1)

2003 (1)

2000 (1)

1993 (1)

Adler, F.

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Bartels, A.

Baumann, E.

Bratschitsch, R.

Briles, T. C.

Cingöz, A.

Coddington, I.

Cossel, K. C.

Cundiff, S. T.

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Diddams, S. A.

Feder, K. S.

Fejer, M. M.

Fermann, M. E.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
[CrossRef] [PubMed]

Foltynowicz, A.

Foreman, S. M.

Giorgetta, F. R.

Griebel, M.

Hänsch, T. W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Hartl, I.

Haus, H. A.

Hirai, A.

Hollberg, L.

Holman, K. W.

Holzwarth, R.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Hong, F. L.

Hong, F.-L.

K. M. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249(2), 95–99 (2008).
[CrossRef]

Hosaka, K.

Hudson, D. D.

Inaba, H.

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
[CrossRef] [PubMed]

K. M. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249(2), 95–99 (2008).
[CrossRef]

Y. Nakajima, H. Inaba, F. L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[CrossRef]

F. L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, and M. Yoshida, “Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser,” Opt. Lett. 28(17), 1516–1518 (2003).
[CrossRef] [PubMed]

Ippen, E. P.

Ito, F.

K. M. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249(2), 95–99 (2008).
[CrossRef]

Johnson, T. A.

Jones, D. J.

Jones, R. J.

Katsuyama, T.

Kawato, S.

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Kleine-Ostmann, T.

Kobayashi, T.

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
[CrossRef] [PubMed]

Y. Nakajima, H. Inaba, F. L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[CrossRef]

Kobayashi, Y.

Kohno, T.

Langrock, C.

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Martin, M. J.

M. J. Martin, S. M. Foreman, T. R. Schibli, and J. Ye, “Testing ultrafast mode-locking at microhertz relative optical linewidth,” Opt. Express 17(2), 558–568 (2009).
[CrossRef] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Maslowski, P.

Matsumoto, H.

Y. Nakajima, H. Inaba, F. L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[CrossRef]

K. M. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249(2), 95–99 (2008).
[CrossRef]

F. L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, and M. Yoshida, “Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser,” Opt. Lett. 28(17), 1516–1518 (2003).
[CrossRef] [PubMed]

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[CrossRef] [PubMed]

McFerran, J. J.

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f (ceo) phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
[CrossRef] [PubMed]

Minoshima, K.

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Nakajima, Y.

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
[CrossRef] [PubMed]

K. M. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249(2), 95–99 (2008).
[CrossRef]

Y. Nakajima, H. Inaba, F. L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[CrossRef]

Nakazawa, M.

Y. Nakajima, H. Inaba, F. L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[CrossRef]

Nelson, L. E.

Newbury, N. R.

Nicholson, J. W.

Nugent-Glandorf, L.

Oates, C. W.

Onae, A.

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
[CrossRef] [PubMed]

K. M. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249(2), 95–99 (2008).
[CrossRef]

Y. Nakajima, H. Inaba, F. L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[CrossRef]

F. L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, and M. Yoshida, “Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser,” Opt. Lett. 28(17), 1516–1518 (2003).
[CrossRef] [PubMed]

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Quraishi, Q.

Sahay, P.

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors (Basel Switzerland) 2009, 8231–8262 (2009).

Schibli, T. R.

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Shimizu, T.

K. M. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249(2), 95–99 (2008).
[CrossRef]

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Sugiura, T.

Swann, W. C.

Takada, H.

Tamura, K.

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Wang, C.

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors (Basel Switzerland) 2009, 8231–8262 (2009).

Washburn, B. R.

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f (ceo) phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
[CrossRef] [PubMed]

Westbrook, P. S.

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Yamada, K. M.

K. M. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249(2), 95–99 (2008).
[CrossRef]

Yasuda, M.

Ye, J.

Yoshida, M.

Yost, D. C.

T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18(10), 9739–9746 (2010).
[CrossRef] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f (ceo) phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

J. Mol. Spectrosc. (1)

K. M. Yamada, A. Onae, F.-L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectrosc. 249(2), 95–99 (2008).
[CrossRef]

Nat. Photonics (1)

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Opt. Commun. (1)

Y. Nakajima, H. Inaba, F. L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (8)

A. Bartels, C. W. Oates, L. Hollberg, and S. A. Diddams, “Stabilization of femtosecond laser frequency combs with subhertz residual linewidths,” Opt. Lett. 29(10), 1081–1083 (2004).
[CrossRef] [PubMed]

W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006).
[CrossRef] [PubMed]

Q. Quraishi, M. Griebel, T. Kleine-Ostmann, and R. Bratschitsch, “Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime,” Opt. Lett. 30(23), 3231–3233 (2005).
[CrossRef] [PubMed]

D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
[CrossRef] [PubMed]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[CrossRef] [PubMed]

F. L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, and M. Yoshida, “Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser,” Opt. Lett. 28(17), 1516–1518 (2003).
[CrossRef] [PubMed]

L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
[CrossRef] [PubMed]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

Science (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Sensors (Basel Switzerland) (1)

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors (Basel Switzerland) 2009, 8231–8262 (2009).

Other (1)

Y. Nakajima, H. Inaba, K. Iwakuni, K. Hosaka, A. Onae, K. Minoshima, and F. L. Hong, “All-fiber-based frequency comb with an intra-cavity waveguide electro-optic modulator,” Conference on Lasers and Electro-Optics (CLEO), San Jose (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup for a comb with a fiber-coupled waveguide EOM and four-branch configuration. Thick solid lines and curves represent optical fiber; O.I., optical isolator; O.C., output coupler; WDM, wavelength division multiplexing coupler; Q, quarter wave plate; H, half wave plate; P, polarizer; TEC, thermo-electric cooler; EDF, erbium-doped fiber; HNLF, highly nonlinear fiber; PPLN, periodically-poled lithium niobate; PD, photo diode.

Fig. 2
Fig. 2

PLL systems for fCEO, and beat note between the comb and a reference laser. Thick solid lines represent optical fiber, and a thin solid line represents a beam in space. Broken lines represent electric wire. PD, photo detector; BPF, electrical band pass filter; PPLN, periodically-poled lithium niobate.

Fig. 3
Fig. 3

(a) Spectrum and (b) spectral power density of phase noise of the in-loop CEO beat. RBW, resolution bandwidth.

Fig. 4
Fig. 4

(a) Spectrum and (b) spectral power density of phase noise of the in-loop beat between the comb and the 1064 nm reference laser. RBW, resolution bandwidth.

Fig. 5
Fig. 5

Experimental setup to observe an out-of-loop beat between two combs with reference to a common 1064 nm laser. The beat note between each comb and the reference laser, and each CEO beat is phase locked to a microwave reference. Out-of-loop beat is directly observed by adjusting the repetition rates so that they are identical. O.I., optical isolator; O.C., output coupler; WDM, wavelength division multiplexing coupler; Q, quarter wave plate; H, half wave plate; P, polarizer; TEC, thermo-electric cooler; EDF, erbium-doped fiber; LD, laser diode.

Fig. 6
Fig. 6

(a) Spectrum, (b) spectral density of phase noise and integrated RMS phase, (c) enlarged spectrum, and (d) frequency stability of the out-of-loop beat.

Metrics