Abstract

The simultaneous transmission of four orthogonal frequency-division multiplexing (OFDM)-based signals used to provide quintuple-play services along wavelength division multiplexing (WDM) long-reach passive optical networks (LR-PONs) is demonstrated experimentally. Particularly, the transmission performance of custom signal bearing Gigabit Ethernet data, Worldwide Interoperability for Microwave Access, Long Term Evolution and Ultra Wideband (sub-bands 2 and 3) signals is evaluated for different LR-PONs reaches, considering single-wavelength and WDM transmission, and using a centralized impairment compensation technique at the central office that is transparent to the services provided.

It is shown that error vector magnitude-compliant levels are obtained for all the OFDM-based signals in WDM LR-PONs reaching 100 km and that negligible inter-channel crosstalk is obtained for a channel spacing of 100 GHz regardless the OFDM-based signal considered. The successful multi-format OFDM transmission along the 100 km-long WDM LR-PON is achieved in the absence of optical dispersion compensation or single sideband modulation, and it is enabled by the performance improvement provided by the centralized impairment compensation realized.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Luo, T. Wang, S. Weinstein, M. Cvijetic, and S. Nakamura, “Integrating optical and wireless services in the access network,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper NThG1.
  2. Z. Jia, J. Yu, G. Ellinas, and G. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol. 25, 3452–3471 (2007).
    [CrossRef]
  3. A. Cartaxo, J. Morgado, and D. Fonseca, “A perspective on optical-wireless converged NG-FTTH networks using directly modulated lasers,” in International Conference on Transparent Optical Networks, Stockholm, Sweden (2011), paper Mo.B4.3.
  4. J. Armstrong, “OFDM: from copper and wireless to optical,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper OMM1.
  5. L. Hanzo, M. Münster, B. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting (John Wiley & Sons, 2003).
  6. W. Shieh and I. Djordjevic, OFDM for Optical Communications (Elsevier/Academic Press, 2010).
  7. J. Armstrong, “OFDM for optical communication,” J. Lightwave Technol. 27, 189–204 (2009).
    [CrossRef]
  8. N. Cvijetic, “OFDM for next generation optical access networks,” J. Lightwave Technol. 30, 384–398 (2012).
    [CrossRef]
  9. High Rate UltraWideband PHY and MAC Standard, 2nd ed. (ECMA Int., Geneve, Switzerland, 2007).
  10. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 8), 3GPP TS 36.101 V8.8.0 (2009).
  11. IEEE 802.16, Part 16: Air Interface for Fixed Broadband Wireless Access Systems, Standard for local and metropolitan area networks (2009).
  12. A. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper PDP 39.
    [CrossRef]
  13. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42, 587–589 (2006).
    [CrossRef]
  14. J. Tang, P. Lane, and K. Shore, “30 Gbit/s transmission over 40 km directly modulated DFB laser-based SMF links without optical amplification and dispersion compensation for VSR and metro applications,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper JThB8.
    [CrossRef]
  15. N. Cvijetic, M. Huang, E. Ip, Y. Huang, D. Qian, and T. Wang, “1.2 Tb/s symmetric WDM-OFDMA-PON over 90km straight SSMF and 1:32 passive split with digitally-selective ONUs and coherent receiver OLT,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper PDPD7.
  16. T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun. 16, 1311–1320 (2011).
    [CrossRef]
  17. R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
    [CrossRef]
  18. C. Rodrigues, A. Gamelas, F. Carvalho, and A. Cartaxo, “Evolution of FTTH networks based on radio-over-fibre,” in International Conference on Transparent Optical Networks, Stockholm, Sweden (2011), paper Tu.B6.6.
  19. Fully-converged quintuple-play integrated optical-wireless access architectures, http://www.ict-fiver.eu/index.php .
  20. T. Alves and A. Cartaxo, “Distribution of double-sideband OFDM-UWB radio signals in dispersion compensated long-reach PONs,” J. Lightwave Technol. 29, 2467–2474 (2011).
    [CrossRef]
  21. C. Chow, C. Yeh, C. Wang, F. Shih, C. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express 16, 12096–12101 (2008).
    [CrossRef] [PubMed]
  22. J. Tang, P. Lane, and K. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18, 205–207 (2006).
    [CrossRef]
  23. T. Duong, N. Genay, M. Ouzzif, J. Masson, B. Charbonnier, P. Chanclou, and J. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790–792 (2009).
    [CrossRef]
  24. T. Ellermeyer, R. Schmid, A. Bielik, J. Rupeter, and M. Möller, “DA and AD converters in SiGe technology: speed and resolution for ultra high data rate applications,” in European Conference and Exhibition on Optical Communication, paper Th.10.A.6. (2010).
    [CrossRef]
  25. M. Morant, T. Alves, A. Cartaxo, and R. Llorente, “Transmission impairment compensation using broadband channel sounding in multi-format OFDM-based long-reach PONs,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2012), paper OW3B.2.
  26. T. Alves and A. Cartaxo, “Performance degradation due to OFDM-UWB radio signal transmission along dispersive single-mode fiber,” IEEE Photon. Technol. Lett. 21, 158–160 (2009).
    [CrossRef]

2012

2011

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun. 16, 1311–1320 (2011).
[CrossRef]

T. Alves and A. Cartaxo, “Distribution of double-sideband OFDM-UWB radio signals in dispersion compensated long-reach PONs,” J. Lightwave Technol. 29, 2467–2474 (2011).
[CrossRef]

2009

J. Armstrong, “OFDM for optical communication,” J. Lightwave Technol. 27, 189–204 (2009).
[CrossRef]

T. Duong, N. Genay, M. Ouzzif, J. Masson, B. Charbonnier, P. Chanclou, and J. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790–792 (2009).
[CrossRef]

T. Alves and A. Cartaxo, “Performance degradation due to OFDM-UWB radio signal transmission along dispersive single-mode fiber,” IEEE Photon. Technol. Lett. 21, 158–160 (2009).
[CrossRef]

2008

C. Chow, C. Yeh, C. Wang, F. Shih, C. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express 16, 12096–12101 (2008).
[CrossRef] [PubMed]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

2007

2006

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42, 587–589 (2006).
[CrossRef]

J. Tang, P. Lane, and K. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18, 205–207 (2006).
[CrossRef]

Alves, T.

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun. 16, 1311–1320 (2011).
[CrossRef]

T. Alves and A. Cartaxo, “Distribution of double-sideband OFDM-UWB radio signals in dispersion compensated long-reach PONs,” J. Lightwave Technol. 29, 2467–2474 (2011).
[CrossRef]

T. Alves and A. Cartaxo, “Performance degradation due to OFDM-UWB radio signal transmission along dispersive single-mode fiber,” IEEE Photon. Technol. Lett. 21, 158–160 (2009).
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

M. Morant, T. Alves, A. Cartaxo, and R. Llorente, “Transmission impairment compensation using broadband channel sounding in multi-format OFDM-based long-reach PONs,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2012), paper OW3B.2.

Armstrong, J.

J. Armstrong, “OFDM for optical communication,” J. Lightwave Technol. 27, 189–204 (2009).
[CrossRef]

A. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper PDP 39.
[CrossRef]

J. Armstrong, “OFDM: from copper and wireless to optical,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper OMM1.

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42, 587–589 (2006).
[CrossRef]

Beltran, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

Bielik, A.

T. Ellermeyer, R. Schmid, A. Bielik, J. Rupeter, and M. Möller, “DA and AD converters in SiGe technology: speed and resolution for ultra high data rate applications,” in European Conference and Exhibition on Optical Communication, paper Th.10.A.6. (2010).
[CrossRef]

Cartaxo, A.

T. Alves and A. Cartaxo, “Distribution of double-sideband OFDM-UWB radio signals in dispersion compensated long-reach PONs,” J. Lightwave Technol. 29, 2467–2474 (2011).
[CrossRef]

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun. 16, 1311–1320 (2011).
[CrossRef]

T. Alves and A. Cartaxo, “Performance degradation due to OFDM-UWB radio signal transmission along dispersive single-mode fiber,” IEEE Photon. Technol. Lett. 21, 158–160 (2009).
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

C. Rodrigues, A. Gamelas, F. Carvalho, and A. Cartaxo, “Evolution of FTTH networks based on radio-over-fibre,” in International Conference on Transparent Optical Networks, Stockholm, Sweden (2011), paper Tu.B6.6.

A. Cartaxo, J. Morgado, and D. Fonseca, “A perspective on optical-wireless converged NG-FTTH networks using directly modulated lasers,” in International Conference on Transparent Optical Networks, Stockholm, Sweden (2011), paper Mo.B4.3.

M. Morant, T. Alves, A. Cartaxo, and R. Llorente, “Transmission impairment compensation using broadband channel sounding in multi-format OFDM-based long-reach PONs,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2012), paper OW3B.2.

Carvalho, F.

C. Rodrigues, A. Gamelas, F. Carvalho, and A. Cartaxo, “Evolution of FTTH networks based on radio-over-fibre,” in International Conference on Transparent Optical Networks, Stockholm, Sweden (2011), paper Tu.B6.6.

Chanclou, P.

T. Duong, N. Genay, M. Ouzzif, J. Masson, B. Charbonnier, P. Chanclou, and J. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790–792 (2009).
[CrossRef]

Chang, G.

Charbonnier, B.

T. Duong, N. Genay, M. Ouzzif, J. Masson, B. Charbonnier, P. Chanclou, and J. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790–792 (2009).
[CrossRef]

Chi, S.

Choi, B.

L. Hanzo, M. Münster, B. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting (John Wiley & Sons, 2003).

Chow, C.

Cvijetic, M.

Y. Luo, T. Wang, S. Weinstein, M. Cvijetic, and S. Nakamura, “Integrating optical and wireless services in the access network,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper NThG1.

Cvijetic, N.

N. Cvijetic, “OFDM for next generation optical access networks,” J. Lightwave Technol. 30, 384–398 (2012).
[CrossRef]

N. Cvijetic, M. Huang, E. Ip, Y. Huang, D. Qian, and T. Wang, “1.2 Tb/s symmetric WDM-OFDMA-PON over 90km straight SSMF and 1:32 passive split with digitally-selective ONUs and coherent receiver OLT,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper PDPD7.

Djordjevic, I.

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Elsevier/Academic Press, 2010).

Du, L.

A. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper PDP 39.
[CrossRef]

Duong, T.

T. Duong, N. Genay, M. Ouzzif, J. Masson, B. Charbonnier, P. Chanclou, and J. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790–792 (2009).
[CrossRef]

Ellermeyer, T.

T. Ellermeyer, R. Schmid, A. Bielik, J. Rupeter, and M. Möller, “DA and AD converters in SiGe technology: speed and resolution for ultra high data rate applications,” in European Conference and Exhibition on Optical Communication, paper Th.10.A.6. (2010).
[CrossRef]

Ellinas, G.

Fonseca, D.

A. Cartaxo, J. Morgado, and D. Fonseca, “A perspective on optical-wireless converged NG-FTTH networks using directly modulated lasers,” in International Conference on Transparent Optical Networks, Stockholm, Sweden (2011), paper Mo.B4.3.

Gamelas, A.

C. Rodrigues, A. Gamelas, F. Carvalho, and A. Cartaxo, “Evolution of FTTH networks based on radio-over-fibre,” in International Conference on Transparent Optical Networks, Stockholm, Sweden (2011), paper Tu.B6.6.

Genay, N.

T. Duong, N. Genay, M. Ouzzif, J. Masson, B. Charbonnier, P. Chanclou, and J. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790–792 (2009).
[CrossRef]

Hanzo, L.

L. Hanzo, M. Münster, B. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting (John Wiley & Sons, 2003).

Huang, M.

N. Cvijetic, M. Huang, E. Ip, Y. Huang, D. Qian, and T. Wang, “1.2 Tb/s symmetric WDM-OFDMA-PON over 90km straight SSMF and 1:32 passive split with digitally-selective ONUs and coherent receiver OLT,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper PDPD7.

Huang, Y.

N. Cvijetic, M. Huang, E. Ip, Y. Huang, D. Qian, and T. Wang, “1.2 Tb/s symmetric WDM-OFDMA-PON over 90km straight SSMF and 1:32 passive split with digitally-selective ONUs and coherent receiver OLT,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper PDPD7.

Ip, E.

N. Cvijetic, M. Huang, E. Ip, Y. Huang, D. Qian, and T. Wang, “1.2 Tb/s symmetric WDM-OFDMA-PON over 90km straight SSMF and 1:32 passive split with digitally-selective ONUs and coherent receiver OLT,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper PDPD7.

Jia, Z.

Keller, T.

L. Hanzo, M. Münster, B. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting (John Wiley & Sons, 2003).

Lane, P.

J. Tang, P. Lane, and K. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18, 205–207 (2006).
[CrossRef]

J. Tang, P. Lane, and K. Shore, “30 Gbit/s transmission over 40 km directly modulated DFB laser-based SMF links without optical amplification and dispersion compensation for VSR and metro applications,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper JThB8.
[CrossRef]

Llorente, R.

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun. 16, 1311–1320 (2011).
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

M. Morant, T. Alves, A. Cartaxo, and R. Llorente, “Transmission impairment compensation using broadband channel sounding in multi-format OFDM-based long-reach PONs,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2012), paper OW3B.2.

Lowery, A.

A. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper PDP 39.
[CrossRef]

Luo, Y.

Y. Luo, T. Wang, S. Weinstein, M. Cvijetic, and S. Nakamura, “Integrating optical and wireless services in the access network,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper NThG1.

Marti, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

Masson, J.

T. Duong, N. Genay, M. Ouzzif, J. Masson, B. Charbonnier, P. Chanclou, and J. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790–792 (2009).
[CrossRef]

Möller, M.

T. Ellermeyer, R. Schmid, A. Bielik, J. Rupeter, and M. Möller, “DA and AD converters in SiGe technology: speed and resolution for ultra high data rate applications,” in European Conference and Exhibition on Optical Communication, paper Th.10.A.6. (2010).
[CrossRef]

Morant, M.

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun. 16, 1311–1320 (2011).
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

M. Morant, T. Alves, A. Cartaxo, and R. Llorente, “Transmission impairment compensation using broadband channel sounding in multi-format OFDM-based long-reach PONs,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2012), paper OW3B.2.

Morgado, J.

A. Cartaxo, J. Morgado, and D. Fonseca, “A perspective on optical-wireless converged NG-FTTH networks using directly modulated lasers,” in International Conference on Transparent Optical Networks, Stockholm, Sweden (2011), paper Mo.B4.3.

Münster, M.

L. Hanzo, M. Münster, B. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting (John Wiley & Sons, 2003).

Nakamura, S.

Y. Luo, T. Wang, S. Weinstein, M. Cvijetic, and S. Nakamura, “Integrating optical and wireless services in the access network,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper NThG1.

Ouzzif, M.

T. Duong, N. Genay, M. Ouzzif, J. Masson, B. Charbonnier, P. Chanclou, and J. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790–792 (2009).
[CrossRef]

Pan, C.

Perez, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

Qian, D.

N. Cvijetic, M. Huang, E. Ip, Y. Huang, D. Qian, and T. Wang, “1.2 Tb/s symmetric WDM-OFDMA-PON over 90km straight SSMF and 1:32 passive split with digitally-selective ONUs and coherent receiver OLT,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper PDPD7.

Rodrigues, C.

C. Rodrigues, A. Gamelas, F. Carvalho, and A. Cartaxo, “Evolution of FTTH networks based on radio-over-fibre,” in International Conference on Transparent Optical Networks, Stockholm, Sweden (2011), paper Tu.B6.6.

Rupeter, J.

T. Ellermeyer, R. Schmid, A. Bielik, J. Rupeter, and M. Möller, “DA and AD converters in SiGe technology: speed and resolution for ultra high data rate applications,” in European Conference and Exhibition on Optical Communication, paper Th.10.A.6. (2010).
[CrossRef]

Schmid, R.

T. Ellermeyer, R. Schmid, A. Bielik, J. Rupeter, and M. Möller, “DA and AD converters in SiGe technology: speed and resolution for ultra high data rate applications,” in European Conference and Exhibition on Optical Communication, paper Th.10.A.6. (2010).
[CrossRef]

Shieh, W.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42, 587–589 (2006).
[CrossRef]

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Elsevier/Academic Press, 2010).

Shih, F.

Shore, K.

J. Tang, P. Lane, and K. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18, 205–207 (2006).
[CrossRef]

J. Tang, P. Lane, and K. Shore, “30 Gbit/s transmission over 40 km directly modulated DFB laser-based SMF links without optical amplification and dispersion compensation for VSR and metro applications,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper JThB8.
[CrossRef]

Simon, J.

T. Duong, N. Genay, M. Ouzzif, J. Masson, B. Charbonnier, P. Chanclou, and J. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790–792 (2009).
[CrossRef]

Tang, J.

J. Tang, P. Lane, and K. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18, 205–207 (2006).
[CrossRef]

J. Tang, P. Lane, and K. Shore, “30 Gbit/s transmission over 40 km directly modulated DFB laser-based SMF links without optical amplification and dispersion compensation for VSR and metro applications,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper JThB8.
[CrossRef]

Wang, C.

Wang, T.

N. Cvijetic, M. Huang, E. Ip, Y. Huang, D. Qian, and T. Wang, “1.2 Tb/s symmetric WDM-OFDMA-PON over 90km straight SSMF and 1:32 passive split with digitally-selective ONUs and coherent receiver OLT,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper PDPD7.

Y. Luo, T. Wang, S. Weinstein, M. Cvijetic, and S. Nakamura, “Integrating optical and wireless services in the access network,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper NThG1.

Weinstein, S.

Y. Luo, T. Wang, S. Weinstein, M. Cvijetic, and S. Nakamura, “Integrating optical and wireless services in the access network,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper NThG1.

Yeh, C.

Yu, J.

Electron. Lett.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42, 587–589 (2006).
[CrossRef]

IEEE J. Sel. Areas Commun.

T. Alves, M. Morant, A. Cartaxo, and R. Llorente, “Performance comparison of OFDM-UWB radio signals distribution in long-reach PONs using Mach-Zehnder and linearized modulators,” IEEE J. Sel. Areas Commun. 16, 1311–1320 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945–947 (2008).
[CrossRef]

J. Tang, P. Lane, and K. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links,” IEEE Photon. Technol. Lett. 18, 205–207 (2006).
[CrossRef]

T. Duong, N. Genay, M. Ouzzif, J. Masson, B. Charbonnier, P. Chanclou, and J. Simon, “Adaptive loading algorithm implemented in AMOOFDM for NG-PON system integrating cost-effective and low-bandwidth optical devices,” IEEE Photon. Technol. Lett. 21, 790–792 (2009).
[CrossRef]

T. Alves and A. Cartaxo, “Performance degradation due to OFDM-UWB radio signal transmission along dispersive single-mode fiber,” IEEE Photon. Technol. Lett. 21, 158–160 (2009).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

J. Tang, P. Lane, and K. Shore, “30 Gbit/s transmission over 40 km directly modulated DFB laser-based SMF links without optical amplification and dispersion compensation for VSR and metro applications,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper JThB8.
[CrossRef]

N. Cvijetic, M. Huang, E. Ip, Y. Huang, D. Qian, and T. Wang, “1.2 Tb/s symmetric WDM-OFDMA-PON over 90km straight SSMF and 1:32 passive split with digitally-selective ONUs and coherent receiver OLT,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper PDPD7.

C. Rodrigues, A. Gamelas, F. Carvalho, and A. Cartaxo, “Evolution of FTTH networks based on radio-over-fibre,” in International Conference on Transparent Optical Networks, Stockholm, Sweden (2011), paper Tu.B6.6.

Fully-converged quintuple-play integrated optical-wireless access architectures, http://www.ict-fiver.eu/index.php .

High Rate UltraWideband PHY and MAC Standard, 2nd ed. (ECMA Int., Geneve, Switzerland, 2007).

3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 8), 3GPP TS 36.101 V8.8.0 (2009).

IEEE 802.16, Part 16: Air Interface for Fixed Broadband Wireless Access Systems, Standard for local and metropolitan area networks (2009).

A. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper PDP 39.
[CrossRef]

A. Cartaxo, J. Morgado, and D. Fonseca, “A perspective on optical-wireless converged NG-FTTH networks using directly modulated lasers,” in International Conference on Transparent Optical Networks, Stockholm, Sweden (2011), paper Mo.B4.3.

J. Armstrong, “OFDM: from copper and wireless to optical,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper OMM1.

L. Hanzo, M. Münster, B. Choi, and T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting (John Wiley & Sons, 2003).

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Elsevier/Academic Press, 2010).

Y. Luo, T. Wang, S. Weinstein, M. Cvijetic, and S. Nakamura, “Integrating optical and wireless services in the access network,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2006), paper NThG1.

T. Ellermeyer, R. Schmid, A. Bielik, J. Rupeter, and M. Möller, “DA and AD converters in SiGe technology: speed and resolution for ultra high data rate applications,” in European Conference and Exhibition on Optical Communication, paper Th.10.A.6. (2010).
[CrossRef]

M. Morant, T. Alves, A. Cartaxo, and R. Llorente, “Transmission impairment compensation using broadband channel sounding in multi-format OFDM-based long-reach PONs,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2012), paper OW3B.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup deployed to emulate the transmission of the OFDM-based signals along WDM LR-PONs employing centralized impairment compensation.

Fig. 2
Fig. 2

Block diagram used to generate the custom OFDM-GbE signal. IFFT: inverse fast Fourier transform; DAC: digital-to-analogue converter; LPF: low-pass filter.

Fig. 3
Fig. 3

Measured spectra of the signal at different points of the experimental setup: a) at signal generator output, b) at DEMUX input and c) at the receiver LPF output. The total LR-PON reach is 110 km and no centralized compensation is employed.

Fig. 4
Fig. 4

Measured spectra of the signal at different points of the experimental setup: a) at signal generator output, b) at DEMUX input and c) at the receiver LPF output. The total LR-PON reach is 110 km and the centralized compensation described in section 3 is employed.

Fig. 5
Fig. 5

EVM of the different OFDM-based signals as a function of the reach of the LR-PON. Results obtained without centralized compensation (circles) and with centralized compensation (squares). EVM limit of each OFDM-based signal (dashed lines). EVM obtained in optical back-to-back operation with centralized compensation (continuous lines).

Fig. 6
Fig. 6

(a) Measured spectrum of the WDM signal at the input of the DEMUX installed at the RN. (b) Zoom of the central channel of the WDM signal shown in (a). The pre-compensation applied to each signal at the OLT side is the result of the channel estimation obtained for an OLT-ONU distance of 100 km.

Fig. 7
Fig. 7

EVM of the different OFDM-based signals transmitted in the WDM LR-PON employing three optical channels. Results obtained for ONU 1, ONU 2 and ONU 3 served by the channel centered at 193.0 THz, 193.1 THz and 193.2 THz, respectively (circles). EVM obtained in each optical channel in single-wavelength operation (crosses). EVM limit of each OFDM-based signal (dashed lines). Centralized compensation is employed.

Tables (2)

Tables Icon

Table 1 Parameters of the Custom OFDM-GbE, LTE, WiMAX and UWB Signals

Tables Icon

Table 2 Frequency of the RF-Pilots Inserted at the OLT for Broadband Channel Sounding

Metrics