Abstract

The two-photon excited fluorescence (TPEF) increments of two dyes via bovine serum albumin (BSA) microstructures fabricated by the two-photon crosslinking technique were investigated. One is Rose Bengal (RB) with a high non-radiative decay rate, while the other is Eosin Y with a low non-radiative decay rate. Experimental results demonstrate that the quantum yield and lifetime of RB are both augmented via crosslinked BSA microstructures. Compared with theoretical analysis, this result indicates that the non-radiative decay rate of RB is decreased; hence, the quenched effect induced by BSA solution is suppressed. However, the fluorescence lifetime of Eosin Y is acutely abated despite the augmented quantum yield for the two-photon crosslinking processing from BSA solution. This result deduces that the radiative decay rate increased. Furthermore, the increased TPEF intensity and lifetime of RB correlated with the concentration of fabricated crosslinked BSA microstructures through pulse selection of the employed femtosecond laser is demonstrated and capable of developing a zone-plate-like BSA microstructure.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  2. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
    [CrossRef]
  3. T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
    [CrossRef]
  4. M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process.73(5), 561–566 (2001).
    [CrossRef]
  5. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  6. D. C. Neckers, “Rose Bengal,” J. Photochem. Photobiol. A47(1), 1–29 (1989).
    [CrossRef]
  7. K.-C. Cho, C.-H. Lien, C.-Y. Lin, C.-Y. Chang, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Enhanced two-photon excited fluorescence in three-dimensionally crosslinked bovine serum albumin microstructures,” Opt. Express19(12), 11732–11739 (2011).
    [CrossRef] [PubMed]
  8. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B13(3), 481–491 (1996).
    [CrossRef]
  9. J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett.75(23), 3605–3607 (1999).
    [CrossRef]
  10. M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
    [CrossRef] [PubMed]
  11. M. Kauert, P. C. Stoller, M. Frenz, and J. Ricka, “Absolute measurement of molecular two-photon absorption cross-sections using a fluorescence saturation technique,” Opt. Express14(18), 8434–8447 (2006).
    [CrossRef] [PubMed]
  12. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express16(6), 4029–4047 (2008).
    [CrossRef] [PubMed]
  13. A. Nag and D. Goswami, “Solvent effect on two-photon absorption and fluorescence of rhodamine dyes,” J. Photochem. Photobiol. Chem.206(2-3), 188–197 (2009).
    [CrossRef] [PubMed]
  14. C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D29(4), 1074–1079 (1996).
    [CrossRef]
  15. C. V. Bindhu and S. S. Harilal, “Effect of the excitation source on the quantum-yield measurements of rhodamine B laser dye studied using thermal-lens technique,” Anal. Sci.17(1), 141–144 (2001).
    [CrossRef] [PubMed]
  16. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition (Springer, 2010).
  17. M. A. Montenegro, M. A. Nazareno, E. N. Durantini, and C. D. Borsarelli, “Singlet molecular oxygen quenching ability of carotenoids in a reverse-micelle membrane mimetic system,” Photochem. Photobiol.75(4), 353–361 (2002).
    [CrossRef] [PubMed]
  18. A. Penzkofer, A. Beidoun, and M. Daiber, “Intersystem-crossing and excited-state absorption in eosin Y solutions determined by picosecond double pulse transient absorption measurements,” J. Lumin.51(6), 297–314 (1992).
    [CrossRef]
  19. W.-S. Kuo, C.-H. Lien, K.-C. Cho, C.-Y. Chang, C.-Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express18(26), 27550–27559 (2010).
    [CrossRef] [PubMed]
  20. M. Peter, S. M. Ameer-Beg, M. K. Y. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J.88(2), 1224–1237 (2005).
    [CrossRef] [PubMed]
  21. L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express20(8), 8939–8948 (2012).
    [CrossRef] [PubMed]

2012

2011

2010

2009

A. Nag and D. Goswami, “Solvent effect on two-photon absorption and fluorescence of rhodamine dyes,” J. Photochem. Photobiol. Chem.206(2-3), 188–197 (2009).
[CrossRef] [PubMed]

2008

2006

2005

M. Peter, S. M. Ameer-Beg, M. K. Y. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J.88(2), 1224–1237 (2005).
[CrossRef] [PubMed]

2002

M. A. Montenegro, M. A. Nazareno, E. N. Durantini, and C. D. Borsarelli, “Singlet molecular oxygen quenching ability of carotenoids in a reverse-micelle membrane mimetic system,” Photochem. Photobiol.75(4), 353–361 (2002).
[CrossRef] [PubMed]

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

2001

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process.73(5), 561–566 (2001).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
[CrossRef]

C. V. Bindhu and S. S. Harilal, “Effect of the excitation source on the quantum-yield measurements of rhodamine B laser dye studied using thermal-lens technique,” Anal. Sci.17(1), 141–144 (2001).
[CrossRef] [PubMed]

1999

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett.75(23), 3605–3607 (1999).
[CrossRef]

1998

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

1996

C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B13(3), 481–491 (1996).
[CrossRef]

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D29(4), 1074–1079 (1996).
[CrossRef]

1992

A. Penzkofer, A. Beidoun, and M. Daiber, “Intersystem-crossing and excited-state absorption in eosin Y solutions determined by picosecond double pulse transient absorption measurements,” J. Lumin.51(6), 297–314 (1992).
[CrossRef]

1990

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1989

D. C. Neckers, “Rose Bengal,” J. Photochem. Photobiol. A47(1), 1–29 (1989).
[CrossRef]

Albota, M.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Ameer-Beg, S. M.

M. Peter, S. M. Ameer-Beg, M. K. Y. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J.88(2), 1224–1237 (2005).
[CrossRef] [PubMed]

Beidoun, A.

A. Penzkofer, A. Beidoun, and M. Daiber, “Intersystem-crossing and excited-state absorption in eosin Y solutions determined by picosecond double pulse transient absorption measurements,” J. Lumin.51(6), 297–314 (1992).
[CrossRef]

Beljonne, D.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Bindhu, C. V.

C. V. Bindhu and S. S. Harilal, “Effect of the excitation source on the quantum-yield measurements of rhodamine B laser dye studied using thermal-lens technique,” Anal. Sci.17(1), 141–144 (2001).
[CrossRef] [PubMed]

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D29(4), 1074–1079 (1996).
[CrossRef]

Borsarelli, C. D.

M. A. Montenegro, M. A. Nazareno, E. N. Durantini, and C. D. Borsarelli, “Singlet molecular oxygen quenching ability of carotenoids in a reverse-micelle membrane mimetic system,” Photochem. Photobiol.75(4), 353–361 (2002).
[CrossRef] [PubMed]

Brédas, J. L.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Campagnola, P. J.

Chang, C.-Y.

Chang, N.-S.

Chen, S.-J.

Cheng, L.-C.

Cho, K.-C.

Daiber, M.

A. Penzkofer, A. Beidoun, and M. Daiber, “Intersystem-crossing and excited-state absorption in eosin Y solutions determined by picosecond double pulse transient absorption measurements,” J. Lumin.51(6), 297–314 (1992).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Dong, C. Y.

Drobizhev, M.

Durantini, E. N.

M. A. Montenegro, M. A. Nazareno, E. N. Durantini, and C. D. Borsarelli, “Singlet molecular oxygen quenching ability of carotenoids in a reverse-micelle membrane mimetic system,” Photochem. Photobiol.75(4), 353–361 (2002).
[CrossRef] [PubMed]

Ehrlich, J. E.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Frenz, M.

Fu, J. Y.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Galajda, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
[CrossRef]

Goswami, D.

A. Nag and D. Goswami, “Solvent effect on two-photon absorption and fluorescence of rhodamine dyes,” J. Photochem. Photobiol. Chem.206(2-3), 188–197 (2009).
[CrossRef] [PubMed]

Harilal, S. S.

C. V. Bindhu and S. S. Harilal, “Effect of the excitation source on the quantum-yield measurements of rhodamine B laser dye studied using thermal-lens technique,” Anal. Sci.17(1), 141–144 (2001).
[CrossRef] [PubMed]

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D29(4), 1074–1079 (1996).
[CrossRef]

Heikal, A. A.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Hess, S. E.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Huang, L. L. H.

Hughes, M. K. Y.

M. Peter, S. M. Ameer-Beg, M. K. Y. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J.88(2), 1224–1237 (2005).
[CrossRef] [PubMed]

Ishikawa, M.

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett.75(23), 3605–3607 (1999).
[CrossRef]

Issac, R. C.

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D29(4), 1074–1079 (1996).
[CrossRef]

Juodkazis, S.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process.73(5), 561–566 (2001).
[CrossRef]

Kauert, M.

Kawakami, T.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process.73(5), 561–566 (2001).
[CrossRef]

Kawata, S.

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Keppler, M. D.

M. Peter, S. M. Ameer-Beg, M. K. Y. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J.88(2), 1224–1237 (2005).
[CrossRef] [PubMed]

Kogej, T.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Kuo, W.-S.

Levin, M. D.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Lien, C.-H.

Lin, C.-Y.

Makarov, N. S.

Marder, S. R.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Marsh, M.

M. Peter, S. M. Ameer-Beg, M. K. Y. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J.88(2), 1224–1237 (2005).
[CrossRef] [PubMed]

Matsuo, S.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process.73(5), 561–566 (2001).
[CrossRef]

McCord-Maughon, D.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Misawa, H.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process.73(5), 561–566 (2001).
[CrossRef]

Miwa, M.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process.73(5), 561–566 (2001).
[CrossRef]

Montenegro, M. A.

M. A. Montenegro, M. A. Nazareno, E. N. Durantini, and C. D. Borsarelli, “Singlet molecular oxygen quenching ability of carotenoids in a reverse-micelle membrane mimetic system,” Photochem. Photobiol.75(4), 353–361 (2002).
[CrossRef] [PubMed]

Nag, A.

A. Nag and D. Goswami, “Solvent effect on two-photon absorption and fluorescence of rhodamine dyes,” J. Photochem. Photobiol. Chem.206(2-3), 188–197 (2009).
[CrossRef] [PubMed]

Nakatsuka, H.

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett.75(23), 3605–3607 (1999).
[CrossRef]

Nampoori, V. P. N.

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D29(4), 1074–1079 (1996).
[CrossRef]

Nazareno, M. A.

M. A. Montenegro, M. A. Nazareno, E. N. Durantini, and C. D. Borsarelli, “Singlet molecular oxygen quenching ability of carotenoids in a reverse-micelle membrane mimetic system,” Photochem. Photobiol.75(4), 353–361 (2002).
[CrossRef] [PubMed]

Neckers, D. C.

D. C. Neckers, “Rose Bengal,” J. Photochem. Photobiol. A47(1), 1–29 (1989).
[CrossRef]

Ng, T.

M. Peter, S. M. Ameer-Beg, M. K. Y. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J.88(2), 1224–1237 (2005).
[CrossRef] [PubMed]

Ormos, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
[CrossRef]

Penzkofer, A.

A. Penzkofer, A. Beidoun, and M. Daiber, “Intersystem-crossing and excited-state absorption in eosin Y solutions determined by picosecond double pulse transient absorption measurements,” J. Lumin.51(6), 297–314 (1992).
[CrossRef]

Perry, J. W.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Peter, M.

M. Peter, S. M. Ameer-Beg, M. K. Y. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J.88(2), 1224–1237 (2005).
[CrossRef] [PubMed]

Prag, S.

M. Peter, S. M. Ameer-Beg, M. K. Y. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J.88(2), 1224–1237 (2005).
[CrossRef] [PubMed]

Rebane, A.

Ricka, J.

Röckel, H.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Rumi, M.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Stoller, P. C.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Subramaniam, G.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Sun, H. B.

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Tanaka, T.

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Tsurumachi, N.

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett.75(23), 3605–3607 (1999).
[CrossRef]

Vallabhan, C. P. G.

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D29(4), 1074–1079 (1996).
[CrossRef]

Varier, G. K.

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D29(4), 1074–1079 (1996).
[CrossRef]

Vojnovic, B.

M. Peter, S. M. Ameer-Beg, M. K. Y. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J.88(2), 1224–1237 (2005).
[CrossRef] [PubMed]

Webb, W. W.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B13(3), 481–491 (1996).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wu, X. L.

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

Xu, C.

L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express20(8), 8939–8948 (2012).
[CrossRef] [PubMed]

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B13(3), 481–491 (1996).
[CrossRef]

Yamane, Y.

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett.75(23), 3605–3607 (1999).
[CrossRef]

Ye, J. Y.

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett.75(23), 3605–3607 (1999).
[CrossRef]

Yen, W.-C.

Anal. Sci.

C. V. Bindhu and S. S. Harilal, “Effect of the excitation source on the quantum-yield measurements of rhodamine B laser dye studied using thermal-lens technique,” Anal. Sci.17(1), 141–144 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett.78(2), 249–251 (2001).
[CrossRef]

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett.80(2), 312–314 (2002).
[CrossRef]

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett.75(23), 3605–3607 (1999).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys., A Mater. Sci. Process.73(5), 561–566 (2001).
[CrossRef]

Biophys. J.

M. Peter, S. M. Ameer-Beg, M. K. Y. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J.88(2), 1224–1237 (2005).
[CrossRef] [PubMed]

J. Lumin.

A. Penzkofer, A. Beidoun, and M. Daiber, “Intersystem-crossing and excited-state absorption in eosin Y solutions determined by picosecond double pulse transient absorption measurements,” J. Lumin.51(6), 297–314 (1992).
[CrossRef]

J. Opt. Soc. Am. B

J. Photochem. Photobiol. A

D. C. Neckers, “Rose Bengal,” J. Photochem. Photobiol. A47(1), 1–29 (1989).
[CrossRef]

J. Photochem. Photobiol. Chem.

A. Nag and D. Goswami, “Solvent effect on two-photon absorption and fluorescence of rhodamine dyes,” J. Photochem. Photobiol. Chem.206(2-3), 188–197 (2009).
[CrossRef] [PubMed]

J. Phys. D

C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique,” J. Phys. D29(4), 1074–1079 (1996).
[CrossRef]

Nature

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Opt. Express

Photochem. Photobiol.

M. A. Montenegro, M. A. Nazareno, E. N. Durantini, and C. D. Borsarelli, “Singlet molecular oxygen quenching ability of carotenoids in a reverse-micelle membrane mimetic system,” Photochem. Photobiol.75(4), 353–361 (2002).
[CrossRef] [PubMed]

Science

M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science281(5383), 1653–1656 (1998).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical setup of the femtosecond laser imaging and microfabrication system combined with the fluorescence lifetime imaging microscopy.

Fig. 2
Fig. 2

(a) Relative quantum yields and (b) lifetime decay curves of RB in deionized water, BSA solution, and crosslinked BSA microstructures with three fabrication powers, respectively. (c) Relative quantum yields and (d) lifetime decay curves of Eosin Y. Herein, relative quantum yield is proportional to the slope of the differentiation of TPEF intensity over the differentiation of the square of excitation power.

Fig. 3
Fig. 3

Images of TPEF intensity and fluorescence lifetime of RB in crosslinked BSA microstructures fabricated by selecting the pulse number of femtosecond laser: (a) design pattern of 4 × 4 squares, (b) TPEF intensity, and (c) fluorescence lifetime.

Fig. 4
Fig. 4

Images of zone-plate-like BSA microstructure fabricated by the four pulse numbers of 60,000, 51,200, 44,000, and 40,000 from inside to outside: (a) TPEF intensity, (b) fluorescence lifetime, and (c) combination of (a) & (b).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F P 2 τ p f σ( λ )CQ,
S= ΔF Δ P 2 1 τ p f σ( λ )CQ.
Q= σ r σ C r C S S r Q r ,
Q= Γ Γ+k ,
τ= 1 Γ+k .

Metrics