Abstract

We demonstrate a simple setup capable of generating four-cycle pulses at a center wavelength of 1700nm for nanoscale photoemission. Pulses from an amplified erbium-doped fiber laser are spectrally broadened by propagation through a highly non-linear fiber. Subsequently, we exploit dispersion in two different types of glass to compress the pulses. The pulse length is estimated by measuring an interferometric autocorrelation trace and comparing it to a numerical simulation. We demonstrate highly non-linear photoemission of electrons from a nanometric tungsten tip in a hitherto unexplored pulse parameter range.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Kafka, T. Baer, and D. W. Hall, “Mode-locked erbium-doped fiber laser with soliton pulse shaping,” Opt. Lett. 14, 1269–1271 (1989).
  2. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
  3. A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express 17, 1070–1077 (2009).
  4. A. Andrianov, A. Kim, S. Muraviov, and A. Sysoliatin, “Wavelength-tunable few-cycle optical pulses directly from an all-fiber er-doped laser setup,” Opt. Lett. 34, 3193–3195 (2009).
  5. E. Anashkina, A. Andrianov, S. Muravyev, and A. Kim, “All-fiber design of erbium-doped laser system for tunable two-cycle pulse generation,” Opt. Express 19, 20141–20150 (2011).
  6. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).
  7. P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett. 97, 247402 (2006).
    [CrossRef]
  8. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).
  9. C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).
  10. M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105, 257601 (2010).
    [CrossRef]
  11. R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, and C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
    [CrossRef]
  12. M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B 45, 074006 (2012).
    [CrossRef]
  13. G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, and P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” submitted, arXiv:1201.0462 (2012).
  14. M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).
  15. G. Krauss, D. Fehrenbacher, D. Brida, C. Riek, A. Sell, R. Huber, and A. Leitenstorfer, “All-passive phase locking of a compact Er:fiber laser system,” Opt. Lett. 36, 540–542 (2011).
  16. C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 μm at 100 khz,” Opt. Lett.  37, 1673–1675 (2012).
  17. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
  18. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
  19. G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).
  20. AG Schott, “Optical glass data sheets,” http://www.us.schott.com/advanced_optics/english/download/schott_optical_glass_collection_datasheets_dec_2011_us.pdf .
  21. R. Gomer, Field Emission and Field Ionization (Harvard University Press, 1961).
  22. H. Kawano, “Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces,” Prog. Surf. Sci. 83, 1–165 (2008).

2012 (4)

M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B 45, 074006 (2012).
[CrossRef]

C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 μm at 100 khz,” Opt. Lett.  37, 1673–1675 (2012).

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).

2011 (3)

2010 (3)

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).

M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105, 257601 (2010).
[CrossRef]

R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, and C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
[CrossRef]

2009 (3)

2008 (1)

H. Kawano, “Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces,” Prog. Surf. Sci. 83, 1–165 (2008).

2007 (1)

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).

2006 (2)

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett. 97, 247402 (2006).
[CrossRef]

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).

1993 (1)

1989 (1)

Aghajani-Talesh, A.

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).

Anashkina, E.

Andrianov, A.

Baer, T.

Bormann, R.

R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, and C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
[CrossRef]

Bradler, M.

C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 μm at 100 khz,” Opt. Lett.  37, 1673–1675 (2012).

Bratschitsch, R.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).

Brida, D.

Burgdörfer, J.

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, and P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” submitted, arXiv:1201.0462 (2012).

Cesar, J.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).

Eggert, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).

Elsaesser, T.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).

Fehrenbacher, D.

Förster, M.

C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 μm at 100 khz,” Opt. Lett.  37, 1673–1675 (2012).

M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B 45, 074006 (2012).
[CrossRef]

Gomer, R.

R. Gomer, Field Emission and Field Ionization (Harvard University Press, 1961).

Gulde, M.

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).

R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, and C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
[CrossRef]

Hall, D. W.

Hanke, T.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).

Haus, H. A.

Herink, G.

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).

Hohenester, U.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).

Homann, C.

C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 μm at 100 khz,” Opt. Lett.  37, 1673–1675 (2012).

Hommelhoff, P.

C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 μm at 100 khz,” Opt. Lett.  37, 1673–1675 (2012).

M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B 45, 074006 (2012).
[CrossRef]

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).

M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105, 257601 (2010).
[CrossRef]

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett. 97, 247402 (2006).
[CrossRef]

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, and P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” submitted, arXiv:1201.0462 (2012).

Huber, R.

Ippen, E. P.

Kafka, J. D.

Kasevich, M. A.

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett. 97, 247402 (2006).
[CrossRef]

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).

Kawano, H.

H. Kawano, “Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces,” Prog. Surf. Sci. 83, 1–165 (2008).

Kealhofer, C.

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett. 97, 247402 (2006).
[CrossRef]

Kim, A.

Knittel, V.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).

Krauss, G.

G. Krauss, D. Fehrenbacher, D. Brida, C. Riek, A. Sell, R. Huber, and A. Leitenstorfer, “All-passive phase locking of a compact Er:fiber laser system,” Opt. Lett. 36, 540–542 (2011).

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).

A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express 17, 1070–1077 (2009).

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).

Krüger, M.

M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B 45, 074006 (2012).
[CrossRef]

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).

M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105, 257601 (2010).
[CrossRef]

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, and P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” submitted, arXiv:1201.0462 (2012).

Leitenstorfer, A.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).

G. Krauss, D. Fehrenbacher, D. Brida, C. Riek, A. Sell, R. Huber, and A. Leitenstorfer, “All-passive phase locking of a compact Er:fiber laser system,” Opt. Lett. 36, 540–542 (2011).

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).

A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express 17, 1070–1077 (2009).

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).

Lemell, C.

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, and P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” submitted, arXiv:1201.0462 (2012).

Lienau, C.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).

Lohss, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).

Muraviov, S.

Muravyev, S.

Nelson, L. E.

Riedle, E.

C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 μm at 100 khz,” Opt. Lett.  37, 1673–1675 (2012).

Riek, C.

Ropers, C.

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).

R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, and C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
[CrossRef]

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).

Schenk, M.

M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B 45, 074006 (2012).
[CrossRef]

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).

M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105, 257601 (2010).
[CrossRef]

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, and P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” submitted, arXiv:1201.0462 (2012).

Scheu, R.

Schulz, C. P.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).

Sell, A.

Solli, D. R.

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).

Sortais, Y.

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).

Sysoliatin, A.

Tamura, K.

Träutlein, D.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).

Trügler, A.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).

Wachter, G.

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, and P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” submitted, arXiv:1201.0462 (2012).

Weismann, A.

R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, and C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
[CrossRef]

Wild, B.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).

Yalunin, S. V.

R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, and C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
[CrossRef]

J. Phys. B (1)

M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, “Attosecond physics in photoemission from a metal nanotip,” J. Phys. B 45, 074006 (2012).
[CrossRef]

Nano Lett. (1)

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).

Nat. Photon. (1)

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).

Nature (2)

G. Herink, D. R. Solli, M. Gulde, and C. Ropers, “Field-driven photoemission from nanostructures quenches the quiver motion,” Nature 483, 190–193 (2012).

M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (6)

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett. 97, 247402 (2006).
[CrossRef]

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96, 077401 (2006).

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98, 043907 (2007).

M. Schenk, M. Krüger, and P. Hommelhoff, “Strong-field above-threshold photoemission from sharp metal tips,” Phys. Rev. Lett. 105, 257601 (2010).
[CrossRef]

R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, and C. Ropers, “Tip-enhanced strong-field photoemission,” Phys. Rev. Lett. 105, 147601 (2010).
[CrossRef]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).

Prog. Surf. Sci. (1)

H. Kawano, “Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces,” Prog. Surf. Sci. 83, 1–165 (2008).

Other (4)

C. Homann, M. Bradler, M. Förster, P. Hommelhoff, and E. Riedle, “Carrier-envelope phase stable sub-two-cycle pulses tunable around 1.8 μm at 100 khz,” Opt. Lett.  37, 1673–1675 (2012).

G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, and P. Hommelhoff, “Electron rescattering at metal nanotips induced by ultrashort laser pulses,” submitted, arXiv:1201.0462 (2012).

AG Schott, “Optical glass data sheets,” http://www.us.schott.com/advanced_optics/english/download/schott_optical_glass_collection_datasheets_dec_2011_us.pdf .

R. Gomer, Field Emission and Field Ionization (Harvard University Press, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Outline of the experimental setup: pulses are generated in an erbium-doped fiber laser and spectrally broadened in a highly non-linear fiber (HNLF), the short-wavelength part of the spectrum is filtered out, the spectral phase is flattened using dispersion in glass, and the pulse duration is characterized in an autocorrelator. (b) Spectral intensity before (shaded red area) and after spectral broadening (black line) in the HNLF; shown here is a combination of measurements with two spectrum analyzers: Ando AQ6315E and Yokogawa AQ6375.

Fig. 2
Fig. 2

(a) Measured autocorrelation trace; (b) simulated autocorrelation trace; (c) measured spectral intensity (gray area) and the assumed spectral phase (line) used in the simulation; (d) temporal pulse shape corresponding to (c).

Fig. 3
Fig. 3

Illustration of multiphoton absorption and the Schottky effect at a tungsten surface: in order to be emitted, an electron’s energy must be raised from an energy EEFermi to the continuum E ≥ 0. An additional static voltage at the surface lowers the barrier height, thus reducing the required energy. The barrier is plotted for zero voltage (black line) and for the voltages applied in the experiment, corresponding to fields of 2.2 (lower grey line) and 1.4GV/m (upper grey line).

Fig. 4
Fig. 4

Photocurrent J as function of laser power P for two different static electric fields; (a) F = 2.2GV/m, fit result: JP4.0±0.3; (b) F = 1.4GV/m, fit result: JP5.3±0.4.

Metrics