Abstract

We study the electro optical properties of a Metal-Nitride-Oxide-Silicon (MNOS) stack for a use in CMOS compatible plasmonic active devices. We show that the insertion of an ultrathin stoichiometric Si3N4 layer in a MOS stack lead to an increase in the electrical reliability of a copper gate MNOS capacitance from 50 to 95% thanks to a diffusion barrier effect, while preserving the low optical losses brought by the use of copper as the plasmon supporting metal. An experimental investigation is undertaken at a wafer scale using some CMOS standard processes of the LETI foundry. Optical transmission measurments conducted in a MNOS channel waveguide configuration coupled to standard silicon photonics circuitry confirms the very low optical losses (0.39 dB.μm−1), in good agreement with predictions using ellipsometric optical constants of Cu.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  3. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
    [CrossRef] [PubMed]
  4. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal–oxide–Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
    [CrossRef] [PubMed]
  5. A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped mos light sources,” Opt. Express 17, 185–192 (2009).
    [CrossRef] [PubMed]
  6. S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99, 151114–151116 (2011).
    [CrossRef]
  7. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
    [CrossRef] [PubMed]
  8. V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
    [CrossRef]
  9. H. S. Lee, C. Awada, S. Boutami, F. Charra, L. Douillard, and R. E. de Lamaestre, “Loss mechanisms of surface plasmon polaritons propagating on a smooth polycrystalline Cu surface,” Opt. Express 20, 8974–8981 (2012).
    [CrossRef]
  10. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006).
    [CrossRef] [PubMed]
  11. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
    [CrossRef] [PubMed]
  12. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18, 13173–13179 (2010).
    [CrossRef] [PubMed]
  13. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics.” Nano Lett. 10, 2922–2926 (2010).
    [CrossRef] [PubMed]
  14. E. D. Palik, Handbook of Optical Constants (Academic, 1985).
  15. R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper metallization for high performance silicon technology,” Annu. Rev. Mater. Sci. 30, 229–262 (2000).
    [CrossRef]
  16. B. G. Willis and D. V. Lang, “Oxidation mechanism of ionic transport of copper in sio2 dielectrics,” Thin Solid Films 467, 284–293 (2004).
    [CrossRef]
  17. M. Y. Kwak, D. H. Shin, T. W. Kang, and K. N. Kim, “Characteristics of tin barrier layer against cu diffusion,” Thin Solid Films 339, 290–293 (1999).
    [CrossRef]
  18. V. S. C. Len, R. E. Hurley, N. McCusker, D. W. McNeill, B. M. Armstrong, and H. S. Gamble, “An investigation into the performance of diffusion barrier materials against copper diffusion using metal-oxide-semiconductor capacitor structures,” Solid-State Electron. 43, 1045–1049 (1999).
    [CrossRef]
  19. K. Holloway, P. M. Fryer, C. Cabral, J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions,” J. Appl. Phys. 71, 5433–5444 (1992).
    [CrossRef]
  20. T. Wang, Y. Cheng, Y. Wang, T. Hsieh, G. Hwang, and C. Chen, “Comparison of characteristics and integration of copper diffusion-barrier dielectrics,” Thin Solid Films 498, 36–42 (2006).
    [CrossRef]
  21. H. Miyazaki, H. Kojima, and K. Hinode, “Passivation effect of silicon nitride against copper diffusion,” J. Appl. Phys. 81, 7746–7750 (1997).
    [CrossRef]
  22. A. S. Lee, N. Rajagopalan, M. Le, B. H. Kim, and H. M’Saad, “Development and characterization of a PECVD silicon nitride for damascene applications,” J. Electrochem. Soc. 151, F7–F9 (2004).
    [CrossRef]
  23. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
    [CrossRef] [PubMed]
  24. M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits,” J. Electrochem. Soc. 90, 2057–2121 (2001).
  25. Y. Shi, X. Wang, and T.-P. Ma, “Electrical properties of high-quality ultrathin nitride/oxide stack dielectrics,” IEEE Trans. Electron Dev. 46, 362–368 (1999).
    [CrossRef]
  26. K.-M. Chang, W.-C. Yang, C.-F. Chen, and B.-F. Hung, “The changing effect of N2/O2 gas flow rate ratios on ultrathin nitrogen-enriched oxynitride gate dielectrics,” J. Electrochem. Soc. 151, F118–F122 (2004).
    [CrossRef]
  27. V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).
  28. R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270, 596–600 (1995).
    [CrossRef]
  29. C. Leroux, F. Allain, A. Toffoli, G. Ghibaudo, and G. Reimbold, “Automatic statistical full quantum analysis of C-V and I-V characteristics for advanced mos gate stacks,” Microelectron. Eng. 84, 2408–2411 (2007).
    [CrossRef]
  30. J. Robertson, “High dielectric constant gate oxides for metal oxide si transistors,” Rep. Prog. Phys. 69, 327–396 (2006).
    [CrossRef]
  31. H. Jin and K. J. Weber, “The effect of LPCVD silicon nitride deposition on the Si-SiO2 interface of oxidized silicon wafers,” J. Electrochem. Soc. 154, H5–H8 (2007).
    [CrossRef]
  32. G. Ghibaudo, G. Pananakakis, R. Kies, E. Vincent, and C. Papadas, “Accelerated dielectric breakdown and wear out standard testing methods and structures for reliability evaluation of thin oxides,” Microelectron. Reliab. 39, 597–613 (1999).
    [CrossRef]
  33. A. A. Istratov and E. R. Weber, “Physics of copper in silicon,” J. Electrochem. Soc. 149, G21–G30 (2002).
    [CrossRef]
  34. J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, “Diffusion of metals in silicon dioxide,” J. Electrochem. Soc. 133, 1242–1246 (1986).
    [CrossRef]
  35. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23, 4222–4238 (2005).
    [CrossRef]
  36. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonicwaveguides,” Opt. Express 15, 1211–1221 (2007).
    [CrossRef] [PubMed]
  37. C. Kopp, E. Augendre, R. Orobtchouk, O. Lemonnier, and J.-M. Fedeli, “Enhanced fiber grating coupler integrated by wafer-to-wafer bonding,” J. Lightwave Technol. 29, 1847–1851 (2011).
    [CrossRef]
  38. A. Snyder and J. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

2012

2011

2010

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18, 13173–13179 (2010).
[CrossRef] [PubMed]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics.” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

2009

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped mos light sources,” Opt. Express 17, 185–192 (2009).
[CrossRef] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal–oxide–Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

2007

H. Jin and K. J. Weber, “The effect of LPCVD silicon nitride deposition on the Si-SiO2 interface of oxidized silicon wafers,” J. Electrochem. Soc. 154, H5–H8 (2007).
[CrossRef]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonicwaveguides,” Opt. Express 15, 1211–1221 (2007).
[CrossRef] [PubMed]

C. Leroux, F. Allain, A. Toffoli, G. Ghibaudo, and G. Reimbold, “Automatic statistical full quantum analysis of C-V and I-V characteristics for advanced mos gate stacks,” Microelectron. Eng. 84, 2408–2411 (2007).
[CrossRef]

2006

J. Robertson, “High dielectric constant gate oxides for metal oxide si transistors,” Rep. Prog. Phys. 69, 327–396 (2006).
[CrossRef]

T. Wang, Y. Cheng, Y. Wang, T. Hsieh, G. Hwang, and C. Chen, “Comparison of characteristics and integration of copper diffusion-barrier dielectrics,” Thin Solid Films 498, 36–42 (2006).
[CrossRef]

L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006).
[CrossRef] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

2005

2004

B. G. Willis and D. V. Lang, “Oxidation mechanism of ionic transport of copper in sio2 dielectrics,” Thin Solid Films 467, 284–293 (2004).
[CrossRef]

K.-M. Chang, W.-C. Yang, C.-F. Chen, and B.-F. Hung, “The changing effect of N2/O2 gas flow rate ratios on ultrathin nitrogen-enriched oxynitride gate dielectrics,” J. Electrochem. Soc. 151, F118–F122 (2004).
[CrossRef]

A. S. Lee, N. Rajagopalan, M. Le, B. H. Kim, and H. M’Saad, “Development and characterization of a PECVD silicon nitride for damascene applications,” J. Electrochem. Soc. 151, F7–F9 (2004).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2002

A. A. Istratov and E. R. Weber, “Physics of copper in silicon,” J. Electrochem. Soc. 149, G21–G30 (2002).
[CrossRef]

2001

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits,” J. Electrochem. Soc. 90, 2057–2121 (2001).

2000

R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper metallization for high performance silicon technology,” Annu. Rev. Mater. Sci. 30, 229–262 (2000).
[CrossRef]

1999

M. Y. Kwak, D. H. Shin, T. W. Kang, and K. N. Kim, “Characteristics of tin barrier layer against cu diffusion,” Thin Solid Films 339, 290–293 (1999).
[CrossRef]

V. S. C. Len, R. E. Hurley, N. McCusker, D. W. McNeill, B. M. Armstrong, and H. S. Gamble, “An investigation into the performance of diffusion barrier materials against copper diffusion using metal-oxide-semiconductor capacitor structures,” Solid-State Electron. 43, 1045–1049 (1999).
[CrossRef]

Y. Shi, X. Wang, and T.-P. Ma, “Electrical properties of high-quality ultrathin nitride/oxide stack dielectrics,” IEEE Trans. Electron Dev. 46, 362–368 (1999).
[CrossRef]

G. Ghibaudo, G. Pananakakis, R. Kies, E. Vincent, and C. Papadas, “Accelerated dielectric breakdown and wear out standard testing methods and structures for reliability evaluation of thin oxides,” Microelectron. Reliab. 39, 597–613 (1999).
[CrossRef]

1997

H. Miyazaki, H. Kojima, and K. Hinode, “Passivation effect of silicon nitride against copper diffusion,” J. Appl. Phys. 81, 7746–7750 (1997).
[CrossRef]

1995

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270, 596–600 (1995).
[CrossRef]

1992

K. Holloway, P. M. Fryer, C. Cabral, J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions,” J. Appl. Phys. 71, 5433–5444 (1992).
[CrossRef]

1986

J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, “Diffusion of metals in silicon dioxide,” J. Electrochem. Soc. 133, 1242–1246 (1986).
[CrossRef]

Allain, F.

C. Leroux, F. Allain, A. Toffoli, G. Ghibaudo, and G. Reimbold, “Automatic statistical full quantum analysis of C-V and I-V characteristics for advanced mos gate stacks,” Microelectron. Eng. 84, 2408–2411 (2007).
[CrossRef]

Armstrong, B. M.

V. S. C. Len, R. E. Hurley, N. McCusker, D. W. McNeill, B. M. Armstrong, and H. S. Gamble, “An investigation into the performance of diffusion barrier materials against copper diffusion using metal-oxide-semiconductor capacitor structures,” Solid-State Electron. 43, 1045–1049 (1999).
[CrossRef]

Assous, M.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal–oxide–Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Augendre, E.

Awada, C.

Bailey, P. J.

K. Holloway, P. M. Fryer, C. Cabral, J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions,” J. Appl. Phys. 71, 5433–5444 (1992).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Blaize, S.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics.” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Bouchu, D.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Boutami, S.

Brongersma, M. L.

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped mos light sources,” Opt. Express 17, 185–192 (2009).
[CrossRef] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Bruyant, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics.” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Cabral, C.

K. Holloway, P. M. Fryer, C. Cabral, J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions,” J. Appl. Phys. 71, 5433–5444 (1992).
[CrossRef]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Chang, K.-M.

K.-M. Chang, W.-C. Yang, C.-F. Chen, and B.-F. Hung, “The changing effect of N2/O2 gas flow rate ratios on ultrathin nitrogen-enriched oxynitride gate dielectrics,” J. Electrochem. Soc. 151, F118–F122 (2004).
[CrossRef]

Charra, F.

Chaturvedi, P.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Chelnokov, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics.” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Chen, C.

T. Wang, Y. Cheng, Y. Wang, T. Hsieh, G. Hwang, and C. Chen, “Comparison of characteristics and integration of copper diffusion-barrier dielectrics,” Thin Solid Films 498, 36–42 (2006).
[CrossRef]

Chen, C.-F.

K.-M. Chang, W.-C. Yang, C.-F. Chen, and B.-F. Hung, “The changing effect of N2/O2 gas flow rate ratios on ultrathin nitrogen-enriched oxynitride gate dielectrics,” J. Electrochem. Soc. 151, F118–F122 (2004).
[CrossRef]

Chen, L.

Cheng, Y.

T. Wang, Y. Cheng, Y. Wang, T. Hsieh, G. Hwang, and C. Chen, “Comparison of characteristics and integration of copper diffusion-barrier dielectrics,” Thin Solid Films 498, 36–42 (2006).
[CrossRef]

Ciaramella, F.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Dai, D.

David, T.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

de Lamaestre, R. E.

Degraeve, R.

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits,” J. Electrochem. Soc. 90, 2057–2121 (2001).

Delacour, C.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics.” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal–oxide–Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal–oxide–Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Douillard, L.

Duquette, D. J.

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270, 596–600 (1995).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Edelstein, D. C.

R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper metallization for high performance silicon technology,” Annu. Rev. Mater. Sci. 30, 229–262 (2000).
[CrossRef]

Fan, S.

Fang, N. X.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Fayolle, M.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Fedeli, J. M.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics.” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Fedeli, J.-M.

Fryer, P. M.

K. Holloway, P. M. Fryer, C. Cabral, J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions,” J. Appl. Phys. 71, 5433–5444 (1992).
[CrossRef]

Gallagher, M.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Gamble, H. S.

V. S. C. Len, R. E. Hurley, N. McCusker, D. W. McNeill, B. M. Armstrong, and H. S. Gamble, “An investigation into the performance of diffusion barrier materials against copper diffusion using metal-oxide-semiconductor capacitor structures,” Solid-State Electron. 43, 1045–1049 (1999).
[CrossRef]

Garfunkel, E. L.

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits,” J. Electrochem. Soc. 90, 2057–2121 (2001).

Ghibaudo, G.

C. Leroux, F. Allain, A. Toffoli, G. Ghibaudo, and G. Reimbold, “Automatic statistical full quantum analysis of C-V and I-V characteristics for advanced mos gate stacks,” Microelectron. Eng. 84, 2408–2411 (2007).
[CrossRef]

G. Ghibaudo, G. Pananakakis, R. Kies, E. Vincent, and C. Papadas, “Accelerated dielectric breakdown and wear out standard testing methods and structures for reliability evaluation of thin oxides,” Microelectron. Reliab. 39, 597–613 (1999).
[CrossRef]

Green, M. L.

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits,” J. Electrochem. Soc. 90, 2057–2121 (2001).

Grosse, P.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics.” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Guedj, C.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Gusev, E. P.

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits,” J. Electrochem. Soc. 90, 2057–2121 (2001).

Gutmann, R. J.

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270, 596–600 (1995).
[CrossRef]

Harper, J. M. E.

K. Holloway, P. M. Fryer, C. Cabral, J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions,” J. Appl. Phys. 71, 5433–5444 (1992).
[CrossRef]

He, S.

Hinode, K.

H. Miyazaki, H. Kojima, and K. Hinode, “Passivation effect of silicon nitride against copper diffusion,” J. Appl. Phys. 81, 7746–7750 (1997).
[CrossRef]

Holloway, K.

K. Holloway, P. M. Fryer, C. Cabral, J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions,” J. Appl. Phys. 71, 5433–5444 (1992).
[CrossRef]

Hryciw, A.

Hsieh, T.

T. Wang, Y. Cheng, Y. Wang, T. Hsieh, G. Hwang, and C. Chen, “Comparison of characteristics and integration of copper diffusion-barrier dielectrics,” Thin Solid Films 498, 36–42 (2006).
[CrossRef]

Hu, C.-K.

R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper metallization for high performance silicon technology,” Annu. Rev. Mater. Sci. 30, 229–262 (2000).
[CrossRef]

Hung, B.-F.

K.-M. Chang, W.-C. Yang, C.-F. Chen, and B.-F. Hung, “The changing effect of N2/O2 gas flow rate ratios on ultrathin nitrogen-enriched oxynitride gate dielectrics,” J. Electrochem. Soc. 151, F118–F122 (2004).
[CrossRef]

Hurley, R. E.

V. S. C. Len, R. E. Hurley, N. McCusker, D. W. McNeill, B. M. Armstrong, and H. S. Gamble, “An investigation into the performance of diffusion barrier materials against copper diffusion using metal-oxide-semiconductor capacitor structures,” Solid-State Electron. 43, 1045–1049 (1999).
[CrossRef]

Hwang, G.

T. Wang, Y. Cheng, Y. Wang, T. Hsieh, G. Hwang, and C. Chen, “Comparison of characteristics and integration of copper diffusion-barrier dielectrics,” Thin Solid Films 498, 36–42 (2006).
[CrossRef]

Islam, M. S.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Istratov, A. A.

A. A. Istratov and E. R. Weber, “Physics of copper in silicon,” J. Electrochem. Soc. 149, G21–G30 (2002).
[CrossRef]

Jackman, M.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Jin, H.

H. Jin and K. J. Weber, “The effect of LPCVD silicon nitride deposition on the Si-SiO2 interface of oxidized silicon wafers,” J. Electrochem. Soc. 154, H5–H8 (2007).
[CrossRef]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Jousseaume, V.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Jun, Y. C.

Kang, T. W.

M. Y. Kwak, D. H. Shin, T. W. Kang, and K. N. Kim, “Characteristics of tin barrier layer against cu diffusion,” Thin Solid Films 339, 290–293 (1999).
[CrossRef]

Kelleher, K. H.

K. Holloway, P. M. Fryer, C. Cabral, J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions,” J. Appl. Phys. 71, 5433–5444 (1992).
[CrossRef]

Kies, R.

G. Ghibaudo, G. Pananakakis, R. Kies, E. Vincent, and C. Papadas, “Accelerated dielectric breakdown and wear out standard testing methods and structures for reliability evaluation of thin oxides,” Microelectron. Reliab. 39, 597–613 (1999).
[CrossRef]

Kim, B. H.

A. S. Lee, N. Rajagopalan, M. Le, B. H. Kim, and H. M’Saad, “Development and characterization of a PECVD silicon nitride for damascene applications,” J. Electrochem. Soc. 151, F7–F9 (2004).
[CrossRef]

Kim, K. N.

M. Y. Kwak, D. H. Shin, T. W. Kang, and K. N. Kim, “Characteristics of tin barrier layer against cu diffusion,” Thin Solid Films 339, 290–293 (1999).
[CrossRef]

Kobayashi, N. P.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Kojima, H.

H. Miyazaki, H. Kojima, and K. Hinode, “Passivation effect of silicon nitride against copper diffusion,” J. Appl. Phys. 81, 7746–7750 (1997).
[CrossRef]

Kopp, C.

Kwak, M. Y.

M. Y. Kwak, D. H. Shin, T. W. Kang, and K. N. Kim, “Characteristics of tin barrier layer against cu diffusion,” Thin Solid Films 339, 290–293 (1999).
[CrossRef]

Kwong, D. L.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99, 151114–151116 (2011).
[CrossRef]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
[CrossRef] [PubMed]

Lang, D. V.

B. G. Willis and D. V. Lang, “Oxidation mechanism of ionic transport of copper in sio2 dielectrics,” Thin Solid Films 467, 284–293 (2004).
[CrossRef]

Le, M.

A. S. Lee, N. Rajagopalan, M. Le, B. H. Kim, and H. M’Saad, “Development and characterization of a PECVD silicon nitride for damascene applications,” J. Electrochem. Soc. 151, F7–F9 (2004).
[CrossRef]

Le Cornec, C.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Leduc, P.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Lee, A. S.

A. S. Lee, N. Rajagopalan, M. Le, B. H. Kim, and H. M’Saad, “Development and characterization of a PECVD silicon nitride for damascene applications,” J. Electrochem. Soc. 151, F7–F9 (2004).
[CrossRef]

Lee, H. S.

Lemonnier, O.

Len, V. S. C.

V. S. C. Len, R. E. Hurley, N. McCusker, D. W. McNeill, B. M. Armstrong, and H. S. Gamble, “An investigation into the performance of diffusion barrier materials against copper diffusion using metal-oxide-semiconductor capacitor structures,” Solid-State Electron. 43, 1045–1049 (1999).
[CrossRef]

Lerondel, G.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics.” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Leroux, C.

C. Leroux, F. Allain, A. Toffoli, G. Ghibaudo, and G. Reimbold, “Automatic statistical full quantum analysis of C-V and I-V characteristics for advanced mos gate stacks,” Microelectron. Eng. 84, 2408–2411 (2007).
[CrossRef]

Li, Q.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Lindquist, N. C.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

Liow, T. Y.

Lipson, M.

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Lo, G. Q.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99, 151114–151116 (2011).
[CrossRef]

Logeeswaran, V. J.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Louis, D.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Love, J.

A. Snyder and J. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

M’Saad, H.

A. S. Lee, N. Rajagopalan, M. Le, B. H. Kim, and H. M’Saad, “Development and characterization of a PECVD silicon nitride for damascene applications,” J. Electrochem. Soc. 151, F7–F9 (2004).
[CrossRef]

Ma, T.-P.

Y. Shi, X. Wang, and T.-P. Ma, “Electrical properties of high-quality ultrathin nitride/oxide stack dielectrics,” IEEE Trans. Electron Dev. 46, 362–368 (1999).
[CrossRef]

Maitrejean, S.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

McBrayer, J. D.

J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, “Diffusion of metals in silicon dioxide,” J. Electrochem. Soc. 133, 1242–1246 (1986).
[CrossRef]

McCusker, N.

V. S. C. Len, R. E. Hurley, N. McCusker, D. W. McNeill, B. M. Armstrong, and H. S. Gamble, “An investigation into the performance of diffusion barrier materials against copper diffusion using metal-oxide-semiconductor capacitor structures,” Solid-State Electron. 43, 1045–1049 (1999).
[CrossRef]

McNeill, D. W.

V. S. C. Len, R. E. Hurley, N. McCusker, D. W. McNeill, B. M. Armstrong, and H. S. Gamble, “An investigation into the performance of diffusion barrier materials against copper diffusion using metal-oxide-semiconductor capacitor structures,” Solid-State Electron. 43, 1045–1049 (1999).
[CrossRef]

Miyazaki, H.

H. Miyazaki, H. Kojima, and K. Hinode, “Passivation effect of silicon nitride against copper diffusion,” J. Appl. Phys. 81, 7746–7750 (1997).
[CrossRef]

Morel, T.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Murarka, S. P.

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270, 596–600 (1995).
[CrossRef]

Nagpal, P.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

Neirynck, J.

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270, 596–600 (1995).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Norris, D. J.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

Oh, S.-H.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

Orobtchouk, R.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants (Academic, 1985).

Pananakakis, G.

G. Ghibaudo, G. Pananakakis, R. Kies, E. Vincent, and C. Papadas, “Accelerated dielectric breakdown and wear out standard testing methods and structures for reliability evaluation of thin oxides,” Microelectron. Reliab. 39, 597–613 (1999).
[CrossRef]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Papadas, C.

G. Ghibaudo, G. Pananakakis, R. Kies, E. Vincent, and C. Papadas, “Accelerated dielectric breakdown and wear out standard testing methods and structures for reliability evaluation of thin oxides,” Microelectron. Reliab. 39, 597–613 (1999).
[CrossRef]

Passemard, G.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Price, D. T.

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270, 596–600 (1995).
[CrossRef]

Prokopowicz, G.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Qiu, M.

Rajagopalan, N.

A. S. Lee, N. Rajagopalan, M. Le, B. H. Kim, and H. M’Saad, “Development and characterization of a PECVD silicon nitride for damascene applications,” J. Electrochem. Soc. 151, F7–F9 (2004).
[CrossRef]

Rebiscoul, D.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Reimbold, G.

C. Leroux, F. Allain, A. Toffoli, G. Ghibaudo, and G. Reimbold, “Automatic statistical full quantum analysis of C-V and I-V characteristics for advanced mos gate stacks,” Microelectron. Eng. 84, 2408–2411 (2007).
[CrossRef]

Remiat, B.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Robertson, J.

J. Robertson, “High dielectric constant gate oxides for metal oxide si transistors,” Rep. Prog. Phys. 69, 327–396 (2006).
[CrossRef]

Rodbell, K. P.

R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper metallization for high performance silicon technology,” Annu. Rev. Mater. Sci. 30, 229–262 (2000).
[CrossRef]

Roman, A.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Rosenberg, R.

R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper metallization for high performance silicon technology,” Annu. Rev. Mater. Sci. 30, 229–262 (2000).
[CrossRef]

Roule, A.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Salas-Montiel, R.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics.” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Scevola, D.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Shakya, J.

Shi, Y.

Y. Shi, X. Wang, and T.-P. Ma, “Electrical properties of high-quality ultrathin nitride/oxide stack dielectrics,” IEEE Trans. Electron Dev. 46, 362–368 (1999).
[CrossRef]

Shin, D. H.

M. Y. Kwak, D. H. Shin, T. W. Kang, and K. N. Kim, “Characteristics of tin barrier layer against cu diffusion,” Thin Solid Films 339, 290–293 (1999).
[CrossRef]

Sigmon, T. W.

J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, “Diffusion of metals in silicon dioxide,” J. Electrochem. Soc. 133, 1242–1246 (1986).
[CrossRef]

Snyder, A.

A. Snyder and J. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Song, Y.

Steigerwald, J. M.

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270, 596–600 (1995).
[CrossRef]

Swanson, R. M.

J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, “Diffusion of metals in silicon dioxide,” J. Electrochem. Soc. 133, 1242–1246 (1986).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal–oxide–Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Toffoli, A.

C. Leroux, F. Allain, A. Toffoli, G. Ghibaudo, and G. Reimbold, “Automatic statistical full quantum analysis of C-V and I-V characteristics for advanced mos gate stacks,” Microelectron. Eng. 84, 2408–2411 (2007).
[CrossRef]

Trouve, H.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Veronis, G.

Vincent, E.

G. Ghibaudo, G. Pananakakis, R. Kies, E. Vincent, and C. Papadas, “Accelerated dielectric breakdown and wear out standard testing methods and structures for reliability evaluation of thin oxides,” Microelectron. Reliab. 39, 597–613 (1999).
[CrossRef]

Wang, J.

Wang, S. Y.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Wang, T.

T. Wang, Y. Cheng, Y. Wang, T. Hsieh, G. Hwang, and C. Chen, “Comparison of characteristics and integration of copper diffusion-barrier dielectrics,” Thin Solid Films 498, 36–42 (2006).
[CrossRef]

Wang, X.

Y. Shi, X. Wang, and T.-P. Ma, “Electrical properties of high-quality ultrathin nitride/oxide stack dielectrics,” IEEE Trans. Electron Dev. 46, 362–368 (1999).
[CrossRef]

Wang, Y.

T. Wang, Y. Cheng, Y. Wang, T. Hsieh, G. Hwang, and C. Chen, “Comparison of characteristics and integration of copper diffusion-barrier dielectrics,” Thin Solid Films 498, 36–42 (2006).
[CrossRef]

Weber, E. R.

A. A. Istratov and E. R. Weber, “Physics of copper in silicon,” J. Electrochem. Soc. 149, G21–G30 (2002).
[CrossRef]

Weber, K. J.

H. Jin and K. J. Weber, “The effect of LPCVD silicon nitride deposition on the Si-SiO2 interface of oxidized silicon wafers,” J. Electrochem. Soc. 154, H5–H8 (2007).
[CrossRef]

Williams, R. S.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Willis, B. G.

B. G. Willis and D. V. Lang, “Oxidation mechanism of ionic transport of copper in sio2 dielectrics,” Thin Solid Films 467, 284–293 (2004).
[CrossRef]

Wu, W.

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Yan, M.

Yang, W.-C.

K.-M. Chang, W.-C. Yang, C.-F. Chen, and B.-F. Hung, “The changing effect of N2/O2 gas flow rate ratios on ultrathin nitrogen-enriched oxynitride gate dielectrics,” J. Electrochem. Soc. 151, F118–F122 (2004).
[CrossRef]

You, L.

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270, 596–600 (1995).
[CrossRef]

Zenasni, A.

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Zhu, S.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99, 151114–151116 (2011).
[CrossRef]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
[CrossRef] [PubMed]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Annu. Rev. Mater. Sci.

R. Rosenberg, D. C. Edelstein, C.-K. Hu, and K. P. Rodbell, “Copper metallization for high performance silicon technology,” Annu. Rev. Mater. Sci. 30, 229–262 (2000).
[CrossRef]

Appl. Phys. Lett.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99, 151114–151116 (2011).
[CrossRef]

IEEE Trans. Electron Dev.

Y. Shi, X. Wang, and T.-P. Ma, “Electrical properties of high-quality ultrathin nitride/oxide stack dielectrics,” IEEE Trans. Electron Dev. 46, 362–368 (1999).
[CrossRef]

J. Appl. Phys.

K. Holloway, P. M. Fryer, C. Cabral, J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions,” J. Appl. Phys. 71, 5433–5444 (1992).
[CrossRef]

H. Miyazaki, H. Kojima, and K. Hinode, “Passivation effect of silicon nitride against copper diffusion,” J. Appl. Phys. 81, 7746–7750 (1997).
[CrossRef]

J. Electrochem. Soc.

A. S. Lee, N. Rajagopalan, M. Le, B. H. Kim, and H. M’Saad, “Development and characterization of a PECVD silicon nitride for damascene applications,” J. Electrochem. Soc. 151, F7–F9 (2004).
[CrossRef]

K.-M. Chang, W.-C. Yang, C.-F. Chen, and B.-F. Hung, “The changing effect of N2/O2 gas flow rate ratios on ultrathin nitrogen-enriched oxynitride gate dielectrics,” J. Electrochem. Soc. 151, F118–F122 (2004).
[CrossRef]

M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits,” J. Electrochem. Soc. 90, 2057–2121 (2001).

H. Jin and K. J. Weber, “The effect of LPCVD silicon nitride deposition on the Si-SiO2 interface of oxidized silicon wafers,” J. Electrochem. Soc. 154, H5–H8 (2007).
[CrossRef]

A. A. Istratov and E. R. Weber, “Physics of copper in silicon,” J. Electrochem. Soc. 149, G21–G30 (2002).
[CrossRef]

J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, “Diffusion of metals in silicon dioxide,” J. Electrochem. Soc. 133, 1242–1246 (1986).
[CrossRef]

J. Lightwave Technol.

Mater. Today

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Microelectron. Eng.

C. Leroux, F. Allain, A. Toffoli, G. Ghibaudo, and G. Reimbold, “Automatic statistical full quantum analysis of C-V and I-V characteristics for advanced mos gate stacks,” Microelectron. Eng. 84, 2408–2411 (2007).
[CrossRef]

Microelectron. Reliab.

G. Ghibaudo, G. Pananakakis, R. Kies, E. Vincent, and C. Papadas, “Accelerated dielectric breakdown and wear out standard testing methods and structures for reliability evaluation of thin oxides,” Microelectron. Reliab. 39, 597–613 (1999).
[CrossRef]

Nano Lett.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics.” Nano Lett. 10, 2922–2926 (2010).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: A metal–oxide–Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178–182 (2009).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Rep. Prog. Phys.

J. Robertson, “High dielectric constant gate oxides for metal oxide si transistors,” Rep. Prog. Phys. 69, 327–396 (2006).
[CrossRef]

Science

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef] [PubMed]

Solid-State Electron.

V. S. C. Len, R. E. Hurley, N. McCusker, D. W. McNeill, B. M. Armstrong, and H. S. Gamble, “An investigation into the performance of diffusion barrier materials against copper diffusion using metal-oxide-semiconductor capacitor structures,” Solid-State Electron. 43, 1045–1049 (1999).
[CrossRef]

Thin Solid Films

T. Wang, Y. Cheng, Y. Wang, T. Hsieh, G. Hwang, and C. Chen, “Comparison of characteristics and integration of copper diffusion-barrier dielectrics,” Thin Solid Films 498, 36–42 (2006).
[CrossRef]

B. G. Willis and D. V. Lang, “Oxidation mechanism of ionic transport of copper in sio2 dielectrics,” Thin Solid Films 467, 284–293 (2004).
[CrossRef]

M. Y. Kwak, D. H. Shin, T. W. Kang, and K. N. Kim, “Characteristics of tin barrier layer against cu diffusion,” Thin Solid Films 339, 290–293 (1999).
[CrossRef]

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270, 596–600 (1995).
[CrossRef]

Other

A. Snyder and J. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

E. D. Palik, Handbook of Optical Constants (Academic, 1985).

V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Remiat, P. Leduc, H. Trouve, C. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “Cu/ULK (k=2.0) integration for 45 nm node and below using an improved hybrid material with conventional BEOL processing and a late porogen removal,” in “Proceedings of the IEEE 2005 International Interconnect Technology Conference,” 60–62 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Plasmon propagation losses induced by Cu and Al along a metal/dielectric interface for different wavelengths.

Fig. 2
Fig. 2

Fabrication process of MOS capacitors using standard CMOS technology.

Fig. 3
Fig. 3

C-V characteristic of MOS capacitor at 100 kHz voltage sweep frequency, for a singe oxide (MOS, black symbol) and an oxide/nitride barrier (MNOS, blue symbol). The corresponding quantum simulation of the curve is also shown for the MOS and MNOS capacitors (black and blue line respectively), follow the model presented in [29].

Fig. 4
Fig. 4

(a) Experimental reliability plot (in Weibul scale) of the break down field. (b) SIMS measurement of depth profile of copper intensity for MOS and MNOS multilayer insulator.

Fig. 5
Fig. 5

(a–d) Fabrication progress of MNOS plasmonic WG, using fully CMOS compatible technology; (e) SEM image of the final Si-WG; (f) SEM image of the final PWG.

Fig. 6
Fig. 6

(a) Cross section in the propagation direction indicating the main components of the hybrid plasmonic WG. (b) The E and H field intensity of the fundamental plasmonic mode suported in Si WG and plasmonic WG taken from 3D mode analysis using FDTD. (c) Normalized transmission data as a function of the LPWG. The experimental fit (red line) and the raw transmission data of 1000 devices (black symbols) are shown.

Tables (2)

Tables Icon

Table 1 Plasmonic MOS mode losses for different diffusion barriers at a wavelength of 1.55μm.

Tables Icon

Table 2 EOT, Vfb and Cox of given MOS stack layer, extracted by fitting to C-V measurements. Values are averaged out of 10 different devices, for each gate stack.

Metrics