Abstract

A broadband terahertz (THz) absorber consisting of multilayer glass spheres and polydimethylsiloxane (PDMS) was realized. The multilayer glass spheres were deposited by repeating a self-assembly method used to form monolayer glass spheres and by the spin-coating of PDMS to fill the gaps between the glass spheres. The average reflection at the surface of the absorber was 0.8% and the absorbance was higher than 98% in the frequency range between 0.7 to 2.0 THz.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [CrossRef] [PubMed]
  2. B. M. Fischer, M. Hoffmann, H. Helm, R. Wilk, F. Rutz, T. Kleine-Ostmann, M. Koch, and P. Jepsen, “Terahertz time-domain spectroscopy and imaging of artificial RNA,” Opt. Express 13(14), 5205–5215 (2005).
    [CrossRef] [PubMed]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  4. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
    [CrossRef] [PubMed]
  5. L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92(9), 091117 (2008).
    [CrossRef]
  6. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [CrossRef]
  7. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [CrossRef] [PubMed]
  8. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
    [CrossRef]
  9. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
    [CrossRef]
  10. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [CrossRef] [PubMed]
  11. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
    [CrossRef]
  12. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
    [CrossRef] [PubMed]
  13. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
    [CrossRef]
  14. P. A. George, W. Hui, F. Rana, B. G. Hawkins, A. E. Smith, and B. J. Kirby, “Microfluidic devices for terahertz spectroscopy of biomolecules,” Opt. Express 16(3), 1577–1582 (2008).
    [CrossRef] [PubMed]
  15. A. Podzorov and G. Gallot, “Low-loss polymers for terahertz applications,” Appl. Opt. 47(18), 3254–3257 (2008).
    [CrossRef] [PubMed]
  16. C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E. B. Kley, and A. Tünnermann, “Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range,” Opt. Express 17(5), 3063–3077 (2009).
    [CrossRef] [PubMed]
  17. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993).
    [CrossRef] [PubMed]
  18. Y. W. Chen, P. Y. Han, and X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
    [CrossRef]
  19. M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett. 91(8), 081118 (2007).
    [CrossRef]
  20. E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
    [CrossRef]

2011 (2)

2010 (2)

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
[CrossRef]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

2009 (4)

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E. B. Kley, and A. Tünnermann, “Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range,” Opt. Express 17(5), 3063–3077 (2009).
[CrossRef] [PubMed]

Y. W. Chen, P. Y. Han, and X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[CrossRef]

2008 (4)

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
[CrossRef]

M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett. 91(8), 081118 (2007).
[CrossRef]

2005 (1)

2002 (2)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

1993 (1)

1982 (1)

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Averitt, R. D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Bingham, C. M.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Brückner, C.

Chen, L.

M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett. 91(8), 081118 (2007).
[CrossRef]

Chen, Q.

Chen, Y. W.

Y. W. Chen, P. Y. Han, and X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[CrossRef]

Cody, G.

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

Cole, B. E.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Cumming, D. R. S.

Deng, C.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92(9), 091117 (2008).
[CrossRef]

Fan, K.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Fischer, B. M.

Gallot, G.

George, P. A.

Grant, J.

Han, P. Y.

Y. W. Chen, P. Y. Han, and X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[CrossRef]

Hawkins, B. G.

He, S.

Helm, H.

Hoffmann, M.

Hui, W.

Jepsen, P.

Jin, Y.

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Käsebier, T.

Khalid, A.

Kirby, B. J.

Kleine-Ostmann, T.

Kley, E. B.

Koch, M.

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Linfield, E. H.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Liu, Y. L.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[CrossRef]

Ma, Y.

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
[CrossRef]

Morris, G. M.

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
[CrossRef]

Notni, G.

Padilla, W. J.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Pepper, M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Pilon, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Podzorov, A.

Pradarutti, B.

Pye, R. J.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Raguin, D. H.

Rana, F.

Riehemann, S.

Rutz, F.

Saha, S.

Saha, S. C.

Shrekenhamer, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Smith, A. E.

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Strikwerda, A. C.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Tao, H.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Tao, M.

M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett. 91(8), 081118 (2007).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Tünnermann, A.

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Wallace, V. P.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Wen, Q. Y.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[CrossRef]

Wilk, R.

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Xie, Y. S.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

Yang, H.

M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett. 91(8), 081118 (2007).
[CrossRef]

Yang, Q. H.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[CrossRef]

Ye, Y. Q.

Zhang, C.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92(9), 091117 (2008).
[CrossRef]

Zhang, H. W.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[CrossRef]

Zhang, L.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92(9), 091117 (2008).
[CrossRef]

Zhang, X.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Zhang, X. C.

Y. W. Chen, P. Y. Han, and X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[CrossRef]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Zhao, Y.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92(9), 091117 (2008).
[CrossRef]

Zhong, H.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92(9), 091117 (2008).
[CrossRef]

Zhou, W.

M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett. 91(8), 081118 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

Y. W. Chen, P. Y. Han, and X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[CrossRef]

M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett. 91(8), 081118 (2007).
[CrossRef]

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[CrossRef]

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92(9), 091117 (2008).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

E. Yablonovitch and G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

J. Appl. Phys. (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys. 102(4), 043517 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Med. Biol. (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[CrossRef] [PubMed]

Phys. Rev. B (1)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The measured refractive index and absorption coefficient of glass and PDMS in the THz frequency range.

Fig. 2
Fig. 2

Cross-sectional SEM images of the fabricated monolayer glass spheres with (a) thin PDMS, (b) 130-μm-thick PDMS, and (c) the multilayer glass spheres with PDMS gap filling.

Fig. 3
Fig. 3

The measured reflectance and transmittance of various types of devices with different surface structures.

Fig. 4
Fig. 4

(a) The electric field distribution at the upper part of the absorbers with the monolayer-A, monolayer-B, and multilayer glass spheres at 0.7 THz and (b) the corresponding intensity distribution at the top, middle, and bottom of the glass spheres. (c) The electric field distribution at the upper part of the absorbers with the monolayer-A, monolayer-B, and multilayer glass spheres at 1.5 THz and (d) the corresponding intensity distribution at the top, middle, and bottom of the glass spheres.

Fig. 5
Fig. 5

The calculated absorbance of glass substrates with and without multilayer glass spheres.

Tables (1)

Tables Icon

Table 1 Comparison of the Bandwidth and Absorbance of the Metamaterial Absorber and the Monolayer and Multilayer Glass Spheres Absorber

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A=1RT

Metrics