Abstract

We demonstrate highly parallelized fluorescence scanning microscopy using a refractive microlens array. Fluorescent beads and rat femur tissue are imaged over a 5.5 mm x 5.5 mm field of view at a pixel throughput of up to 4 megapixels/s and a resolution of 706 nm. We also demonstrate the ability to extract different perspective views of a pile of microspheres.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7(9), 690–696 (2006).
    [CrossRef] [PubMed]
  2. P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discov. 5(4), 343–356 (2006).
    [CrossRef] [PubMed]
  3. E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
    [CrossRef] [PubMed]
  4. E. Schonbrun, P. E. Steinvurzel, and K. B. Crozier, “A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array,” Opt. Express 19(2), 1385–1394 (2011).
    [CrossRef] [PubMed]
  5. Molecular Devices ImageXpress Micro product website, http://www.highthroughputimaging.com/screening/imagexpress_micro.html#apps , accessed 2 April 2012.
  6. S. Yazdanfar, K. B. Kenny, K. Tasimi, A. D. Corwin, E. L. Dixon, and R. J. Filkins, “Simple and robust image-based autofocusing for digital microscopy,” Opt. Express 16(12), 8670–8677 (2008).
    [CrossRef] [PubMed]
  7. R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
    [CrossRef] [PubMed]
  8. J. Wu, X. Cui, G. Zheng, Y. M. Wang, L. M. Lee, and C. Yang, “Wide field-of-view microscope based on holographic focus grid illumination,” Opt. Lett. 35(13), 2188–2190 (2010).
    [CrossRef] [PubMed]
  9. J. Wu, G. Zheng, Z. Li, and C. Yang, “Focal plane tuning in wide-field-of-view microscope with Talbot pattern illumination,” Opt. Lett. 36(12), 2179–2181 (2011).
    [CrossRef] [PubMed]
  10. A. Tripathi and N. Chronis, “A doublet microlens array for imaging micron-sized objects,” J. Micromech. Microeng. 21(10), 105024 (2011).
    [CrossRef] [PubMed]
  11. E. Schonbrun, S. S. Gorthi, and D. Schaak, “Microfabricated multiple field of view imaging flow cytometry,” Lab Chip 12(2), 268–273 (2011).
    [CrossRef] [PubMed]
  12. M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
    [CrossRef] [PubMed]
  13. E. Schonbrun, W. N. Ye, and K. B. Crozier, “Scanning microscopy using a short-focal-length fresnel zone plate,” Opt. Lett. 34(14), 2228–2230 (2009).
    [CrossRef] [PubMed]
  14. H. J. Tiziani, R. Achi, R. N. Krämer, and L. Wiegers, “Theoretical analysis of confocal microscopy with microlenses,” Appl. Opt. 35(1), 120–125 (1996).
    [CrossRef] [PubMed]
  15. P. H. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
    [CrossRef]
  16. A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
    [CrossRef]
  17. Deconvolution Lab, http://bigwww.epfl.ch/algorithms/deconvolutionlab/ , accessed 14 December 2011.
  18. F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production part II: analytic models,” Optik (Stuttg.) 113(9), 405–420 (2002).
    [CrossRef]
  19. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12(4), 227–229 (1987).
    [CrossRef] [PubMed]
  20. Y. Gao and M. L. Kilfoil, “Accurate detection and complete tracking of large populations of features in three dimensions,” Opt. Express 17(6), 4685–4704 (2009).
    [CrossRef] [PubMed]
  21. S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
    [CrossRef] [PubMed]
  22. Y. Li and J. Bechhoefer, “Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope,” Rev. Sci. Instrum. 78(1), 013702–013710 (2007).
    [CrossRef] [PubMed]
  23. E. Schonbrun, C. Rinzler, and K. B. Crozier, “Microfabricated water immersion zone plate optical tweezer,” Appl. Phys. Lett. 92(7), 071112–071115 (2008).
    [CrossRef]

2011 (4)

2010 (2)

J. Wu, X. Cui, G. Zheng, Y. M. Wang, L. M. Lee, and C. Yang, “Wide field-of-view microscope based on holographic focus grid illumination,” Opt. Lett. 35(13), 2188–2190 (2010).
[CrossRef] [PubMed]

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

2009 (4)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[CrossRef] [PubMed]

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[CrossRef] [PubMed]

Y. Gao and M. L. Kilfoil, “Accurate detection and complete tracking of large populations of features in three dimensions,” Opt. Express 17(6), 4685–4704 (2009).
[CrossRef] [PubMed]

E. Schonbrun, W. N. Ye, and K. B. Crozier, “Scanning microscopy using a short-focal-length fresnel zone plate,” Opt. Lett. 34(14), 2228–2230 (2009).
[CrossRef] [PubMed]

2008 (2)

E. Schonbrun, C. Rinzler, and K. B. Crozier, “Microfabricated water immersion zone plate optical tweezer,” Appl. Phys. Lett. 92(7), 071112–071115 (2008).
[CrossRef]

S. Yazdanfar, K. B. Kenny, K. Tasimi, A. D. Corwin, E. L. Dixon, and R. J. Filkins, “Simple and robust image-based autofocusing for digital microscopy,” Opt. Express 16(12), 8670–8677 (2008).
[CrossRef] [PubMed]

2007 (1)

Y. Li and J. Bechhoefer, “Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope,” Rev. Sci. Instrum. 78(1), 013702–013710 (2007).
[CrossRef] [PubMed]

2006 (2)

R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7(9), 690–696 (2006).
[CrossRef] [PubMed]

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discov. 5(4), 343–356 (2006).
[CrossRef] [PubMed]

2004 (1)

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

2002 (1)

F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production part II: analytic models,” Optik (Stuttg.) 113(9), 405–420 (2002).
[CrossRef]

2000 (1)

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[CrossRef]

1997 (1)

P. H. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[CrossRef]

1996 (1)

1987 (1)

Abate, A. R.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

Achi, R.

Barker, G.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Bartels, P. H.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Bechhoefer, J.

Y. Li and J. Bechhoefer, “Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope,” Rev. Sci. Instrum. 78(1), 013702–013710 (2007).
[CrossRef] [PubMed]

Bhattacharyya, A. K.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Carlini, A. R.

Chronis, N.

A. Tripathi and N. Chronis, “A doublet microlens array for imaging micron-sized objects,” J. Micromech. Microeng. 21(10), 105024 (2011).
[CrossRef] [PubMed]

Corwin, A. D.

Crozier, K. B.

E. Schonbrun, P. E. Steinvurzel, and K. B. Crozier, “A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array,” Opt. Express 19(2), 1385–1394 (2011).
[CrossRef] [PubMed]

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

E. Schonbrun, W. N. Ye, and K. B. Crozier, “Scanning microscopy using a short-focal-length fresnel zone plate,” Opt. Lett. 34(14), 2228–2230 (2009).
[CrossRef] [PubMed]

E. Schonbrun, C. Rinzler, and K. B. Crozier, “Microfabricated water immersion zone plate optical tweezer,” Appl. Phys. Lett. 92(7), 071112–071115 (2008).
[CrossRef]

Cui, X.

Davis, J. R.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Descour, M. R.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Dixon, E. L.

Eisner, M.

P. H. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[CrossRef]

Ellenberg, J.

R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7(9), 690–696 (2006).
[CrossRef] [PubMed]

Filkins, R. J.

Gao, Y.

Goodall, J. F.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Gorthi, S. S.

E. Schonbrun, S. S. Gorthi, and D. Schaak, “Microfabricated multiple field of view imaging flow cytometry,” Lab Chip 12(2), 268–273 (2011).
[CrossRef] [PubMed]

Graham, A. R.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Haselbeck, S.

P. H. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[CrossRef]

Herzig, H. P.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[CrossRef]

P. H. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[CrossRef]

Kenny, K. B.

Kilfoil, M. L.

Krämer, R. N.

Krupinski, E. A.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Lang, P.

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discov. 5(4), 343–356 (2006).
[CrossRef] [PubMed]

Lee, L. M.

Levoy, M.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[CrossRef] [PubMed]

Li, Y.

Y. Li and J. Bechhoefer, “Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope,” Rev. Sci. Instrum. 78(1), 013702–013710 (2007).
[CrossRef] [PubMed]

Li, Z.

Liang, C.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

McDowall, I.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[CrossRef] [PubMed]

Merz, R.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[CrossRef]

Nichols, A.

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discov. 5(4), 343–356 (2006).
[CrossRef] [PubMed]

Nussbaum, P. H.

P. H. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[CrossRef]

O’Neill, F. T.

F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production part II: analytic models,” Optik (Stuttg.) 113(9), 405–420 (2002).
[CrossRef]

Olszak, A. G.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Ossmann, C.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[CrossRef]

Pepperkok, R.

R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7(9), 690–696 (2006).
[CrossRef] [PubMed]

Preibisch, S.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[CrossRef] [PubMed]

Rennels, M.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Richter, L.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Rinzler, C.

E. Schonbrun, C. Rinzler, and K. B. Crozier, “Microfabricated water immersion zone plate optical tweezer,” Appl. Phys. Lett. 92(7), 071112–071115 (2008).
[CrossRef]

Russum, W. C.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Saalfeld, S.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[CrossRef] [PubMed]

Schaak, D.

E. Schonbrun, S. S. Gorthi, and D. Schaak, “Microfabricated multiple field of view imaging flow cytometry,” Lab Chip 12(2), 268–273 (2011).
[CrossRef] [PubMed]

Scheer, A.

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discov. 5(4), 343–356 (2006).
[CrossRef] [PubMed]

Schilling, A.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[CrossRef]

Schonbrun, E.

E. Schonbrun, S. S. Gorthi, and D. Schaak, “Microfabricated multiple field of view imaging flow cytometry,” Lab Chip 12(2), 268–273 (2011).
[CrossRef] [PubMed]

E. Schonbrun, P. E. Steinvurzel, and K. B. Crozier, “A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array,” Opt. Express 19(2), 1385–1394 (2011).
[CrossRef] [PubMed]

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

E. Schonbrun, W. N. Ye, and K. B. Crozier, “Scanning microscopy using a short-focal-length fresnel zone plate,” Opt. Lett. 34(14), 2228–2230 (2009).
[CrossRef] [PubMed]

E. Schonbrun, C. Rinzler, and K. B. Crozier, “Microfabricated water immersion zone plate optical tweezer,” Appl. Phys. Lett. 92(7), 071112–071115 (2008).
[CrossRef]

Scott, K. M.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Sheridan, J. T.

F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production part II: analytic models,” Optik (Stuttg.) 113(9), 405–420 (2002).
[CrossRef]

Steinvurzel, P. E.

E. Schonbrun, P. E. Steinvurzel, and K. B. Crozier, “A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array,” Opt. Express 19(2), 1385–1394 (2011).
[CrossRef] [PubMed]

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

Tasimi, K.

Tiziani, H. J.

Tomancak, P.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[CrossRef] [PubMed]

Tripathi, A.

A. Tripathi and N. Chronis, “A doublet microlens array for imaging micron-sized objects,” J. Micromech. Microeng. 21(10), 105024 (2011).
[CrossRef] [PubMed]

Volkel, R.

P. H. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[CrossRef]

Wang, Y. M.

Weinstein, R. S.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Weitz, D. A.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

Wiegers, L.

Williams, B. H.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Wilson, T.

Wu, J.

Wyant, J. C.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Yang, C.

Yazdanfar, S.

Ye, W. N.

Yeow, K.

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discov. 5(4), 343–356 (2006).
[CrossRef] [PubMed]

Zhang, Z.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[CrossRef] [PubMed]

Zheng, G.

Zhou, P.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Schonbrun, C. Rinzler, and K. B. Crozier, “Microfabricated water immersion zone plate optical tweezer,” Appl. Phys. Lett. 92(7), 071112–071115 (2008).
[CrossRef]

Bioinformatics (1)

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[CrossRef] [PubMed]

Hum. Pathol. (1)

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol. 35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

J. Micromech. Microeng. (1)

A. Tripathi and N. Chronis, “A doublet microlens array for imaging micron-sized objects,” J. Micromech. Microeng. 21(10), 105024 (2011).
[CrossRef] [PubMed]

J. Microsc. (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[CrossRef] [PubMed]

Lab Chip (2)

E. Schonbrun, S. S. Gorthi, and D. Schaak, “Microfabricated multiple field of view imaging flow cytometry,” Lab Chip 12(2), 268–273 (2011).
[CrossRef] [PubMed]

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

Nat. Rev. Drug Discov. (1)

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discov. 5(4), 343–356 (2006).
[CrossRef] [PubMed]

Nat. Rev. Mol. Cell Biol. (1)

R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol. 7(9), 690–696 (2006).
[CrossRef] [PubMed]

Opt. Eng. (1)

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Optik (Stuttg.) (1)

F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production part II: analytic models,” Optik (Stuttg.) 113(9), 405–420 (2002).
[CrossRef]

Pure Appl. Opt. (1)

P. H. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

Y. Li and J. Bechhoefer, “Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope,” Rev. Sci. Instrum. 78(1), 013702–013710 (2007).
[CrossRef] [PubMed]

Other (2)

Deconvolution Lab, http://bigwww.epfl.ch/algorithms/deconvolutionlab/ , accessed 14 December 2011.

Molecular Devices ImageXpress Micro product website, http://www.highthroughputimaging.com/screening/imagexpress_micro.html#apps , accessed 2 April 2012.

Supplementary Material (1)

» Media 1: MOV (2856 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) LB: Laser Beam; DM: Dichroic Mirror; MLA: Microlens Array; Microlens array focal length = 40.6 μm; S: Sample; PZT: Axes along which the sample is piezo scanned; LP: Long-pass Filter; RL: Relay Lens; IR: Iris; IS: Image Sensor. Inset: Schematic of a microlens, showing a central and marginal ray to define the focal length (f) and working distance (wd). G: Glass Slide; P: NOA 61 Polymer. (b) Representative raw data frame captured by the image sensor. Scale bar is 200 μm. (c) Bright-field micrograph of microlens array. Scale bar is 200 μm.

Fig. 2
Fig. 2

(a) Line-cut of focal spot intensity. (b) Intensity distribution of a microlens focal spot. Dotted white line indicates line along which 1D intensity is plotted in panel (a). Scale bar: 1μm.

Fig. 3
Fig. 3

(a) Image of 2 μm beads obtained with iris fully open. (b) Image of 2 μm beads with iris diameter 2 mm. Scale bar is 5 μm. (c) Line cut of intensity through a pair of neighboring beads, dotted curve: open iris, solid curve: 2mm wide iris.

Fig. 4
Fig. 4

(a) Image of fluorescently stained rat femur. Scale bar is 1 mm. (b) Zoom-in of cortical femoral bone. (c) Inside of the medullary canal of the femoral bone. Blood cells and fibrous structures are visible. (d) Zoom-in of periosteum. Scale bars for (b)-(d) are 80 μm.

Fig. 5
Fig. 5

A 5.5 mm x 5.5 mm image of 2μm fluorescent beads. Scale bar is 2 mm. Top inset: Zoom-in of boxed-in region (white border). Scale bar is 50μm. Bottom inset: Zoom-in of boxed-in region in top inset (red border). Scale bar is 25μm..

Fig. 6
Fig. 6

(a) Left and right perspective views are observations of a scene taken from opposing viewpoints. b) Ray-optics schematic of angular mapping onto image sensor. The angular distribution of rays emitted from within the excitation spot (green region) corresponds to the intensity distribution impinging on the lens aperture and its image at the image sensor. Each pixel on the CCD image of the microlens aperture corresponds to a distinct perspective view. The space occupied by the image of the microlens aperture is described by the coordinates (s,t). (c) Red/cyan anaglyph of a pile of 2μm and 5μm fluorescent beads, constructed using left and right perspective images (Media 1 shows this sample from multiple perspectives). Scale bar is 5μm.

Metrics