Abstract

We demonstrate the design and fabrication of square Ge11.5As24Se64.5 (Ge11) nonlinear nanowires fully embedded in a silica cladding for polarization independent (P-I) nonlinear processing. We observed similar performance for FWM using both TE and TM modes confirming that a near P-I operation was obtained. In addition we find that the supercontinuum spectrum that can be generated in the nanowires using 1ps pulse pulses with around 30W peak power was independent of polarization.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
    [CrossRef]
  2. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
    [CrossRef]
  3. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
    [CrossRef] [PubMed]
  4. A. Prasad, “Ge-As-Se chalcogenide glasses for all-optical signal processing,” in Laser Physics Center(Australian National University, 2010).
  5. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
    [CrossRef] [PubMed]
  6. F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
    [CrossRef] [PubMed]
  7. M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
    [CrossRef]
  8. M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
    [CrossRef] [PubMed]
  9. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
    [CrossRef] [PubMed]
  10. M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As(2)S(3) glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18(25), 26686–26694 (2010).
    [CrossRef] [PubMed]
  11. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press Inc., 2001).
  12. W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
    [CrossRef]
  13. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
    [CrossRef] [PubMed]
  14. S. M. Gao, X. Z. Zhang, Z. Q. Li, and S. L. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum. Electron. 16(1), 250–256 (2010).
    [CrossRef]
  15. Y. Tian, P. Dong, and C. X. Yang, “Polarization independent wavelength conversion in fibers using incoherent pumps,” Opt. Express 16(8), 5493–5498 (2008).
    [CrossRef] [PubMed]
  16. S. P. Chan, C. E. Phun, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” J. Lightwave Technol. 23(6), 2103–2111 (2005).
    [CrossRef]
  17. S. T. Lim, C. E. Png, E. A. Ong, and Y. L. Ang, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express 15(18), 11061–11072 (2007).
    [CrossRef] [PubMed]
  18. X. Gai, D. Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As(2)S(3) chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011).
    [CrossRef]
  19. X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge(11.5)As(24)Se(64.5) nanowires with a nonlinear parameter of 136 W(⁻¹)m(⁻¹) at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
    [CrossRef] [PubMed]
  20. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
    [CrossRef]
  21. P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of Vectorial Mode Fields in Optical Wave-Guides by a New Finite-Difference Method,” J. Lightwave Technol. 12(3), 487–494 (1994).
    [CrossRef]
  22. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
    [CrossRef] [PubMed]
  23. X. Gai, R. P. Wang, C. Xiong, M. J. Steel, B. J. Eggleton, and B. Luther-Davies, “Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis,” Opt. Express 20(2), 776–786 (2012).
    [CrossRef] [PubMed]
  24. D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE T. Nanotechnol. 7(3), 285–290 (2008).
    [CrossRef]
  25. J. J. Hu, N. N. Feng, N. Carlie, L. Petit, J. F. Wang, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss high-index-contrast planar waveguides with graded-index cladding layers,” Opt. Express 15(22), 14566–14572 (2007).
    [CrossRef] [PubMed]
  26. Q. Lin and G. P. Agrawal, “Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers,” J. Opt. Soc. Am. B 21(6), 1216–1224 (2004).
    [CrossRef]

2012 (1)

2011 (2)

2010 (5)

2009 (2)

2008 (5)

2007 (3)

2005 (1)

2004 (3)

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[CrossRef]

Q. Lin and G. P. Agrawal, “Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers,” J. Opt. Soc. Am. B 21(6), 1216–1224 (2004).
[CrossRef]

2002 (1)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[CrossRef]

1994 (1)

P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of Vectorial Mode Fields in Optical Wave-Guides by a New Finite-Difference Method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Agarwal, A.

Agrawal, G. P.

Aitken, B. G.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[CrossRef]

Ang, Y. L.

Ankiewicz, A.

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE T. Nanotechnol. 7(3), 285–290 (2008).
[CrossRef]

Bulla, D.

Bulla, D. A.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

Bulla, D. A. P.

Carlie, N.

Chan, S. P.

Chen, X.

Choi, D. Y.

X. Gai, D. Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As(2)S(3) chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011).
[CrossRef]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge(11.5)As(24)Se(64.5) nanowires with a nonlinear parameter of 136 W(⁻¹)m(⁻¹) at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As(2)S(3) glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18(25), 26686–26694 (2010).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE T. Nanotechnol. 7(3), 285–290 (2008).
[CrossRef]

Clausen, A. T.

Dong, P.

Eggleton, B. J.

X. Gai, R. P. Wang, C. Xiong, M. J. Steel, B. J. Eggleton, and B. Luther-Davies, “Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis,” Opt. Express 20(2), 776–786 (2012).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As(2)S(3) glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18(25), 26686–26694 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

Fallahkhair, A. B.

Feng, N. N.

Freude, W.

Fuflyigin, V. N.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Gai, X.

Galili, M.

Gao, S. M.

S. M. Gao, X. Z. Zhang, Z. Q. Li, and S. L. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum. Electron. 16(1), 250–256 (2010).
[CrossRef]

Gopinath, J. T.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Harbold, J. M.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[CrossRef]

He, S. L.

S. M. Gao, X. Z. Zhang, Z. Q. Li, and S. L. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum. Electron. 16(1), 250–256 (2010).
[CrossRef]

Headley, W. R.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[CrossRef]

Howe, S.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[CrossRef]

Hu, H.

Hu, J. J.

Ilday, F. O.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[CrossRef]

Ippen, E. P.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Jacome, L.

Jeppesen, P.

Kimerling, L.

King, W. A.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Koos, C.

Lamont, M. R. E.

Leuthold, J.

Li, K. S.

Li, Z. Q.

S. M. Gao, X. Z. Zhang, Z. Q. Li, and S. L. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum. Electron. 16(1), 250–256 (2010).
[CrossRef]

Lim, S. T.

Lin, Q.

Liu, A.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[CrossRef]

Luan, F.

Lusse, P.

P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of Vectorial Mode Fields in Optical Wave-Guides by a New Finite-Difference Method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Luther-Davies, B.

X. Gai, R. P. Wang, C. Xiong, M. J. Steel, B. J. Eggleton, and B. Luther-Davies, “Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis,” Opt. Express 20(2), 776–786 (2012).
[CrossRef] [PubMed]

X. Gai, D. Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As(2)S(3) chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011).
[CrossRef]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge(11.5)As(24)Se(64.5) nanowires with a nonlinear parameter of 136 W(⁻¹)m(⁻¹) at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As(2)S(3) glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18(25), 26686–26694 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE T. Nanotechnol. 7(3), 285–290 (2008).
[CrossRef]

Luther-Davis, B.

Madden, S.

X. Gai, D. Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As(2)S(3) chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011).
[CrossRef]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge(11.5)As(24)Se(64.5) nanowires with a nonlinear parameter of 136 W(⁻¹)m(⁻¹) at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE T. Nanotechnol. 7(3), 285–290 (2008).
[CrossRef]

Madden, S. J.

Mulvad, H. C. H.

Murphy, T. E.

Ong, E. A.

Oxenløwe, L. K.

Palushani, E.

Paniccia, M.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[CrossRef]

Passaro, V. M. N.

Pelusi, M.

Pelusi, M. D.

Petit, L.

Phun, C. E.

Png, C. E.

Poulton, C.

Prasad, A.

Reed, G. T.

S. P. Chan, C. E. Phun, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” J. Lightwave Technol. 23(6), 2103–2111 (2005).
[CrossRef]

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[CrossRef]

Richardson, K.

Rode, A.

Schröder, J.

Schule, J.

P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of Vectorial Mode Fields in Optical Wave-Guides by a New Finite-Difference Method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Shurgalin, M.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Smith, A.

Soljacic, M.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Steel, M. J.

Stuwe, P.

P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of Vectorial Mode Fields in Optical Wave-Guides by a New Finite-Difference Method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Tian, Y.

Tsang, H. K.

Unger, H. G.

P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of Vectorial Mode Fields in Optical Wave-Guides by a New Finite-Difference Method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Vo, T. D.

Wang, J. F.

Wang, R. P.

Wise, F. W.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[CrossRef]

Xiong, C.

Xu, J.

Yang, C. X.

Zha, C. J.

Zhang, X. Z.

S. M. Gao, X. Z. Zhang, Z. Q. Li, and S. L. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum. Electron. 16(1), 250–256 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (1)

S. M. Gao, X. Z. Zhang, Z. Q. Li, and S. L. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum. Electron. 16(1), 250–256 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

IEEE T. Nanotechnol. (1)

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE T. Nanotechnol. 7(3), 285–290 (2008).
[CrossRef]

J. Appl. Phys. (1)

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (2)

Opt. Express (12)

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, J. F. Wang, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss high-index-contrast planar waveguides with graded-index cladding layers,” Opt. Express 15(22), 14566–14572 (2007).
[CrossRef] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
[CrossRef] [PubMed]

X. Gai, R. P. Wang, C. Xiong, M. J. Steel, B. J. Eggleton, and B. Luther-Davies, “Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis,” Opt. Express 20(2), 776–786 (2012).
[CrossRef] [PubMed]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge(11.5)As(24)Se(64.5) nanowires with a nonlinear parameter of 136 W(⁻¹)m(⁻¹) at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

S. T. Lim, C. E. Png, E. A. Ong, and Y. L. Ang, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express 15(18), 11061–11072 (2007).
[CrossRef] [PubMed]

Y. Tian, P. Dong, and C. X. Yang, “Polarization independent wavelength conversion in fibers using incoherent pumps,” Opt. Express 16(8), 5493–5498 (2008).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As(2)S(3) glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18(25), 26686–26694 (2010).
[CrossRef] [PubMed]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (2)

A. Prasad, “Ge-As-Se chalcogenide glasses for all-optical signal processing,” in Laser Physics Center(Australian National University, 2010).

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press Inc., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Design of square Ge11 nanowires full embedded in SiO2. (a) Intensity distribution for TM mode. (b) Intensity distribution for TE mode. (c) The effective area Aeff as a function of the waveguide dimensions. (d) GVD for 580nm × 580nm Ge11 nanowires. (e) Effective index neff for 580nm × 580nm Ge11 nanowires. (f) Nonlinear parameter γ for 580nm × 580nm Ge11 nanowires. Blue dots are the TM mode and the red line is for TE mode.

Fig. 2
Fig. 2

(a) An optical micrograph shows the bends which are part of the “snakes” used to increase the length of the Ge11 nanowires for loss measurements. The radius is 20µm. (b) An SEM cross sectional image of the square Ge11 nanowires buried in SiO2 cladding. The width was measured to be 584nm and height 575nm. (c) The effective index of 585nm × 575nm nanowires. (d) The GVD of 585nm × 575nm nanowires. (e) The propagation loss measured by cut-back method. The green diamonds are for TM and red triangles for TE modes.

Fig. 3
Fig. 3

(a) Transmision spectrum of cured IPG. 3(b) transmission spectrum of IPG clad As2S3 rib waveguide. (c) Transmission of SiO2 clad Ge11 P-I nanowires.

Fig. 4
Fig. 4

Experimental set up. The lower image shows how the polarization state was set to TM or TE modes by imaging the waveguide output though a Wollaston prism onto an InGaAs camera.

Fig. 5
Fig. 5

FWM results for TM and TE modes. A pulsed pump was launched into the waveguide along with a low power CW probe beam. The idler output on the long wavelength side was measured a function of probe wavelength. (a) TM mode. (b) TE mode

Fig. 6
Fig. 6

Calculated (solid lines) and measured FWM conversion efficiency as a function of idler wavelength for TE (red) and TM (blue) modes.

Fig. 7
Fig. 7

7(a) measured SC spectra for TE and TM modes. 7b, 7c, supercontinuum spectra for different pump powers calculated using the split-step Fourier method compared with the measured spectra.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z A(z,t)= α 2 A+ m2 i m+1 β m m! m A t m +i( γ+i α 2 2 A eff )( 1+ i ω 0 t )( A(z,t) R(t') | A(z,tt') | 2 dt' ),

Metrics