Abstract

We demonstrate the design and fabrication of square Ge11.5As24Se64.5 (Ge11) nonlinear nanowires fully embedded in a silica cladding for polarization independent (P-I) nonlinear processing. We observed similar performance for FWM using both TE and TM modes confirming that a near P-I operation was obtained. In addition we find that the supercontinuum spectrum that can be generated in the nanowires using 1ps pulse pulses with around 30W peak power was independent of polarization.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
    [CrossRef]
  2. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
    [CrossRef]
  3. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
    [CrossRef] [PubMed]
  4. A. Prasad, “Ge-As-Se chalcogenide glasses for all-optical signal processing,” in Laser Physics Center(Australian National University, 2010).
  5. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
    [CrossRef] [PubMed]
  6. F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
    [CrossRef] [PubMed]
  7. M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
    [CrossRef]
  8. M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
    [CrossRef] [PubMed]
  9. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
    [CrossRef] [PubMed]
  10. M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As(2)S(3) glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18(25), 26686–26694 (2010).
    [CrossRef] [PubMed]
  11. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press Inc., 2001).
  12. W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
    [CrossRef]
  13. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
    [CrossRef] [PubMed]
  14. S. M. Gao, X. Z. Zhang, Z. Q. Li, and S. L. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum. Electron. 16(1), 250–256 (2010).
    [CrossRef]
  15. Y. Tian, P. Dong, and C. X. Yang, “Polarization independent wavelength conversion in fibers using incoherent pumps,” Opt. Express 16(8), 5493–5498 (2008).
    [CrossRef] [PubMed]
  16. S. P. Chan, C. E. Phun, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” J. Lightwave Technol. 23(6), 2103–2111 (2005).
    [CrossRef]
  17. S. T. Lim, C. E. Png, E. A. Ong, and Y. L. Ang, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express 15(18), 11061–11072 (2007).
    [CrossRef] [PubMed]
  18. X. Gai, D. Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As(2)S(3) chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011).
    [CrossRef]
  19. X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge(11.5)As(24)Se(64.5) nanowires with a nonlinear parameter of 136 W(⁻¹)m(⁻¹) at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
    [CrossRef] [PubMed]
  20. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
    [CrossRef]
  21. P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of Vectorial Mode Fields in Optical Wave-Guides by a New Finite-Difference Method,” J. Lightwave Technol. 12(3), 487–494 (1994).
    [CrossRef]
  22. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
    [CrossRef] [PubMed]
  23. X. Gai, R. P. Wang, C. Xiong, M. J. Steel, B. J. Eggleton, and B. Luther-Davies, “Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis,” Opt. Express 20(2), 776–786 (2012).
    [CrossRef] [PubMed]
  24. D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE T. Nanotechnol. 7(3), 285–290 (2008).
    [CrossRef]
  25. J. J. Hu, N. N. Feng, N. Carlie, L. Petit, J. F. Wang, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss high-index-contrast planar waveguides with graded-index cladding layers,” Opt. Express 15(22), 14566–14572 (2007).
    [CrossRef] [PubMed]
  26. Q. Lin and G. P. Agrawal, “Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers,” J. Opt. Soc. Am. B 21(6), 1216–1224 (2004).
    [CrossRef]

2012 (1)

2011 (2)

2010 (5)

2009 (2)

2008 (5)

2007 (3)

2005 (1)

2004 (3)

Q. Lin and G. P. Agrawal, “Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers,” J. Opt. Soc. Am. B 21(6), 1216–1224 (2004).
[CrossRef]

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[CrossRef]

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

2002 (1)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[CrossRef]

1994 (1)

P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of Vectorial Mode Fields in Optical Wave-Guides by a New Finite-Difference Method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Agarwal, A.

Agrawal, G. P.

Aitken, B. G.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[CrossRef]

Ang, Y. L.

Ankiewicz, A.

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE T. Nanotechnol. 7(3), 285–290 (2008).
[CrossRef]

Bulla, D.

Bulla, D. A.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

Bulla, D. A. P.

Carlie, N.

Chan, S. P.

Chen, X.

Choi, D. Y.

X. Gai, D. Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As(2)S(3) chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011).
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As(2)S(3) glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18(25), 26686–26694 (2010).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge(11.5)As(24)Se(64.5) nanowires with a nonlinear parameter of 136 W(⁻¹)m(⁻¹) at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE T. Nanotechnol. 7(3), 285–290 (2008).
[CrossRef]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

Clausen, A. T.

Dong, P.

Eggleton, B. J.

X. Gai, R. P. Wang, C. Xiong, M. J. Steel, B. J. Eggleton, and B. Luther-Davies, “Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis,” Opt. Express 20(2), 776–786 (2012).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As(2)S(3) glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18(25), 26686–26694 (2010).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

Fallahkhair, A. B.

Feng, N. N.

Freude, W.

Fuflyigin, V. N.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Gai, X.

Galili, M.

Gao, S. M.

S. M. Gao, X. Z. Zhang, Z. Q. Li, and S. L. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum. Electron. 16(1), 250–256 (2010).
[CrossRef]

Gopinath, J. T.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Harbold, J. M.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[CrossRef]

He, S. L.

S. M. Gao, X. Z. Zhang, Z. Q. Li, and S. L. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum. Electron. 16(1), 250–256 (2010).
[CrossRef]

Headley, W. R.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[CrossRef]

Howe, S.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[CrossRef]

Hu, H.

Hu, J. J.

Ilday, F. O.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[CrossRef]

Ippen, E. P.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Jacome, L.

Jeppesen, P.

Kimerling, L.

King, W. A.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Koos, C.

Lamont, M. R. E.

Leuthold, J.

Li, K. S.

Li, Z. Q.

S. M. Gao, X. Z. Zhang, Z. Q. Li, and S. L. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum. Electron. 16(1), 250–256 (2010).
[CrossRef]

Lim, S. T.

Lin, Q.

Liu, A.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[CrossRef]

Luan, F.

Lusse, P.

P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of Vectorial Mode Fields in Optical Wave-Guides by a New Finite-Difference Method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Luther-Davies, B.

X. Gai, R. P. Wang, C. Xiong, M. J. Steel, B. J. Eggleton, and B. Luther-Davies, “Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis,” Opt. Express 20(2), 776–786 (2012).
[CrossRef] [PubMed]

X. Gai, D. Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As(2)S(3) chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011).
[CrossRef]

M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As(2)S(3) glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18(25), 26686–26694 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge(11.5)As(24)Se(64.5) nanowires with a nonlinear parameter of 136 W(⁻¹)m(⁻¹) at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE T. Nanotechnol. 7(3), 285–290 (2008).
[CrossRef]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

Luther-Davis, B.

Madden, S.

X. Gai, D. Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As(2)S(3) chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011).
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge(11.5)As(24)Se(64.5) nanowires with a nonlinear parameter of 136 W(⁻¹)m(⁻¹) at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE T. Nanotechnol. 7(3), 285–290 (2008).
[CrossRef]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

Madden, S. J.

Mulvad, H. C. H.

Murphy, T. E.

Ong, E. A.

Oxenløwe, L. K.

Palushani, E.

Paniccia, M.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[CrossRef]

Passaro, V. M. N.

Pelusi, M.

Pelusi, M. D.

Petit, L.

Phun, C. E.

Png, C. E.

Poulton, C.

Prasad, A.

Reed, G. T.

S. P. Chan, C. E. Phun, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” J. Lightwave Technol. 23(6), 2103–2111 (2005).
[CrossRef]

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[CrossRef]

Richardson, K.

Rode, A.

Schröder, J.

Schule, J.

P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of Vectorial Mode Fields in Optical Wave-Guides by a New Finite-Difference Method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Shurgalin, M.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Smith, A.

Soljacic, M.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

Steel, M. J.

Stuwe, P.

P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of Vectorial Mode Fields in Optical Wave-Guides by a New Finite-Difference Method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Tian, Y.

Tsang, H. K.

Unger, H. G.

P. Lusse, P. Stuwe, J. Schule, and H. G. Unger, “Analysis of Vectorial Mode Fields in Optical Wave-Guides by a New Finite-Difference Method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Vo, T. D.

Wang, J. F.

Wang, R. P.

Wise, F. W.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[CrossRef]

Xiong, C.

Xu, J.

Yang, C. X.

Zha, C. J.

Zhang, X. Z.

S. M. Gao, X. Z. Zhang, Z. Q. Li, and S. L. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum. Electron. 16(1), 250–256 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85(23), 5523–5525 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (1)

S. M. Gao, X. Z. Zhang, Z. Q. Li, and S. L. He, “Polarization-Independent Wavelength Conversion Using an Angled-Polarization Pump in a Silicon Nanowire Waveguide,” IEEE J. Sel. Top. Quantum. Electron. 16(1), 250–256 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

IEEE T. Nanotechnol. (1)

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE T. Nanotechnol. 7(3), 285–290 (2008).
[CrossRef]

J. Appl. Phys. (1)

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (2)

Opt. Express (12)

X. Gai, R. P. Wang, C. Xiong, M. J. Steel, B. J. Eggleton, and B. Luther-Davies, “Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis,” Opt. Express 20(2), 776–786 (2012).
[CrossRef] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
[CrossRef] [PubMed]

S. T. Lim, C. E. Png, E. A. Ong, and Y. L. Ang, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express 15(18), 11061–11072 (2007).
[CrossRef] [PubMed]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, J. F. Wang, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss high-index-contrast planar waveguides with graded-index cladding layers,” Opt. Express 15(22), 14566–14572 (2007).
[CrossRef] [PubMed]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

Y. Tian, P. Dong, and C. X. Yang, “Polarization independent wavelength conversion in fibers using incoherent pumps,” Opt. Express 16(8), 5493–5498 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge(11.5)As(24)Se(64.5) nanowires with a nonlinear parameter of 136 W(⁻¹)m(⁻¹) at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As(2)S(3) glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18(25), 26686–26694 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press Inc., 2001).

A. Prasad, “Ge-As-Se chalcogenide glasses for all-optical signal processing,” in Laser Physics Center(Australian National University, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics