Abstract

We investigate the effects of reduced exciton diffusion on the emission properties in InGaN/GaN multiple-quantum-well nanorods. Time-resolved photoluminescence spectra are recorded and compared in dry-etched InGaN/GaN nanorods and parent multiple quantum wells at various temperatures with carrier density in different regimes. Faster carrier recombination and absence of delayed rise in the emission dynamics are found in nanorods. Many effects, including surface damages and partial relaxation of the strain, may cause the faster recombination in nanorods. Together with these enhanced carrier recombination processes, the reduced exciton diffusion may induce the different temperature-dependent emission dynamics characterized by the delayed rise in time-resolved photoluminescence spectra.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Kang, J. H. Ryu, H. K. Kim, H. Y. Kim, N. Han, Y. J. Park, P. Uthirakumar, and C.-H. Hong, “Comparison of various surface textured layer in InGaN LEDs for high light extraction efficiency,” Opt. Express 19(4), 3637–3647 (2011).
    [CrossRef] [PubMed]
  2. Y. R. Wu, C. H. Chiu, C. Y. Chang, P. C. Yu, and H. C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN Nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
    [CrossRef]
  3. Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
    [CrossRef]
  4. Q. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. T. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays,” Opt. Express 19(25), 25528–25534 (2011).
    [CrossRef] [PubMed]
  5. H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
    [CrossRef]
  6. H.-M. Kim, Y.-H. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorods arrays,” Nano Lett. 4(6), 1059–1062 (2004).
    [CrossRef]
  7. W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) Silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
    [CrossRef] [PubMed]
  8. H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
    [CrossRef]
  9. H. J. Chang, Y. P. Hsieh, T. T. Chen, Y. F. Chen, C.-T. Liang, T. Y. Lin, S. C. Tseng, and L. C. Chen, “Strong luminescence from strain relaxed InGaN/GaN nanotips for highly efficient light emitters,” Opt. Express 15(15), 9357–9365 (2007).
    [CrossRef] [PubMed]
  10. K.-K. Kim, S.-D. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, S.-J. Park, and S.-W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett. 94(7), 071118 (2009).
    [CrossRef]
  11. S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, Y.-S. Lin, C. Hsu, K.-J. Ma, and J.-I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
    [CrossRef]
  12. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
    [CrossRef]
  13. D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humpherys, “Carrier localization mechanisms in InXGa1-XN multiple quantum wells,” Phys. Rev. B 83(11), 115321 (2011).
    [CrossRef]
  14. Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
    [CrossRef]
  15. H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
    [CrossRef] [PubMed]
  16. C.-N. Brosseau, M. Perrin, C. Silva, and R. Leonelli, “Carrier recombination dynamics in InxGa1-xN/GaN multiple quantum wells,” Phys. Rev. B 82(8), 085305 (2010).
    [CrossRef]
  17. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997).
    [CrossRef]
  18. T. Kuroda, A. Tackeuchi, and T. Sota, “Luminescence energy shift and carrier lifetime change dependence on carrier density in In0.12Ga0.88N/In0.03Ga0.97N quantum wells,” Appl. Phys. Lett. 76(25), 3753–3755 (2000).
    [CrossRef]
  19. T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett. 76(23), 3421–3423 (2000).
    [CrossRef]
  20. S. Sonderegger, E. Feltin, M. Merano, A. Crottini, J. F. Carlin, R. Sachot, B. Deveaud, N. Grandjean, and J. D. Ganiere, “High spatial resolution picosecond cathodoluminescence of InGaN quantum wells,” Appl. Phys. Lett. 89(23), 232109 (2006).
    [CrossRef]
  21. V. Liuolia, S. Marcinkevičius, Y.-D. Lin, H. Ohta, S. P. DenBaars, and S. Nakamura, “Dynamics of polarized photoluminescence in m-plan InGaN/GaN quantum wells,” J. Appl. Phys. 108(2), 023101 (2010).
    [CrossRef]
  22. S. Chichibu, K. Wada, and S. Nakamura, “Spatially resolved cathodeluminescence spectra of InGaN quantum wells,” Appl. Phys. Lett. 71(16), 2346–2348 (1997).
    [CrossRef]
  23. J. Danhof, U. T. Schwarz, A. Kaneta, and Y. Kawakami, “Time-of-flight measurements of charge carrier diffusion in InxGa1-xN/GaN quantum wells,” Phys. Rev. B 84(3), 035324 (2011).
    [CrossRef]
  24. S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, M.-H. Mao, Y.-S. Lin, K.-J. Ma, and J.-I. Chyi, “Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures,” Appl. Phys. Lett. 80(23), 4375–4377 (2002).
    [CrossRef]
  25. C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
    [CrossRef]
  26. E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
    [CrossRef]
  27. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
    [CrossRef]
  28. G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
    [CrossRef]
  29. T. Kuroda and A. Tackeuchi, “Influence of free carrier screening on the luminescence energy shift and carrier lifetime of InGaN quantum wells,” J. Appl. Phys. 92(6), 3071–3074 (2002).
    [CrossRef]
  30. A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, “Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga,In)N/GaN systems,” Phys. Rev. B 68(4), 045331 (2003).
    [CrossRef]
  31. I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002).
    [CrossRef]
  32. M. Pophristic, F. H. Long, C. Tran, R. F. Karlicek, Z. C. Feng, and I. T. Ferguson, “Time-resolved spectroscopy of InxGa1-xN/GaN multiple quantum wells at room temperature,” Appl. Phys. Lett. 73(6), 815–817 (1998).
    [CrossRef]
  33. P. Lefebvre, S. Kalliakos, T. Bretagnon, P. Valvin, T. Taliercio, B. Gil, N. Grandjean, and J. Massies, “Observation and modeling of the time-dependent descreening of internal electrical field in a wurtzite GaN/Al0.15Ga0.85N quantum well after high photoexcitation,” Phys. Rev. B 69(3), 035307 (2004).
    [CrossRef]
  34. J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn, E. Luna, M. Hanke, M. Knelangen, A. Trampert, and H. T. Grahn, “Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure,” Phys. Rev. B 84(15), 155303 (2011).
    [CrossRef]

2011 (6)

J. H. Kang, J. H. Ryu, H. K. Kim, H. Y. Kim, N. Han, Y. J. Park, P. Uthirakumar, and C.-H. Hong, “Comparison of various surface textured layer in InGaN LEDs for high light extraction efficiency,” Opt. Express 19(4), 3637–3647 (2011).
[CrossRef] [PubMed]

Q. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. T. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays,” Opt. Express 19(25), 25528–25534 (2011).
[CrossRef] [PubMed]

D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humpherys, “Carrier localization mechanisms in InXGa1-XN multiple quantum wells,” Phys. Rev. B 83(11), 115321 (2011).
[CrossRef]

J. Danhof, U. T. Schwarz, A. Kaneta, and Y. Kawakami, “Time-of-flight measurements of charge carrier diffusion in InxGa1-xN/GaN quantum wells,” Phys. Rev. B 84(3), 035324 (2011).
[CrossRef]

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn, E. Luna, M. Hanke, M. Knelangen, A. Trampert, and H. T. Grahn, “Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure,” Phys. Rev. B 84(15), 155303 (2011).
[CrossRef]

2010 (4)

V. Liuolia, S. Marcinkevičius, Y.-D. Lin, H. Ohta, S. P. DenBaars, and S. Nakamura, “Dynamics of polarized photoluminescence in m-plan InGaN/GaN quantum wells,” J. Appl. Phys. 108(2), 023101 (2010).
[CrossRef]

C.-N. Brosseau, M. Perrin, C. Silva, and R. Leonelli, “Carrier recombination dynamics in InxGa1-xN/GaN multiple quantum wells,” Phys. Rev. B 82(8), 085305 (2010).
[CrossRef]

H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
[CrossRef]

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) Silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[CrossRef] [PubMed]

2009 (3)

K.-K. Kim, S.-D. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, S.-J. Park, and S.-W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett. 94(7), 071118 (2009).
[CrossRef]

Y. R. Wu, C. H. Chiu, C. Y. Chang, P. C. Yu, and H. C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN Nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
[CrossRef]

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

2007 (2)

H. J. Chang, Y. P. Hsieh, T. T. Chen, Y. F. Chen, C.-T. Liang, T. Y. Lin, S. C. Tseng, and L. C. Chen, “Strong luminescence from strain relaxed InGaN/GaN nanotips for highly efficient light emitters,” Opt. Express 15(15), 9357–9365 (2007).
[CrossRef] [PubMed]

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

2006 (2)

S. Sonderegger, E. Feltin, M. Merano, A. Crottini, J. F. Carlin, R. Sachot, B. Deveaud, N. Grandjean, and J. D. Ganiere, “High spatial resolution picosecond cathodoluminescence of InGaN quantum wells,” Appl. Phys. Lett. 89(23), 232109 (2006).
[CrossRef]

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

2004 (3)

H.-M. Kim, Y.-H. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorods arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

P. Lefebvre, S. Kalliakos, T. Bretagnon, P. Valvin, T. Taliercio, B. Gil, N. Grandjean, and J. Massies, “Observation and modeling of the time-dependent descreening of internal electrical field in a wurtzite GaN/Al0.15Ga0.85N quantum well after high photoexcitation,” Phys. Rev. B 69(3), 035307 (2004).
[CrossRef]

2003 (1)

A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, “Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga,In)N/GaN systems,” Phys. Rev. B 68(4), 045331 (2003).
[CrossRef]

2002 (5)

I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002).
[CrossRef]

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

T. Kuroda and A. Tackeuchi, “Influence of free carrier screening on the luminescence energy shift and carrier lifetime of InGaN quantum wells,” J. Appl. Phys. 92(6), 3071–3074 (2002).
[CrossRef]

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, M.-H. Mao, Y.-S. Lin, K.-J. Ma, and J.-I. Chyi, “Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures,” Appl. Phys. Lett. 80(23), 4375–4377 (2002).
[CrossRef]

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, Y.-S. Lin, C. Hsu, K.-J. Ma, and J.-I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[CrossRef]

2000 (2)

T. Kuroda, A. Tackeuchi, and T. Sota, “Luminescence energy shift and carrier lifetime change dependence on carrier density in In0.12Ga0.88N/In0.03Ga0.97N quantum wells,” Appl. Phys. Lett. 76(25), 3753–3755 (2000).
[CrossRef]

T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett. 76(23), 3421–3423 (2000).
[CrossRef]

1998 (1)

M. Pophristic, F. H. Long, C. Tran, R. F. Karlicek, Z. C. Feng, and I. T. Ferguson, “Time-resolved spectroscopy of InxGa1-xN/GaN multiple quantum wells at room temperature,” Appl. Phys. Lett. 73(6), 815–817 (1998).
[CrossRef]

1997 (4)

S. Chichibu, K. Wada, and S. Nakamura, “Spatially resolved cathodeluminescence spectra of InGaN quantum wells,” Appl. Phys. Lett. 71(16), 2346–2348 (1997).
[CrossRef]

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997).
[CrossRef]

Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
[CrossRef]

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

1996 (1)

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[CrossRef]

Akasaki, I.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997).
[CrossRef]

Alferov, Zh. I.

I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002).
[CrossRef]

Amano, H.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997).
[CrossRef]

Asif Khan, M.

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

Azuhata, T.

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[CrossRef]

Bacher, G.

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

Banerjee, A.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) Silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[CrossRef] [PubMed]

Bhattacharya, P.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) Silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[CrossRef] [PubMed]

Bimberg, D.

I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002).
[CrossRef]

Brandt, O.

J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn, E. Luna, M. Hanke, M. Knelangen, A. Trampert, and H. T. Grahn, “Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure,” Phys. Rev. B 84(15), 155303 (2011).
[CrossRef]

Bretagnon, T.

P. Lefebvre, S. Kalliakos, T. Bretagnon, P. Valvin, T. Taliercio, B. Gil, N. Grandjean, and J. Massies, “Observation and modeling of the time-dependent descreening of internal electrical field in a wurtzite GaN/Al0.15Ga0.85N quantum well after high photoexcitation,” Phys. Rev. B 69(3), 035307 (2004).
[CrossRef]

A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, “Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga,In)N/GaN systems,” Phys. Rev. B 68(4), 045331 (2003).
[CrossRef]

Brosseau, C.-N.

C.-N. Brosseau, M. Perrin, C. Silva, and R. Leonelli, “Carrier recombination dynamics in InxGa1-xN/GaN multiple quantum wells,” Phys. Rev. B 82(8), 085305 (2010).
[CrossRef]

Carlin, J. F.

S. Sonderegger, E. Feltin, M. Merano, A. Crottini, J. F. Carlin, R. Sachot, B. Deveaud, N. Grandjean, and J. D. Ganiere, “High spatial resolution picosecond cathodoluminescence of InGaN quantum wells,” Appl. Phys. Lett. 89(23), 232109 (2006).
[CrossRef]

Chang, C. Y.

Y. R. Wu, C. H. Chiu, C. Y. Chang, P. C. Yu, and H. C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN Nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
[CrossRef]

Chang, H. J.

Chen, C.-D.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Chen, C.-Y.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Chen, H.-S.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Chen, H.-Y.

H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
[CrossRef]

Chen, L. C.

Chen, T. T.

Chen, Y. F.

Cheng, Y.-C.

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, Y.-S. Lin, C. Hsu, K.-J. Ma, and J.-I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[CrossRef]

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, M.-H. Mao, Y.-S. Lin, K.-J. Ma, and J.-I. Chyi, “Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures,” Appl. Phys. Lett. 80(23), 4375–4377 (2002).
[CrossRef]

Chhajed, S.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Chichibu, S.

S. Chichibu, K. Wada, and S. Nakamura, “Spatially resolved cathodeluminescence spectra of InGaN quantum wells,” Appl. Phys. Lett. 71(16), 2346–2348 (1997).
[CrossRef]

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[CrossRef]

Chiu, C. H.

Y. R. Wu, C. H. Chiu, C. Y. Chang, P. C. Yu, and H. C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN Nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
[CrossRef]

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Chiu, C.-H.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Cho, Y.-H.

H.-M. Kim, Y.-H. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorods arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Chu, J. T.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Chung, K. S.

H.-M. Kim, Y.-H. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorods arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Chung, Y.-Y.

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, Y.-S. Lin, C. Hsu, K.-J. Ma, and J.-I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[CrossRef]

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, M.-H. Mao, Y.-S. Lin, K.-J. Ma, and J.-I. Chyi, “Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures,” Appl. Phys. Lett. 80(23), 4375–4377 (2002).
[CrossRef]

Chyi, J.-I.

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, M.-H. Mao, Y.-S. Lin, K.-J. Ma, and J.-I. Chyi, “Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures,” Appl. Phys. Lett. 80(23), 4375–4377 (2002).
[CrossRef]

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, Y.-S. Lin, C. Hsu, K.-J. Ma, and J.-I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[CrossRef]

Crawford, M. H.

Cross, K. C.

Crottini, A.

S. Sonderegger, E. Feltin, M. Merano, A. Crottini, J. F. Carlin, R. Sachot, B. Deveaud, N. Grandjean, and J. D. Ganiere, “High spatial resolution picosecond cathodoluminescence of InGaN quantum wells,” Appl. Phys. Lett. 89(23), 232109 (2006).
[CrossRef]

Danhof, J.

J. Danhof, U. T. Schwarz, A. Kaneta, and Y. Kawakami, “Time-of-flight measurements of charge carrier diffusion in InxGa1-xN/GaN quantum wells,” Phys. Rev. B 84(3), 035324 (2011).
[CrossRef]

Dawson, P.

D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humpherys, “Carrier localization mechanisms in InXGa1-XN multiple quantum wells,” Phys. Rev. B 83(11), 115321 (2011).
[CrossRef]

DenBaars, S. P.

V. Liuolia, S. Marcinkevičius, Y.-D. Lin, H. Ohta, S. P. DenBaars, and S. Nakamura, “Dynamics of polarized photoluminescence in m-plan InGaN/GaN quantum wells,” J. Appl. Phys. 108(2), 023101 (2010).
[CrossRef]

Deveaud, B.

S. Sonderegger, E. Feltin, M. Merano, A. Crottini, J. F. Carlin, R. Sachot, B. Deveaud, N. Grandjean, and J. D. Ganiere, “High spatial resolution picosecond cathodoluminescence of InGaN quantum wells,” Appl. Phys. Lett. 89(23), 232109 (2006).
[CrossRef]

Ding, Y. J.

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

Fathololoumi, S.

Feltin, E.

S. Sonderegger, E. Feltin, M. Merano, A. Crottini, J. F. Carlin, R. Sachot, B. Deveaud, N. Grandjean, and J. D. Ganiere, “High spatial resolution picosecond cathodoluminescence of InGaN quantum wells,” Appl. Phys. Lett. 89(23), 232109 (2006).
[CrossRef]

Feng, S.-W.

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, Y.-S. Lin, C. Hsu, K.-J. Ma, and J.-I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[CrossRef]

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, M.-H. Mao, Y.-S. Lin, K.-J. Ma, and J.-I. Chyi, “Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures,” Appl. Phys. Lett. 80(23), 4375–4377 (2002).
[CrossRef]

Feng, Z. C.

M. Pophristic, F. H. Long, C. Tran, R. F. Karlicek, Z. C. Feng, and I. T. Ferguson, “Time-resolved spectroscopy of InxGa1-xN/GaN multiple quantum wells at room temperature,” Appl. Phys. Lett. 73(6), 815–817 (1998).
[CrossRef]

Ferguson, I. T.

M. Pophristic, F. H. Long, C. Tran, R. F. Karlicek, Z. C. Feng, and I. T. Ferguson, “Time-resolved spectroscopy of InxGa1-xN/GaN multiple quantum wells at room temperature,” Appl. Phys. Lett. 73(6), 815–817 (1998).
[CrossRef]

Figiel, J. J.

Flissikowski, T.

J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn, E. Luna, M. Hanke, M. Knelangen, A. Trampert, and H. T. Grahn, “Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure,” Phys. Rev. B 84(15), 155303 (2011).
[CrossRef]

Forchel, A.

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

Fujita, S.

Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
[CrossRef]

Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
[CrossRef]

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

Funato, M.

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

Galtrey, M. J.

D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humpherys, “Carrier localization mechanisms in InXGa1-XN multiple quantum wells,” Phys. Rev. B 83(11), 115321 (2011).
[CrossRef]

Ganiere, J. D.

S. Sonderegger, E. Feltin, M. Merano, A. Crottini, J. F. Carlin, R. Sachot, B. Deveaud, N. Grandjean, and J. D. Ganiere, “High spatial resolution picosecond cathodoluminescence of InGaN quantum wells,” Appl. Phys. Lett. 89(23), 232109 (2006).
[CrossRef]

Gaska, R.

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

Gerthsen, D.

I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002).
[CrossRef]

Gil, B.

P. Lefebvre, S. Kalliakos, T. Bretagnon, P. Valvin, T. Taliercio, B. Gil, N. Grandjean, and J. Massies, “Observation and modeling of the time-dependent descreening of internal electrical field in a wurtzite GaN/Al0.15Ga0.85N quantum well after high photoexcitation,” Phys. Rev. B 69(3), 035307 (2004).
[CrossRef]

A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, “Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga,In)N/GaN systems,” Phys. Rev. B 68(4), 045331 (2003).
[CrossRef]

Godfrey, M. J.

D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humpherys, “Carrier localization mechanisms in InXGa1-XN multiple quantum wells,” Phys. Rev. B 83(11), 115321 (2011).
[CrossRef]

Grahn, H. T.

J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn, E. Luna, M. Hanke, M. Knelangen, A. Trampert, and H. T. Grahn, “Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure,” Phys. Rev. B 84(15), 155303 (2011).
[CrossRef]

Grandjean, N.

S. Sonderegger, E. Feltin, M. Merano, A. Crottini, J. F. Carlin, R. Sachot, B. Deveaud, N. Grandjean, and J. D. Ganiere, “High spatial resolution picosecond cathodoluminescence of InGaN quantum wells,” Appl. Phys. Lett. 89(23), 232109 (2006).
[CrossRef]

P. Lefebvre, S. Kalliakos, T. Bretagnon, P. Valvin, T. Taliercio, B. Gil, N. Grandjean, and J. Massies, “Observation and modeling of the time-dependent descreening of internal electrical field in a wurtzite GaN/Al0.15Ga0.85N quantum well after high photoexcitation,” Phys. Rev. B 69(3), 035307 (2004).
[CrossRef]

Guo, W.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) Silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[CrossRef] [PubMed]

Gwo, S.

H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
[CrossRef]

Halm, S.

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

Han, N.

Hanke, M.

J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn, E. Luna, M. Hanke, M. Knelangen, A. Trampert, and H. T. Grahn, “Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure,” Phys. Rev. B 84(15), 155303 (2011).
[CrossRef]

Hashimoto, S.

T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett. 76(23), 3421–3423 (2000).
[CrossRef]

Hino, T.

T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett. 76(23), 3421–3423 (2000).
[CrossRef]

Hoffmann, A.

I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002).
[CrossRef]

Hong, C.-H.

Hsieh, Y. P.

Hsu, C.

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, Y.-S. Lin, C. Hsu, K.-J. Ma, and J.-I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[CrossRef]

Hsueh, T. H.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Huang, C.-F.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Huang, H. W.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Humpherys, C. J.

D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humpherys, “Carrier localization mechanisms in InXGa1-XN multiple quantum wells,” Phys. Rev. B 83(11), 115321 (2011).
[CrossRef]

Ikeda, M.

T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett. 76(23), 3421–3423 (2000).
[CrossRef]

Jahn, U.

J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn, E. Luna, M. Hanke, M. Knelangen, A. Trampert, and H. T. Grahn, “Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure,” Phys. Rev. B 84(15), 155303 (2011).
[CrossRef]

Kalliakos, S.

P. Lefebvre, S. Kalliakos, T. Bretagnon, P. Valvin, T. Taliercio, B. Gil, N. Grandjean, and J. Massies, “Observation and modeling of the time-dependent descreening of internal electrical field in a wurtzite GaN/Al0.15Ga0.85N quantum well after high photoexcitation,” Phys. Rev. B 69(3), 035307 (2004).
[CrossRef]

A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, “Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga,In)N/GaN systems,” Phys. Rev. B 68(4), 045331 (2003).
[CrossRef]

Kaneta, A.

J. Danhof, U. T. Schwarz, A. Kaneta, and Y. Kawakami, “Time-of-flight measurements of charge carrier diffusion in InxGa1-xN/GaN quantum wells,” Phys. Rev. B 84(3), 035324 (2011).
[CrossRef]

Kang, J. H.

Kang, T. W.

H.-M. Kim, Y.-H. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorods arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Kao, C. C.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Kappers, M. J.

D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humpherys, “Carrier localization mechanisms in InXGa1-XN multiple quantum wells,” Phys. Rev. B 83(11), 115321 (2011).
[CrossRef]

Karlicek, R. F.

M. Pophristic, F. H. Long, C. Tran, R. F. Karlicek, Z. C. Feng, and I. T. Ferguson, “Time-resolved spectroscopy of InxGa1-xN/GaN multiple quantum wells at room temperature,” Appl. Phys. Lett. 73(6), 815–817 (1998).
[CrossRef]

Katsuragawa, M.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997).
[CrossRef]

Kawakami, Y.

J. Danhof, U. T. Schwarz, A. Kaneta, and Y. Kawakami, “Time-of-flight measurements of charge carrier diffusion in InxGa1-xN/GaN quantum wells,” Phys. Rev. B 84(3), 035324 (2011).
[CrossRef]

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
[CrossRef]

Kim, D. Y.

H.-M. Kim, Y.-H. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorods arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Kim, H.

K.-K. Kim, S.-D. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, S.-J. Park, and S.-W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett. 94(7), 071118 (2009).
[CrossRef]

Kim, H. K.

Kim, H. Y.

Kim, H.-M.

H.-M. Kim, Y.-H. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorods arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Kim, J. K.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Kim, K.-K.

K.-K. Kim, S.-D. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, S.-J. Park, and S.-W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett. 94(7), 071118 (2009).
[CrossRef]

Kim, S.

H.-M. Kim, Y.-H. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorods arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Kim, S.-W.

K.-K. Kim, S.-D. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, S.-J. Park, and S.-W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett. 94(7), 071118 (2009).
[CrossRef]

Knelangen, M.

J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn, E. Luna, M. Hanke, M. Knelangen, A. Trampert, and H. T. Grahn, “Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure,” Phys. Rev. B 84(15), 155303 (2011).
[CrossRef]

Koleske, D. D.

Komori, M.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997).
[CrossRef]

Krestnikov, I. L.

I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002).
[CrossRef]

Kuo, H. C.

Y. R. Wu, C. H. Chiu, C. Y. Chang, P. C. Yu, and H. C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN Nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
[CrossRef]

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Kuo, H.-C.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Kuokstis, E.

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

Kuroda, T.

T. Kuroda and A. Tackeuchi, “Influence of free carrier screening on the luminescence energy shift and carrier lifetime of InGaN quantum wells,” J. Appl. Phys. 92(6), 3071–3074 (2002).
[CrossRef]

T. Kuroda, A. Tackeuchi, and T. Sota, “Luminescence energy shift and carrier lifetime change dependence on carrier density in In0.12Ga0.88N/In0.03Ga0.97N quantum wells,” Appl. Phys. Lett. 76(25), 3753–3755 (2000).
[CrossRef]

Lähnemann, J.

J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn, E. Luna, M. Hanke, M. Knelangen, A. Trampert, and H. T. Grahn, “Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure,” Phys. Rev. B 84(15), 155303 (2011).
[CrossRef]

Lai, C. F.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Ledentsov, N. N.

I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002).
[CrossRef]

Lee, H.

H.-M. Kim, Y.-H. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorods arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Lee, H.-M.

H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
[CrossRef]

Lee, S. R.

Lee, S.-D.

K.-K. Kim, S.-D. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, S.-J. Park, and S.-W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett. 94(7), 071118 (2009).
[CrossRef]

Lee, S.-N.

K.-K. Kim, S.-D. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, S.-J. Park, and S.-W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett. 94(7), 071118 (2009).
[CrossRef]

Lee, Y. J.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Lefebvre, P.

P. Lefebvre, S. Kalliakos, T. Bretagnon, P. Valvin, T. Taliercio, B. Gil, N. Grandjean, and J. Massies, “Observation and modeling of the time-dependent descreening of internal electrical field in a wurtzite GaN/Al0.15Ga0.85N quantum well after high photoexcitation,” Phys. Rev. B 69(3), 035307 (2004).
[CrossRef]

A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, “Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga,In)N/GaN systems,” Phys. Rev. B 68(4), 045331 (2003).
[CrossRef]

Leonelli, R.

C.-N. Brosseau, M. Perrin, C. Silva, and R. Leonelli, “Carrier recombination dynamics in InxGa1-xN/GaN multiple quantum wells,” Phys. Rev. B 82(8), 085305 (2010).
[CrossRef]

Li, Q.

Liang, C.-T.

Lin, C. F.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Lin, H.-W.

H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
[CrossRef]

Lin, S.-Y.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Lin, T. Y.

Lin, Y.-D.

V. Liuolia, S. Marcinkevičius, Y.-D. Lin, H. Ohta, S. P. DenBaars, and S. Nakamura, “Dynamics of polarized photoluminescence in m-plan InGaN/GaN quantum wells,” J. Appl. Phys. 108(2), 023101 (2010).
[CrossRef]

Lin, Y.-S.

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, Y.-S. Lin, C. Hsu, K.-J. Ma, and J.-I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[CrossRef]

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, M.-H. Mao, Y.-S. Lin, K.-J. Ma, and J.-I. Chyi, “Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures,” Appl. Phys. Lett. 80(23), 4375–4377 (2002).
[CrossRef]

Liu, G.

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

Liuolia, V.

V. Liuolia, S. Marcinkevičius, Y.-D. Lin, H. Ohta, S. P. DenBaars, and S. Nakamura, “Dynamics of polarized photoluminescence in m-plan InGaN/GaN quantum wells,” J. Appl. Phys. 108(2), 023101 (2010).
[CrossRef]

Long, F. H.

M. Pophristic, F. H. Long, C. Tran, R. F. Karlicek, Z. C. Feng, and I. T. Ferguson, “Time-resolved spectroscopy of InxGa1-xN/GaN multiple quantum wells at room temperature,” Appl. Phys. Lett. 73(6), 815–817 (1998).
[CrossRef]

Lu, T. C.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Lu, T.-C.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Lu, Y.-C.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Lu, Y.-J.

H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
[CrossRef]

Luna, E.

J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn, E. Luna, M. Hanke, M. Knelangen, A. Trampert, and H. T. Grahn, “Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure,” Phys. Rev. B 84(15), 155303 (2011).
[CrossRef]

Lundin, W. V.

I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002).
[CrossRef]

Ma, K.-J.

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, M.-H. Mao, Y.-S. Lin, K.-J. Ma, and J.-I. Chyi, “Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures,” Appl. Phys. Lett. 80(23), 4375–4377 (2002).
[CrossRef]

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, Y.-S. Lin, C. Hsu, K.-J. Ma, and J.-I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[CrossRef]

Mao, M.-H.

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, M.-H. Mao, Y.-S. Lin, K.-J. Ma, and J.-I. Chyi, “Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures,” Appl. Phys. Lett. 80(23), 4375–4377 (2002).
[CrossRef]

Marcinkevicius, S.

V. Liuolia, S. Marcinkevičius, Y.-D. Lin, H. Ohta, S. P. DenBaars, and S. Nakamura, “Dynamics of polarized photoluminescence in m-plan InGaN/GaN quantum wells,” J. Appl. Phys. 108(2), 023101 (2010).
[CrossRef]

Massies, J.

P. Lefebvre, S. Kalliakos, T. Bretagnon, P. Valvin, T. Taliercio, B. Gil, N. Grandjean, and J. Massies, “Observation and modeling of the time-dependent descreening of internal electrical field in a wurtzite GaN/Al0.15Ga0.85N quantum well after high photoexcitation,” Phys. Rev. B 69(3), 035307 (2004).
[CrossRef]

Merano, M.

S. Sonderegger, E. Feltin, M. Merano, A. Crottini, J. F. Carlin, R. Sachot, B. Deveaud, N. Grandjean, and J. D. Ganiere, “High spatial resolution picosecond cathodoluminescence of InGaN quantum wells,” Appl. Phys. Lett. 89(23), 232109 (2006).
[CrossRef]

Mi, Z. T.

Miyajima, T.

T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett. 76(23), 3421–3423 (2000).
[CrossRef]

Morel, A.

A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, “Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga,In)N/GaN systems,” Phys. Rev. B 68(4), 045331 (2003).
[CrossRef]

Musikhin, Yu. G.

I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002).
[CrossRef]

Nakamura, S.

V. Liuolia, S. Marcinkevičius, Y.-D. Lin, H. Ohta, S. P. DenBaars, and S. Nakamura, “Dynamics of polarized photoluminescence in m-plan InGaN/GaN quantum wells,” J. Appl. Phys. 108(2), 023101 (2010).
[CrossRef]

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
[CrossRef]

S. Chichibu, K. Wada, and S. Nakamura, “Spatially resolved cathodeluminescence spectra of InGaN quantum wells,” Appl. Phys. Lett. 71(16), 2346–2348 (1997).
[CrossRef]

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[CrossRef]

Narukawa, Y.

Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
[CrossRef]

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

Off, J.

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

Ohta, H.

V. Liuolia, S. Marcinkevičius, Y.-D. Lin, H. Ohta, S. P. DenBaars, and S. Nakamura, “Dynamics of polarized photoluminescence in m-plan InGaN/GaN quantum wells,” J. Appl. Phys. 108(2), 023101 (2010).
[CrossRef]

Oliver, R. A.

D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humpherys, “Carrier localization mechanisms in InXGa1-XN multiple quantum wells,” Phys. Rev. B 83(11), 115321 (2011).
[CrossRef]

Park, J.-C.

K.-K. Kim, S.-D. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, S.-J. Park, and S.-W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett. 94(7), 071118 (2009).
[CrossRef]

Park, S.-J.

K.-K. Kim, S.-D. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, S.-J. Park, and S.-W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett. 94(7), 071118 (2009).
[CrossRef]

Park, Y.

K.-K. Kim, S.-D. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, S.-J. Park, and S.-W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett. 94(7), 071118 (2009).
[CrossRef]

Park, Y. J.

Perrin, M.

C.-N. Brosseau, M. Perrin, C. Silva, and R. Leonelli, “Carrier recombination dynamics in InxGa1-xN/GaN multiple quantum wells,” Phys. Rev. B 82(8), 085305 (2010).
[CrossRef]

Pfüller, C.

J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn, E. Luna, M. Hanke, M. Knelangen, A. Trampert, and H. T. Grahn, “Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure,” Phys. Rev. B 84(15), 155303 (2011).
[CrossRef]

Pophristic, M.

M. Pophristic, F. H. Long, C. Tran, R. F. Karlicek, Z. C. Feng, and I. T. Ferguson, “Time-resolved spectroscopy of InxGa1-xN/GaN multiple quantum wells at room temperature,” Appl. Phys. Lett. 73(6), 815–817 (1998).
[CrossRef]

Ryu, J. H.

Ryu, S. R.

H.-M. Kim, Y.-H. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorods arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

Sachot, R.

S. Sonderegger, E. Feltin, M. Merano, A. Crottini, J. F. Carlin, R. Sachot, B. Deveaud, N. Grandjean, and J. D. Ganiere, “High spatial resolution picosecond cathodoluminescence of InGaN quantum wells,” Appl. Phys. Lett. 89(23), 232109 (2006).
[CrossRef]

Sakharov, A. V.

I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002).
[CrossRef]

Scholz, F.

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

Schömig, H.

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

Schubert, E. F.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Schwarz, U. T.

J. Danhof, U. T. Schwarz, A. Kaneta, and Y. Kawakami, “Time-of-flight measurements of charge carrier diffusion in InxGa1-xN/GaN quantum wells,” Phys. Rev. B 84(3), 035324 (2011).
[CrossRef]

Shur, M. S.

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

Silva, C.

C.-N. Brosseau, M. Perrin, C. Silva, and R. Leonelli, “Carrier recombination dynamics in InxGa1-xN/GaN multiple quantum wells,” Phys. Rev. B 82(8), 085305 (2010).
[CrossRef]

Simin, G.

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

Sonderegger, S.

S. Sonderegger, E. Feltin, M. Merano, A. Crottini, J. F. Carlin, R. Sachot, B. Deveaud, N. Grandjean, and J. D. Ganiere, “High spatial resolution picosecond cathodoluminescence of InGaN quantum wells,” Appl. Phys. Lett. 89(23), 232109 (2006).
[CrossRef]

Sota, S.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997).
[CrossRef]

Sota, T.

T. Kuroda, A. Tackeuchi, and T. Sota, “Luminescence energy shift and carrier lifetime change dependence on carrier density in In0.12Ga0.88N/In0.03Ga0.97N quantum wells,” Appl. Phys. Lett. 76(25), 3753–3755 (2000).
[CrossRef]

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[CrossRef]

Sun, G.

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

Tackeuchi, A.

T. Kuroda and A. Tackeuchi, “Influence of free carrier screening on the luminescence energy shift and carrier lifetime of InGaN quantum wells,” J. Appl. Phys. 92(6), 3071–3074 (2002).
[CrossRef]

T. Kuroda, A. Tackeuchi, and T. Sota, “Luminescence energy shift and carrier lifetime change dependence on carrier density in In0.12Ga0.88N/In0.03Ga0.97N quantum wells,” Appl. Phys. Lett. 76(25), 3753–3755 (2000).
[CrossRef]

Takeuchi, H.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997).
[CrossRef]

Takeuchi, T.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997).
[CrossRef]

Taliercio, T.

P. Lefebvre, S. Kalliakos, T. Bretagnon, P. Valvin, T. Taliercio, B. Gil, N. Grandjean, and J. Massies, “Observation and modeling of the time-dependent descreening of internal electrical field in a wurtzite GaN/Al0.15Ga0.85N quantum well after high photoexcitation,” Phys. Rev. B 69(3), 035307 (2004).
[CrossRef]

A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, “Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga,In)N/GaN systems,” Phys. Rev. B 68(4), 045331 (2003).
[CrossRef]

Tang, T.-Y.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Tansu, N.

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

Tomiya, S.

T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett. 76(23), 3421–3423 (2000).
[CrossRef]

Trampert, A.

J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn, E. Luna, M. Hanke, M. Knelangen, A. Trampert, and H. T. Grahn, “Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure,” Phys. Rev. B 84(15), 155303 (2011).
[CrossRef]

Tran, C.

M. Pophristic, F. H. Long, C. Tran, R. F. Karlicek, Z. C. Feng, and I. T. Ferguson, “Time-resolved spectroscopy of InxGa1-xN/GaN multiple quantum wells at room temperature,” Appl. Phys. Lett. 73(6), 815–817 (1998).
[CrossRef]

Tsatsul’nikov, A. F.

I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002).
[CrossRef]

Tseng, S. C.

Usikov, A. S.

I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002).
[CrossRef]

Uthirakumar, P.

Valvin, P.

P. Lefebvre, S. Kalliakos, T. Bretagnon, P. Valvin, T. Taliercio, B. Gil, N. Grandjean, and J. Massies, “Observation and modeling of the time-dependent descreening of internal electrical field in a wurtzite GaN/Al0.15Ga0.85N quantum well after high photoexcitation,” Phys. Rev. B 69(3), 035307 (2004).
[CrossRef]

Wada, K.

S. Chichibu, K. Wada, and S. Nakamura, “Spatially resolved cathodeluminescence spectra of InGaN quantum wells,” Appl. Phys. Lett. 71(16), 2346–2348 (1997).
[CrossRef]

Wang, G. T.

Wang, S. C.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Wang, S.-C.

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

Watson-Parris, D.

D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humpherys, “Carrier localization mechanisms in InXGa1-XN multiple quantum wells,” Phys. Rev. B 83(11), 115321 (2011).
[CrossRef]

Westlake, K. R.

Wu, C.-S.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Wu, Y. R.

Y. R. Wu, C. H. Chiu, C. Y. Chang, P. C. Yu, and H. C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN Nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
[CrossRef]

Xu, G.

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

Yanashima, K.

T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett. 76(23), 3421–3423 (2000).
[CrossRef]

Yang, C. C.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, Y.-S. Lin, C. Hsu, K.-J. Ma, and J.-I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[CrossRef]

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, M.-H. Mao, Y.-S. Lin, K.-J. Ma, and J.-I. Chyi, “Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures,” Appl. Phys. Lett. 80(23), 4375–4377 (2002).
[CrossRef]

Yang, J. W.

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

Yeh, D.-M.

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

Yu, C. C.

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Yu, P. C.

Y. R. Wu, C. H. Chiu, C. Y. Chang, P. C. Yu, and H. C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN Nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
[CrossRef]

Zhang, J.

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

Zhang, M.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) Silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[CrossRef] [PubMed]

Zhao, H.

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

Appl. Phys. Lett. (13)

Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009).
[CrossRef]

H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett. 97(7), 073101 (2010).
[CrossRef]

Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8), 981–983 (1997).
[CrossRef]

K.-K. Kim, S.-D. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, S.-J. Park, and S.-W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett. 94(7), 071118 (2009).
[CrossRef]

T. Kuroda, A. Tackeuchi, and T. Sota, “Luminescence energy shift and carrier lifetime change dependence on carrier density in In0.12Ga0.88N/In0.03Ga0.97N quantum wells,” Appl. Phys. Lett. 76(25), 3753–3755 (2000).
[CrossRef]

T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett. 76(23), 3421–3423 (2000).
[CrossRef]

S. Sonderegger, E. Feltin, M. Merano, A. Crottini, J. F. Carlin, R. Sachot, B. Deveaud, N. Grandjean, and J. D. Ganiere, “High spatial resolution picosecond cathodoluminescence of InGaN quantum wells,” Appl. Phys. Lett. 89(23), 232109 (2006).
[CrossRef]

S. Chichibu, K. Wada, and S. Nakamura, “Spatially resolved cathodeluminescence spectra of InGaN quantum wells,” Appl. Phys. Lett. 71(16), 2346–2348 (1997).
[CrossRef]

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, M.-H. Mao, Y.-S. Lin, K.-J. Ma, and J.-I. Chyi, “Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures,” Appl. Phys. Lett. 80(23), 4375–4377 (2002).
[CrossRef]

E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett. 80(6), 977–979 (2002).
[CrossRef]

S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. 69(27), 4188–4190 (1996).
[CrossRef]

G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett. 99(8), 081104 (2011).
[CrossRef]

M. Pophristic, F. H. Long, C. Tran, R. F. Karlicek, Z. C. Feng, and I. T. Ferguson, “Time-resolved spectroscopy of InxGa1-xN/GaN multiple quantum wells at room temperature,” Appl. Phys. Lett. 73(6), 815–817 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. R. Wu, C. H. Chiu, C. Y. Chang, P. C. Yu, and H. C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN Nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1226–1233 (2009).
[CrossRef]

J. Appl. Phys. (3)

S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, Y.-S. Lin, C. Hsu, K.-J. Ma, and J.-I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[CrossRef]

T. Kuroda and A. Tackeuchi, “Influence of free carrier screening on the luminescence energy shift and carrier lifetime of InGaN quantum wells,” J. Appl. Phys. 92(6), 3071–3074 (2002).
[CrossRef]

V. Liuolia, S. Marcinkevičius, Y.-D. Lin, H. Ohta, S. P. DenBaars, and S. Nakamura, “Dynamics of polarized photoluminescence in m-plan InGaN/GaN quantum wells,” J. Appl. Phys. 108(2), 023101 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997).
[CrossRef]

Nano Lett. (2)

H.-M. Kim, Y.-H. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorods arrays,” Nano Lett. 4(6), 1059–1062 (2004).
[CrossRef]

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) Silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[CrossRef] [PubMed]

Nanotechnology (2)

H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology 17(5), 1454–1458 (2006).
[CrossRef]

C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology 18(44), 445201 (2007).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (8)

C.-N. Brosseau, M. Perrin, C. Silva, and R. Leonelli, “Carrier recombination dynamics in InxGa1-xN/GaN multiple quantum wells,” Phys. Rev. B 82(8), 085305 (2010).
[CrossRef]

D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humpherys, “Carrier localization mechanisms in InXGa1-XN multiple quantum wells,” Phys. Rev. B 83(11), 115321 (2011).
[CrossRef]

Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
[CrossRef]

J. Danhof, U. T. Schwarz, A. Kaneta, and Y. Kawakami, “Time-of-flight measurements of charge carrier diffusion in InxGa1-xN/GaN quantum wells,” Phys. Rev. B 84(3), 035324 (2011).
[CrossRef]

A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, “Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga,In)N/GaN systems,” Phys. Rev. B 68(4), 045331 (2003).
[CrossRef]

I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B 66(15), 155310 (2002).
[CrossRef]

P. Lefebvre, S. Kalliakos, T. Bretagnon, P. Valvin, T. Taliercio, B. Gil, N. Grandjean, and J. Massies, “Observation and modeling of the time-dependent descreening of internal electrical field in a wurtzite GaN/Al0.15Ga0.85N quantum well after high photoexcitation,” Phys. Rev. B 69(3), 035307 (2004).
[CrossRef]

J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn, E. Luna, M. Hanke, M. Knelangen, A. Trampert, and H. T. Grahn, “Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure,” Phys. Rev. B 84(15), 155303 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett. 92(10), 106802 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron microscopy image of the morphologies of the InGaN/GaN nanorods. Inset shows the transmission electron microscopy image of the cross section of a single nanorod.

Fig. 2
Fig. 2

Emission properties of InGaN/GaN nanorods. (a) Room-temperature emission spectra of InGaN/GaN nanorods recorded with different excitation densities; (b) Emission spectra of InGaN/GaN nanorods recorded at different temperature with excitation density of 25 μJ/cm2; (c) Photon energy of Emission peaks from nanorods and MQWs is plotted as functions of temperature with excitation densities of 25 μJ/cm2 and 117 μJ/cm2, respectively; (d) Intensities of emission from nanorods and MQWs are plotted as functions of temperature with excitation densities of 25 μJ/cm2 and 117 μJ/cm2, respectively. (e) and (f) plot the photon energy of emission peak and the emission intensity recorded in the samples of nanorods and MQWs as function of excitation density at 5 K and 300 K, respectively.

Fig. 3
Fig. 3

(a) Logarithmic plot of TRPL traces recorded from InGaN/GaN nanorods at room temperature with different excitation densities. Inset shows a comparison of the TRPL traces recorded with a band pass filter and wavelength selected at the TIPL peak by a monochrometer. (b) and (c) show a TRPL trace from nanorods recorded with the methods of fast electrical recording (ns-resolution) and Kerr gate technique (ps-resolution), respectively. The fitting curves to the mono-exponential (Exp) and stretched exponentiall (SE) function of the decay component are also present. The SE fitting parameters (τ0 and β) of the TRPL traces recorded from nanorods and MQWs are plotted as functions of excitation densities in (d) and (e). Logarithmic plot of emission intensity as a function of emission wavelength and decay time in parent MQWs (f) and NRs (g) with excitation density of 117 µJ/cm2 at room temperature.

Fig. 4
Fig. 4

Temperature-dependent TRPL traces recorded from MQWs (a) and nanorods (b) with excitation density of 25 µJ/cm2. The curves are vertically shifted for clarity. The dashed lines are horizontal references to clarify the delayed rise of TRPL traces recorded from the MQWs.

Metrics