Abstract

Directional couplers are extensively used devices in integrated optics, but suffer from limited operational wavelength range. Here we use, for the first time, the dispersive properties of sub-wavelength gratings to achieve a fivefold enhancement in the operation bandwidth of a silicon-on-insulator directional coupler. This approach does not compromise the size or the phase response of the device. The sub-wavelength grating based directional coupler we propose covers a 100nm bandwidth with an imbalance of ≤ 0.6dB between its outputs, as supported by full 3D FDTD simulations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-H. Hsu, “Optical waveguide tap with low polarization dependence and flattened wavelength using a Mach–Zehnder directional coupler,” Appl. Opt.49, 2434–2440 (2010).
    [CrossRef]
  2. T. Lee, D. Lee, and Y. Chung, “Design and simulation of fabrication-error-tolerant triplexer based on cascaded Mach–Zehnder inteferometers,” IEEE Photon. Technol. Lett.20, 33–35 (2008).
    [CrossRef]
  3. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett.33, 147–149 (2008).
    [CrossRef] [PubMed]
  4. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35, 2771–2773 (2010).
    [CrossRef] [PubMed]
  5. L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13, 615–627 (1995).
    [CrossRef]
  6. R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, “High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler,” Opt. Lett.36, 178–180 (2011).
    [CrossRef] [PubMed]
  7. B. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach–Zehnder structures,” IEEE Photon. Technol. Lett.9, 1607–1609 (1997).
    [CrossRef]
  8. Q. Wang and S. He, “Optimal design of planar wavelength circuits based on Mach–Zehnder interferometers and their cascaded forms,” J. Lightwave Technol.23, 1284–1290 (2005).
    [CrossRef]
  9. J. Gamet, G. Pandraud, S. Opsitech, and F. Grenoble, “C-and L-band planar delay interferometer for DPSK decoders,” IEEE Photon. Technol. Lett.17, 1217–1219 (2005).
    [CrossRef]
  10. Y. Shani, C. Henry, R. Kistler, R. Kazarinov, and K. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27, 556–566 (1991).
    [CrossRef]
  11. G. Paloczi, A. Eyal, and A. Yariv, “Wavelength-insensitive nonadiabatic mode evolution couplers,” IEEE Photon. Technol. Lett.16, 515 –517 (2004).
    [CrossRef]
  12. C. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar light-wave circuit 2×2 coupler to desensitize it to wavelength, polarization, and fabrication changes,” IEEE Photon. Technol. Lett.17, 1211–1213 (2005).
    [CrossRef]
  13. P. Cheben, D. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express14, 4695–4702 (2006).
    [CrossRef] [PubMed]
  14. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered sub-wavelength structure,” Opt. Lett.35, 3243–3245 (2010).
    [CrossRef] [PubMed]
  15. U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett.98, 243901 (2007).
    [CrossRef] [PubMed]
  16. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express18, 16146–16155 (2010).
    [CrossRef] [PubMed]
  17. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett.35, 2526–2528 (2010).
    [CrossRef] [PubMed]
  18. A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernandez, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, “High-performance multimode interference coupler in silicon waveguides with sub-wavelength structures,” IEEE Photon. Technol. Lett.23, 1406–1408 (2011).
    [CrossRef]
  19. L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagn. Res.123, 447–465 (2012).
    [CrossRef]
  20. M. Robertson, S. Ritchie, and P. Dayan, “Semiconductor waveguides: analysis of optical propagation in single rib structures and directional Couplers,” IET Optoelectron.132, 336–342 (1985).
    [CrossRef]

2012

L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagn. Res.123, 447–465 (2012).
[CrossRef]

2011

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernandez, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, “High-performance multimode interference coupler in silicon waveguides with sub-wavelength structures,” IEEE Photon. Technol. Lett.23, 1406–1408 (2011).
[CrossRef]

R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, “High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler,” Opt. Lett.36, 178–180 (2011).
[CrossRef] [PubMed]

2010

2008

T. Lee, D. Lee, and Y. Chung, “Design and simulation of fabrication-error-tolerant triplexer based on cascaded Mach–Zehnder inteferometers,” IEEE Photon. Technol. Lett.20, 33–35 (2008).
[CrossRef]

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett.33, 147–149 (2008).
[CrossRef] [PubMed]

2007

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett.98, 243901 (2007).
[CrossRef] [PubMed]

2006

2005

C. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar light-wave circuit 2×2 coupler to desensitize it to wavelength, polarization, and fabrication changes,” IEEE Photon. Technol. Lett.17, 1211–1213 (2005).
[CrossRef]

J. Gamet, G. Pandraud, S. Opsitech, and F. Grenoble, “C-and L-band planar delay interferometer for DPSK decoders,” IEEE Photon. Technol. Lett.17, 1217–1219 (2005).
[CrossRef]

Q. Wang and S. He, “Optimal design of planar wavelength circuits based on Mach–Zehnder interferometers and their cascaded forms,” J. Lightwave Technol.23, 1284–1290 (2005).
[CrossRef]

2004

G. Paloczi, A. Eyal, and A. Yariv, “Wavelength-insensitive nonadiabatic mode evolution couplers,” IEEE Photon. Technol. Lett.16, 515 –517 (2004).
[CrossRef]

1997

B. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach–Zehnder structures,” IEEE Photon. Technol. Lett.9, 1607–1609 (1997).
[CrossRef]

1995

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13, 615–627 (1995).
[CrossRef]

1991

Y. Shani, C. Henry, R. Kistler, R. Kazarinov, and K. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27, 556–566 (1991).
[CrossRef]

1985

M. Robertson, S. Ritchie, and P. Dayan, “Semiconductor waveguides: analysis of optical propagation in single rib structures and directional Couplers,” IET Optoelectron.132, 336–342 (1985).
[CrossRef]

Abashin, M.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett.98, 243901 (2007).
[CrossRef] [PubMed]

Bedard, D.

Beggs, D. M.

Bock, P. J.

Buhl, L.

C. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar light-wave circuit 2×2 coupler to desensitize it to wavelength, polarization, and fabrication changes,” IEEE Photon. Technol. Lett.17, 1211–1213 (2005).
[CrossRef]

Cappuzzo, M.

C. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar light-wave circuit 2×2 coupler to desensitize it to wavelength, polarization, and fabrication changes,” IEEE Photon. Technol. Lett.17, 1211–1213 (2005).
[CrossRef]

Cheben, P.

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernandez, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, “High-performance multimode interference coupler in silicon waveguides with sub-wavelength structures,” IEEE Photon. Technol. Lett.23, 1406–1408 (2011).
[CrossRef]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express18, 16146–16155 (2010).
[CrossRef] [PubMed]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett.35, 2526–2528 (2010).
[CrossRef] [PubMed]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35, 2771–2773 (2010).
[CrossRef] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered sub-wavelength structure,” Opt. Lett.35, 3243–3245 (2010).
[CrossRef] [PubMed]

P. Cheben, D. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express14, 4695–4702 (2006).
[CrossRef] [PubMed]

Chen, E.

C. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar light-wave circuit 2×2 coupler to desensitize it to wavelength, polarization, and fabrication changes,” IEEE Photon. Technol. Lett.17, 1211–1213 (2005).
[CrossRef]

Chung, Y.

T. Lee, D. Lee, and Y. Chung, “Design and simulation of fabrication-error-tolerant triplexer based on cascaded Mach–Zehnder inteferometers,” IEEE Photon. Technol. Lett.20, 33–35 (2008).
[CrossRef]

Cunningham, J.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett.98, 243901 (2007).
[CrossRef] [PubMed]

Dayan, P.

M. Robertson, S. Ritchie, and P. Dayan, “Semiconductor waveguides: analysis of optical propagation in single rib structures and directional Couplers,” IET Optoelectron.132, 336–342 (1985).
[CrossRef]

Delâge, A.

Densmore, A.

Doerr, C.

C. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar light-wave circuit 2×2 coupler to desensitize it to wavelength, polarization, and fabrication changes,” IEEE Photon. Technol. Lett.17, 1211–1213 (2005).
[CrossRef]

Eyal, A.

G. Paloczi, A. Eyal, and A. Yariv, “Wavelength-insensitive nonadiabatic mode evolution couplers,” IEEE Photon. Technol. Lett.16, 515 –517 (2004).
[CrossRef]

Fainman, Y.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett.98, 243901 (2007).
[CrossRef] [PubMed]

Gamet, J.

J. Gamet, G. Pandraud, S. Opsitech, and F. Grenoble, “C-and L-band planar delay interferometer for DPSK decoders,” IEEE Photon. Technol. Lett.17, 1217–1219 (2005).
[CrossRef]

Gomez, L.

C. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar light-wave circuit 2×2 coupler to desensitize it to wavelength, polarization, and fabrication changes,” IEEE Photon. Technol. Lett.17, 1211–1213 (2005).
[CrossRef]

Grenoble, F.

J. Gamet, G. Pandraud, S. Opsitech, and F. Grenoble, “C-and L-band planar delay interferometer for DPSK decoders,” IEEE Photon. Technol. Lett.17, 1217–1219 (2005).
[CrossRef]

Griffin, A.

C. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar light-wave circuit 2×2 coupler to desensitize it to wavelength, polarization, and fabrication changes,” IEEE Photon. Technol. Lett.17, 1211–1213 (2005).
[CrossRef]

Halir, R.

Hall, T. J.

He, S.

Henry, C.

Y. Shani, C. Henry, R. Kistler, R. Kazarinov, and K. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27, 556–566 (1991).
[CrossRef]

Hsu, S.-H.

Ikeda, K.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett.98, 243901 (2007).
[CrossRef] [PubMed]

Janz, S.

Kazarinov, R.

Y. Shani, C. Henry, R. Kistler, R. Kazarinov, and K. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27, 556–566 (1991).
[CrossRef]

Kistler, R.

Y. Shani, C. Henry, R. Kistler, R. Kazarinov, and K. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27, 556–566 (1991).
[CrossRef]

Krauss, T. F.

Krishnamoorthy, A.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett.98, 243901 (2007).
[CrossRef] [PubMed]

Lamontagne, B.

Lapointe, J.

Lee, D.

T. Lee, D. Lee, and Y. Chung, “Design and simulation of fabrication-error-tolerant triplexer based on cascaded Mach–Zehnder inteferometers,” IEEE Photon. Technol. Lett.20, 33–35 (2008).
[CrossRef]

Lee, T.

T. Lee, D. Lee, and Y. Chung, “Design and simulation of fabrication-error-tolerant triplexer based on cascaded Mach–Zehnder inteferometers,” IEEE Photon. Technol. Lett.20, 33–35 (2008).
[CrossRef]

Levy, U.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett.98, 243901 (2007).
[CrossRef] [PubMed]

Li, Y.

Little, B.

B. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach–Zehnder structures,” IEEE Photon. Technol. Lett.9, 1607–1609 (1997).
[CrossRef]

Liu, Q. Y.

Lopinski, G.

Ma, R.

Maese-Novo, A.

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernandez, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, “High-performance multimode interference coupler in silicon waveguides with sub-wavelength structures,” IEEE Photon. Technol. Lett.23, 1406–1408 (2011).
[CrossRef]

Molina-Fernandez, I.

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernandez, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, “High-performance multimode interference coupler in silicon waveguides with sub-wavelength structures,” IEEE Photon. Technol. Lett.23, 1406–1408 (2011).
[CrossRef]

Molina-Fernández, I.

L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagn. Res.123, 447–465 (2012).
[CrossRef]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered sub-wavelength structure,” Opt. Lett.35, 3243–3245 (2010).
[CrossRef] [PubMed]

Murphy, T.

B. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach–Zehnder structures,” IEEE Photon. Technol. Lett.9, 1607–1609 (1997).
[CrossRef]

O’Faolain, L.

Opsitech, S.

J. Gamet, G. Pandraud, S. Opsitech, and F. Grenoble, “C-and L-band planar delay interferometer for DPSK decoders,” IEEE Photon. Technol. Lett.17, 1217–1219 (2005).
[CrossRef]

Orlowsky, K.

Y. Shani, C. Henry, R. Kistler, R. Kazarinov, and K. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27, 556–566 (1991).
[CrossRef]

Ortega-Monux, A.

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernandez, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, “High-performance multimode interference coupler in silicon waveguides with sub-wavelength structures,” IEEE Photon. Technol. Lett.23, 1406–1408 (2011).
[CrossRef]

Ortega-Moñux, A.

L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagn. Res.123, 447–465 (2012).
[CrossRef]

R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, “High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler,” Opt. Lett.36, 178–180 (2011).
[CrossRef] [PubMed]

Paloczi, G.

G. Paloczi, A. Eyal, and A. Yariv, “Wavelength-insensitive nonadiabatic mode evolution couplers,” IEEE Photon. Technol. Lett.16, 515 –517 (2004).
[CrossRef]

Pandraud, G.

J. Gamet, G. Pandraud, S. Opsitech, and F. Grenoble, “C-and L-band planar delay interferometer for DPSK decoders,” IEEE Photon. Technol. Lett.17, 1217–1219 (2005).
[CrossRef]

Pennings, E.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13, 615–627 (1995).
[CrossRef]

Ritchie, S.

M. Robertson, S. Ritchie, and P. Dayan, “Semiconductor waveguides: analysis of optical propagation in single rib structures and directional Couplers,” IET Optoelectron.132, 336–342 (1985).
[CrossRef]

Robertson, M.

M. Robertson, S. Ritchie, and P. Dayan, “Semiconductor waveguides: analysis of optical propagation in single rib structures and directional Couplers,” IET Optoelectron.132, 336–342 (1985).
[CrossRef]

Roelkens, G.

Schmid, J.

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernandez, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, “High-performance multimode interference coupler in silicon waveguides with sub-wavelength structures,” IEEE Photon. Technol. Lett.23, 1406–1408 (2011).
[CrossRef]

Schmid, J. H.

Shani, Y.

Y. Shani, C. Henry, R. Kistler, R. Kazarinov, and K. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27, 556–566 (1991).
[CrossRef]

Soldano, L.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13, 615–627 (1995).
[CrossRef]

Vachon, M.

Wang, Q.

Wanguemert-Perez, J.

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernandez, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, “High-performance multimode interference coupler in silicon waveguides with sub-wavelength structures,” IEEE Photon. Technol. Lett.23, 1406–1408 (2011).
[CrossRef]

Wangüemert-Pérez, J. G.

L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagn. Res.123, 447–465 (2012).
[CrossRef]

R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, “High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler,” Opt. Lett.36, 178–180 (2011).
[CrossRef] [PubMed]

White, T. P.

Wong-Foy, A.

C. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar light-wave circuit 2×2 coupler to desensitize it to wavelength, polarization, and fabrication changes,” IEEE Photon. Technol. Lett.17, 1211–1213 (2005).
[CrossRef]

Xu, D.

Xu, D.-X.

Yariv, A.

G. Paloczi, A. Eyal, and A. Yariv, “Wavelength-insensitive nonadiabatic mode evolution couplers,” IEEE Photon. Technol. Lett.16, 515 –517 (2004).
[CrossRef]

Zavargo-Peche, L.

L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagn. Res.123, 447–465 (2012).
[CrossRef]

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernandez, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, “High-performance multimode interference coupler in silicon waveguides with sub-wavelength structures,” IEEE Photon. Technol. Lett.23, 1406–1408 (2011).
[CrossRef]

Zhang, D.

Appl. Opt.

IEEE J. Quantum Electron.

Y. Shani, C. Henry, R. Kistler, R. Kazarinov, and K. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron.27, 556–566 (1991).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Paloczi, A. Eyal, and A. Yariv, “Wavelength-insensitive nonadiabatic mode evolution couplers,” IEEE Photon. Technol. Lett.16, 515 –517 (2004).
[CrossRef]

C. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar light-wave circuit 2×2 coupler to desensitize it to wavelength, polarization, and fabrication changes,” IEEE Photon. Technol. Lett.17, 1211–1213 (2005).
[CrossRef]

B. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach–Zehnder structures,” IEEE Photon. Technol. Lett.9, 1607–1609 (1997).
[CrossRef]

T. Lee, D. Lee, and Y. Chung, “Design and simulation of fabrication-error-tolerant triplexer based on cascaded Mach–Zehnder inteferometers,” IEEE Photon. Technol. Lett.20, 33–35 (2008).
[CrossRef]

A. Ortega-Monux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernandez, R. Halir, J. Wanguemert-Perez, P. Cheben, and J. Schmid, “High-performance multimode interference coupler in silicon waveguides with sub-wavelength structures,” IEEE Photon. Technol. Lett.23, 1406–1408 (2011).
[CrossRef]

J. Gamet, G. Pandraud, S. Opsitech, and F. Grenoble, “C-and L-band planar delay interferometer for DPSK decoders,” IEEE Photon. Technol. Lett.17, 1217–1219 (2005).
[CrossRef]

IET Optoelectron.

M. Robertson, S. Ritchie, and P. Dayan, “Semiconductor waveguides: analysis of optical propagation in single rib structures and directional Couplers,” IET Optoelectron.132, 336–342 (1985).
[CrossRef]

J. Lightwave Technol.

Q. Wang and S. He, “Optimal design of planar wavelength circuits based on Mach–Zehnder interferometers and their cascaded forms,” J. Lightwave Technol.23, 1284–1290 (2005).
[CrossRef]

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13, 615–627 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett.98, 243901 (2007).
[CrossRef] [PubMed]

Prog. Electromagn. Res.

L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagn. Res.123, 447–465 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic illustration of a conventional directional coupler. (b) Cross-sectional waveguide dimensions and effective index model. Refractive indices are given at λ = 1.55 μm. (c) Effective indices and (d) half beat length of the even and odd supermodes, ϕ1 and ϕ2, of a conventional directional coupler as a function of wavelength.

Fig. 2
Fig. 2

(a) Schematic of the proposed broadband directional coupler. (b) Effective index of the fundamental Floquet mode propagating through the sub-wavelength grating shown in the inset.

Fig. 3
Fig. 3

(a) Power coupled from the input field, ϕin, into the third order supermode, ϕ3, as function of duty-cycle of the SWG. (b) Field profile of the third order supermode, ϕ3, and the input field, ϕin. Fields are shown in the lower half of the coupler.

Fig. 4
Fig. 4

(a) Half beat length (Lπ/2) and (b) effective indices of the even and odd supermodes, ϕ1 and ϕ2, of the SWG based directional coupler as a function of wavelength for Λ = 271nm. Grating duty-cycle is 22.5 %.

Fig. 5
Fig. 5

(a) 2D simulation results of the output power of the proposed SWG based coupler compared to a conventional directional coupler. (b) Phase shift between the outputs of the SWG based coupler. (c) Back-reflections from the SWG based coupler.

Fig. 6
Fig. 6

3D simulation results of the output power of the proposed SWG based coupler.

Metrics