Abstract

By using quantum Zeno dynamics, we propose a controllable approach to deterministically generate tripartite GHZ states for three atoms trapped in spatially separated cavities. The nearest-neighbored cavities are connected via optical fibers and the atoms trapped in two ends are tunably driven. The generation of the GHZ state can be implemented by only one step manipulation, and the EPR entanglement between the atoms in two ends can be further realized deterministically by Von Neumann measurement on the middle atom. Note that the duration of the quantum Zeno dynamics is controllable by switching on/off the applied external classical drivings and the desirable tripartite GHZ state will no longer evolve once it is generated. The robustness of the proposal is numerically demonstrated by considering various decoherence factors, including atomic spontaneous emissions, cavity decays and fiber photon leakages, etc. Our proposal can be directly generalized to generate multipartite entanglement by still driving the atoms in two ends.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Lo, S. Popescu, and T. Spiller, Introduction to Quantum Computation and Information (World Scientific, Singapore, 1997).
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
  3. C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature (London)404, 247–255 (2000).
    [CrossRef]
  4. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67, 661–663 (1991).
    [CrossRef] [PubMed]
  5. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990).
    [CrossRef]
  6. M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999).
    [CrossRef]
  7. X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A68, 024302 (2003).
    [CrossRef]
  8. K. Pahlke, X. B. Zou, and W. Mathis, “The generation of the Greenberger-Horne-Zeilinger state of four distant atoms conditioned on cavity decay,” J. Opt. B Quantum Semiclass. Opt.6, S142–S146 (2004).
    [CrossRef]
  9. D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A77, 062312 (2008).
    [CrossRef]
  10. L. F. Wei, Y. X. Liu, and F. Nori, “Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits,” Phys. Rev. Lett.96, 246803 (2006).
    [CrossRef] [PubMed]
  11. R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A61, 022106 (2000).
    [CrossRef]
  12. D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
    [CrossRef]
  13. M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
    [CrossRef]
  14. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565–582 (2001).
    [CrossRef]
  15. J. I. Cirac and P. Zoller, “Preparation of macroscopic superpositions in many-atom systems,” Phys. Rev. A50, R2799–R2802 (1994).
    [CrossRef] [PubMed]
  16. J. Hong and H.-W. Lee, “Quasideterministic generation of entangled atoms in a cavity,” Phys. Rev. Lett.89, 237901 (2002).
    [CrossRef] [PubMed]
  17. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett.78, 3221–3224 (1997).
    [CrossRef]
  18. S. van Enk, J. Cirac, and P. Zoller, “Ideal quantum communication over noisy channels: A Quantum optical implementation,” Phys. Rev. Lett.78, 4293–4296 (1997).
    [CrossRef]
  19. S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett.83, 5158–5161 (1999).
    [CrossRef]
  20. S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, “Long Distance, Unconditional Teleportation of Atomic States via Complete Bell State Measurements,” Phys. Rev. Lett.87, 167903 (2001).
    [CrossRef] [PubMed]
  21. A. S. Parkins and H. J. Kimble, “Position-momentum Einstein-Podolsky-Rosen state of distantly separated trapped atoms,” Phys. Rev. A61, 052104 (2000).
    [CrossRef]
  22. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett.79, 5242–5245 (1997).
    [CrossRef]
  23. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett.96, 010503 (2006).
    [CrossRef] [PubMed]
  24. P. Peng and F.-L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A75, 062320 (2007).
    [CrossRef]
  25. Z.-Q. Yin and F.-L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A75, 012324 (2007).
    [CrossRef]
  26. S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A77, 014303 (2008).
    [CrossRef]
  27. Z.-B. Yang, S.-Y. Ye, A. Serafini, and S.-B. Zheng, “Distributed coherent manipulation of qutrits by virtual excitation processes,” J. Phys. B: At. Mol. Opt. Phys.43, 085506 (2010).
    [CrossRef]
  28. X.-Y. Lv, L.-G. Si, X.-Y. Hao, and X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009).
    [CrossRef]
  29. S. B. Zheng, “Generation of Greenberger-Horne-Zeilinger states for multiple atoms trapped in separated cavities,” Eur. Phys. J. D54, 719–722 (2009).
    [CrossRef]
  30. A. Zheng and J. Liu, “Generation of an N-qubit Greenberger-Horne-Zeilinger state with distant atoms in bimodal cavities,” J. Phys. B: At. Mol. Opt. Phys.44, 165501 (2011).
    [CrossRef]
  31. X.-Y. Lv, P.-J. Song, J.-B. Liu, and X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express17, 14298–14311 (2009).
    [CrossRef]
  32. P.-B. Li and F.-L. Li, “Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system,” Opt. Express19, 1207–1216 (2011)
    [CrossRef] [PubMed]
  33. P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A275, 12–19 (2000).
    [CrossRef]
  34. P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett.89, 080401 (2002).
    [CrossRef] [PubMed]
  35. P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys: Conf. Ser.196, 012017 (2009).
    [CrossRef]
  36. P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A65, 012108 (2002).
    [CrossRef]
  37. A. Luis, “Quantum-state preparation and control via the Zeno effect,” Phys. Rev. A63, 052112 (2001).
    [CrossRef]
  38. X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two-qubit quantum Zeno dynamics,” Phys. Rev. A77, 062339 (2008).
    [CrossRef]
  39. A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett.85, 1762–1765 (2000).
    [CrossRef] [PubMed]
  40. J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the Zeno effect,” Phys. Rev. A70, 062302 (2004).
    [CrossRef]
  41. X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys.42, 165507 (2009).
    [CrossRef]
  42. J. D. Franson, T. B. Pittman, and B. C. Jacobs, “Zeno logic gates using microcavities,” J. Opt. Soc. Am. B24, 209–213 (2007).
    [CrossRef]
  43. L. F. Wei, Yu-xi Liu, and F. Nori, “Testing Bell’s inequality in a constantly coupled Josephson circuit by effective single-qubit operations,” Phys. Rev. B72, 104516 (2005).
    [CrossRef]
  44. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A71, 013817 (2005).
    [CrossRef]
  45. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A67, 033806 (2003).
    [CrossRef]
  46. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
    [CrossRef] [PubMed]
  47. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength GigaHertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron.40, 900–908 (2004).
    [CrossRef]

2011

A. Zheng and J. Liu, “Generation of an N-qubit Greenberger-Horne-Zeilinger state with distant atoms in bimodal cavities,” J. Phys. B: At. Mol. Opt. Phys.44, 165501 (2011).
[CrossRef]

P.-B. Li and F.-L. Li, “Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system,” Opt. Express19, 1207–1216 (2011)
[CrossRef] [PubMed]

2010

Z.-B. Yang, S.-Y. Ye, A. Serafini, and S.-B. Zheng, “Distributed coherent manipulation of qutrits by virtual excitation processes,” J. Phys. B: At. Mol. Opt. Phys.43, 085506 (2010).
[CrossRef]

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

2009

X.-Y. Lv, L.-G. Si, X.-Y. Hao, and X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009).
[CrossRef]

S. B. Zheng, “Generation of Greenberger-Horne-Zeilinger states for multiple atoms trapped in separated cavities,” Eur. Phys. J. D54, 719–722 (2009).
[CrossRef]

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys: Conf. Ser.196, 012017 (2009).
[CrossRef]

X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys.42, 165507 (2009).
[CrossRef]

X.-Y. Lv, P.-J. Song, J.-B. Liu, and X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express17, 14298–14311 (2009).
[CrossRef]

2008

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two-qubit quantum Zeno dynamics,” Phys. Rev. A77, 062339 (2008).
[CrossRef]

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A77, 014303 (2008).
[CrossRef]

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A77, 062312 (2008).
[CrossRef]

2007

P. Peng and F.-L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A75, 062320 (2007).
[CrossRef]

Z.-Q. Yin and F.-L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A75, 012324 (2007).
[CrossRef]

J. D. Franson, T. B. Pittman, and B. C. Jacobs, “Zeno logic gates using microcavities,” J. Opt. Soc. Am. B24, 209–213 (2007).
[CrossRef]

2006

L. F. Wei, Y. X. Liu, and F. Nori, “Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits,” Phys. Rev. Lett.96, 246803 (2006).
[CrossRef] [PubMed]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett.96, 010503 (2006).
[CrossRef] [PubMed]

2005

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

L. F. Wei, Yu-xi Liu, and F. Nori, “Testing Bell’s inequality in a constantly coupled Josephson circuit by effective single-qubit operations,” Phys. Rev. B72, 104516 (2005).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A71, 013817 (2005).
[CrossRef]

2004

K. Pahlke, X. B. Zou, and W. Mathis, “The generation of the Greenberger-Horne-Zeilinger state of four distant atoms conditioned on cavity decay,” J. Opt. B Quantum Semiclass. Opt.6, S142–S146 (2004).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the Zeno effect,” Phys. Rev. A70, 062302 (2004).
[CrossRef]

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength GigaHertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron.40, 900–908 (2004).
[CrossRef]

2003

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A68, 024302 (2003).
[CrossRef]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A67, 033806 (2003).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

2002

P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A65, 012108 (2002).
[CrossRef]

P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett.89, 080401 (2002).
[CrossRef] [PubMed]

J. Hong and H.-W. Lee, “Quasideterministic generation of entangled atoms in a cavity,” Phys. Rev. Lett.89, 237901 (2002).
[CrossRef] [PubMed]

2001

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565–582 (2001).
[CrossRef]

S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, “Long Distance, Unconditional Teleportation of Atomic States via Complete Bell State Measurements,” Phys. Rev. Lett.87, 167903 (2001).
[CrossRef] [PubMed]

A. Luis, “Quantum-state preparation and control via the Zeno effect,” Phys. Rev. A63, 052112 (2001).
[CrossRef]

2000

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett.85, 1762–1765 (2000).
[CrossRef] [PubMed]

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A275, 12–19 (2000).
[CrossRef]

A. S. Parkins and H. J. Kimble, “Position-momentum Einstein-Podolsky-Rosen state of distantly separated trapped atoms,” Phys. Rev. A61, 052104 (2000).
[CrossRef]

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature (London)404, 247–255 (2000).
[CrossRef]

R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A61, 022106 (2000).
[CrossRef]

1999

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999).
[CrossRef]

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett.83, 5158–5161 (1999).
[CrossRef]

1997

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett.79, 5242–5245 (1997).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett.78, 3221–3224 (1997).
[CrossRef]

S. van Enk, J. Cirac, and P. Zoller, “Ideal quantum communication over noisy channels: A Quantum optical implementation,” Phys. Rev. Lett.78, 4293–4296 (1997).
[CrossRef]

1994

J. I. Cirac and P. Zoller, “Preparation of macroscopic superpositions in many-atom systems,” Phys. Rev. A50, R2799–R2802 (1994).
[CrossRef] [PubMed]

1991

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67, 661–663 (1991).
[CrossRef] [PubMed]

1990

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990).
[CrossRef]

Beige, A.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett.85, 1762–1765 (2000).
[CrossRef] [PubMed]

Bennett, C. H.

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature (London)404, 247–255 (2000).
[CrossRef]

Berthiaume, A.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999).
[CrossRef]

Bialczak, R. C.

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Blakestad, R. B.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

Bose, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett.96, 010503 (2006).
[CrossRef] [PubMed]

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett.83, 5158–5161 (1999).
[CrossRef]

Braun, D.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett.85, 1762–1765 (2000).
[CrossRef] [PubMed]

Britton, J.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

Brune, M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565–582 (2001).
[CrossRef]

Buck, J. R.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A67, 033806 (2003).
[CrossRef]

Buller, G. S.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength GigaHertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron.40, 900–908 (2004).
[CrossRef]

Buzek, V.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999).
[CrossRef]

Chen, L.

X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys.42, 165507 (2009).
[CrossRef]

Chiaverini, J.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

Cirac, J.

S. van Enk, J. Cirac, and P. Zoller, “Ideal quantum communication over noisy channels: A Quantum optical implementation,” Phys. Rev. Lett.78, 4293–4296 (1997).
[CrossRef]

Cirac, J. I.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett.78, 3221–3224 (1997).
[CrossRef]

J. I. Cirac and P. Zoller, “Preparation of macroscopic superpositions in many-atom systems,” Phys. Rev. A50, R2799–R2802 (1994).
[CrossRef] [PubMed]

Cleland, A. N.

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Cory, D. G.

R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A61, 022106 (2000).
[CrossRef]

DiVincenzo, D. P.

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature (London)404, 247–255 (2000).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67, 661–663 (1991).
[CrossRef] [PubMed]

Facchi, P.

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys: Conf. Ser.196, 012017 (2009).
[CrossRef]

P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A65, 012108 (2002).
[CrossRef]

P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett.89, 080401 (2002).
[CrossRef] [PubMed]

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A275, 12–19 (2000).
[CrossRef]

Fernandez, V.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength GigaHertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron.40, 900–908 (2004).
[CrossRef]

Franson, J. D.

J. D. Franson, T. B. Pittman, and B. C. Jacobs, “Zeno logic gates using microcavities,” J. Opt. Soc. Am. B24, 209–213 (2007).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the Zeno effect,” Phys. Rev. A70, 062302 (2004).
[CrossRef]

Fritzsche, S.

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A77, 062312 (2008).
[CrossRef]

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A71, 013817 (2005).
[CrossRef]

Gonta, D.

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A77, 062312 (2008).
[CrossRef]

Gordon, K. J.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength GigaHertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron.40, 900–908 (2004).
[CrossRef]

Gorini, V.

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A275, 12–19 (2000).
[CrossRef]

Greenberger, D. M.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990).
[CrossRef]

Hao, X.-Y.

X.-Y. Lv, L.-G. Si, X.-Y. Hao, and X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009).
[CrossRef]

Haroche, S.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565–582 (2001).
[CrossRef]

Hemmer, P. R.

S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, “Long Distance, Unconditional Teleportation of Atomic States via Complete Bell State Measurements,” Phys. Rev. Lett.87, 167903 (2001).
[CrossRef] [PubMed]

Hillery, M.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999).
[CrossRef]

Hong, J.

J. Hong and H.-W. Lee, “Quasideterministic generation of entangled atoms in a cavity,” Phys. Rev. Lett.89, 237901 (2002).
[CrossRef] [PubMed]

Horne, M. A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990).
[CrossRef]

Hume, D. B.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

Itano, W. M.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

Jacobs, B. C.

J. D. Franson, T. B. Pittman, and B. C. Jacobs, “Zeno logic gates using microcavities,” J. Opt. Soc. Am. B24, 209–213 (2007).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the Zeno effect,” Phys. Rev. A70, 062302 (2004).
[CrossRef]

Jost, J. D.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

Kimble, H. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A71, 013817 (2005).
[CrossRef]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A67, 033806 (2003).
[CrossRef]

A. S. Parkins and H. J. Kimble, “Position-momentum Einstein-Podolsky-Rosen state of distantly separated trapped atoms,” Phys. Rev. A61, 052104 (2000).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett.78, 3221–3224 (1997).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A71, 013817 (2005).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

Knight, P. L.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett.85, 1762–1765 (2000).
[CrossRef] [PubMed]

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett.83, 5158–5161 (1999).
[CrossRef]

Knill, E.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

Langer, C.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

Lee, H.-W.

J. Hong and H.-W. Lee, “Quasideterministic generation of entangled atoms in a cavity,” Phys. Rev. Lett.89, 237901 (2002).
[CrossRef] [PubMed]

Leibfried, D.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

Lenander, M.

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Li, F.-L.

P.-B. Li and F.-L. Li, “Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system,” Opt. Express19, 1207–1216 (2011)
[CrossRef] [PubMed]

Z.-Q. Yin and F.-L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A75, 012324 (2007).
[CrossRef]

P. Peng and F.-L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A75, 062320 (2007).
[CrossRef]

Li, P.-B.

Liu, J.

A. Zheng and J. Liu, “Generation of an N-qubit Greenberger-Horne-Zeilinger state with distant atoms in bimodal cavities,” J. Phys. B: At. Mol. Opt. Phys.44, 165501 (2011).
[CrossRef]

Liu, J.-B.

Liu, Y. X.

L. F. Wei, Y. X. Liu, and F. Nori, “Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits,” Phys. Rev. Lett.96, 246803 (2006).
[CrossRef] [PubMed]

Liu, Yu-xi

L. F. Wei, Yu-xi Liu, and F. Nori, “Testing Bell’s inequality in a constantly coupled Josephson circuit by effective single-qubit operations,” Phys. Rev. B72, 104516 (2005).
[CrossRef]

Lloyd, S.

S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, “Long Distance, Unconditional Teleportation of Atomic States via Complete Bell State Measurements,” Phys. Rev. Lett.87, 167903 (2001).
[CrossRef] [PubMed]

R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A61, 022106 (2000).
[CrossRef]

Lo, H. K.

H. K. Lo, S. Popescu, and T. Spiller, Introduction to Quantum Computation and Information (World Scientific, Singapore, 1997).

Lucero, E.

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Luis, A.

A. Luis, “Quantum-state preparation and control via the Zeno effect,” Phys. Rev. A63, 052112 (2001).
[CrossRef]

Lv, X.-Y.

X.-Y. Lv, P.-J. Song, J.-B. Liu, and X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express17, 14298–14311 (2009).
[CrossRef]

X.-Y. Lv, L.-G. Si, X.-Y. Hao, and X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009).
[CrossRef]

Mabuchi, H.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett.78, 3221–3224 (1997).
[CrossRef]

Mancini, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett.96, 010503 (2006).
[CrossRef] [PubMed]

Mariantoni, M.

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Marmo, G.

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys: Conf. Ser.196, 012017 (2009).
[CrossRef]

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A275, 12–19 (2000).
[CrossRef]

Martinis, J. M.

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Mathis, W.

K. Pahlke, X. B. Zou, and W. Mathis, “The generation of the Greenberger-Horne-Zeilinger state of four distant atoms conditioned on cavity decay,” J. Opt. B Quantum Semiclass. Opt.6, S142–S146 (2004).
[CrossRef]

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A68, 024302 (2003).
[CrossRef]

Neeley, M.

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Nelson, R. J.

R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A61, 022106 (2000).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

Nori, F.

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two-qubit quantum Zeno dynamics,” Phys. Rev. A77, 062339 (2008).
[CrossRef]

L. F. Wei, Y. X. Liu, and F. Nori, “Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits,” Phys. Rev. Lett.96, 246803 (2006).
[CrossRef] [PubMed]

L. F. Wei, Yu-xi Liu, and F. Nori, “Testing Bell’s inequality in a constantly coupled Josephson circuit by effective single-qubit operations,” Phys. Rev. B72, 104516 (2005).
[CrossRef]

O’Connell, A. D.

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Ozeri, R.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

Pahlke, K.

K. Pahlke, X. B. Zou, and W. Mathis, “The generation of the Greenberger-Horne-Zeilinger state of four distant atoms conditioned on cavity decay,” J. Opt. B Quantum Semiclass. Opt.6, S142–S146 (2004).
[CrossRef]

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A68, 024302 (2003).
[CrossRef]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

Parkins, A. S.

A. S. Parkins and H. J. Kimble, “Position-momentum Einstein-Podolsky-Rosen state of distantly separated trapped atoms,” Phys. Rev. A61, 052104 (2000).
[CrossRef]

Pascazio, S.

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys: Conf. Ser.196, 012017 (2009).
[CrossRef]

P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A65, 012108 (2002).
[CrossRef]

P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett.89, 080401 (2002).
[CrossRef] [PubMed]

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A275, 12–19 (2000).
[CrossRef]

Pellizzari, T.

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett.79, 5242–5245 (1997).
[CrossRef]

Peng, P.

P. Peng and F.-L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A75, 062320 (2007).
[CrossRef]

Pittman, T. B.

J. D. Franson, T. B. Pittman, and B. C. Jacobs, “Zeno logic gates using microcavities,” J. Opt. Soc. Am. B24, 209–213 (2007).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the Zeno effect,” Phys. Rev. A70, 062302 (2004).
[CrossRef]

Plenio, M. B.

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett.83, 5158–5161 (1999).
[CrossRef]

Popescu, S.

H. K. Lo, S. Popescu, and T. Spiller, Introduction to Quantum Computation and Information (World Scientific, Singapore, 1997).

Radtke, T.

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A77, 062312 (2008).
[CrossRef]

Raimond, J. M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565–582 (2001).
[CrossRef]

Reichle, R.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

Sank, D.

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Scardicchio, A.

P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A65, 012108 (2002).
[CrossRef]

Schulman, L. S.

P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A65, 012108 (2002).
[CrossRef]

Seidelin, S.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

Serafini, A.

Z.-B. Yang, S.-Y. Ye, A. Serafini, and S.-B. Zheng, “Distributed coherent manipulation of qutrits by virtual excitation processes,” J. Phys. B: At. Mol. Opt. Phys.43, 085506 (2010).
[CrossRef]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett.96, 010503 (2006).
[CrossRef] [PubMed]

Shahriar, M. S.

S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, “Long Distance, Unconditional Teleportation of Atomic States via Complete Bell State Measurements,” Phys. Rev. Lett.87, 167903 (2001).
[CrossRef] [PubMed]

Shao, X.-Q.

X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys.42, 165507 (2009).
[CrossRef]

Shapiro, J. H.

S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, “Long Distance, Unconditional Teleportation of Atomic States via Complete Bell State Measurements,” Phys. Rev. Lett.87, 167903 (2001).
[CrossRef] [PubMed]

Shimony, A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990).
[CrossRef]

Si, L.-G.

X.-Y. Lv, L.-G. Si, X.-Y. Hao, and X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009).
[CrossRef]

Song, P.-J.

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A71, 013817 (2005).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

Spiller, T.

H. K. Lo, S. Popescu, and T. Spiller, Introduction to Quantum Computation and Information (World Scientific, Singapore, 1997).

Sudarshan, E. C. G.

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A275, 12–19 (2000).
[CrossRef]

Townsend, P. D.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength GigaHertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron.40, 900–908 (2004).
[CrossRef]

Tregenna, B.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett.85, 1762–1765 (2000).
[CrossRef] [PubMed]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A71, 013817 (2005).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

van Enk, S.

S. van Enk, J. Cirac, and P. Zoller, “Ideal quantum communication over noisy channels: A Quantum optical implementation,” Phys. Rev. Lett.78, 4293–4296 (1997).
[CrossRef]

Vedral, V.

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett.83, 5158–5161 (1999).
[CrossRef]

Wang, H.

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Wang, X. B.

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two-qubit quantum Zeno dynamics,” Phys. Rev. A77, 062339 (2008).
[CrossRef]

Wei, L. F.

L. F. Wei, Y. X. Liu, and F. Nori, “Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits,” Phys. Rev. Lett.96, 246803 (2006).
[CrossRef] [PubMed]

L. F. Wei, Yu-xi Liu, and F. Nori, “Testing Bell’s inequality in a constantly coupled Josephson circuit by effective single-qubit operations,” Phys. Rev. B72, 104516 (2005).
[CrossRef]

Weides, M.

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Wenner, J.

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Wilcut, E.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A71, 013817 (2005).
[CrossRef]

Wineland, D. J.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

Yamamoto, T.

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Yang, X.

X.-Y. Lv, L.-G. Si, X.-Y. Hao, and X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009).
[CrossRef]

X.-Y. Lv, P.-J. Song, J.-B. Liu, and X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express17, 14298–14311 (2009).
[CrossRef]

Yang, Z.-B.

Z.-B. Yang, S.-Y. Ye, A. Serafini, and S.-B. Zheng, “Distributed coherent manipulation of qutrits by virtual excitation processes,” J. Phys. B: At. Mol. Opt. Phys.43, 085506 (2010).
[CrossRef]

Ye, S.-Y.

Z.-B. Yang, S.-Y. Ye, A. Serafini, and S.-B. Zheng, “Distributed coherent manipulation of qutrits by virtual excitation processes,” J. Phys. B: At. Mol. Opt. Phys.43, 085506 (2010).
[CrossRef]

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A77, 014303 (2008).
[CrossRef]

Yeon, K.-H.

X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys.42, 165507 (2009).
[CrossRef]

Yin, Y.

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Yin, Z.-Q.

Z.-Q. Yin and F.-L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A75, 012324 (2007).
[CrossRef]

You, J. Q.

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two-qubit quantum Zeno dynamics,” Phys. Rev. A77, 062339 (2008).
[CrossRef]

Zeilinger, A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990).
[CrossRef]

Zhang, S.

X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys.42, 165507 (2009).
[CrossRef]

Zheng, A.

A. Zheng and J. Liu, “Generation of an N-qubit Greenberger-Horne-Zeilinger state with distant atoms in bimodal cavities,” J. Phys. B: At. Mol. Opt. Phys.44, 165501 (2011).
[CrossRef]

Zheng, S. B.

S. B. Zheng, “Generation of Greenberger-Horne-Zeilinger states for multiple atoms trapped in separated cavities,” Eur. Phys. J. D54, 719–722 (2009).
[CrossRef]

Zheng, S.-B.

Z.-B. Yang, S.-Y. Ye, A. Serafini, and S.-B. Zheng, “Distributed coherent manipulation of qutrits by virtual excitation processes,” J. Phys. B: At. Mol. Opt. Phys.43, 085506 (2010).
[CrossRef]

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A77, 014303 (2008).
[CrossRef]

Zhong, Z.-R.

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A77, 014303 (2008).
[CrossRef]

Zoller, P.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett.78, 3221–3224 (1997).
[CrossRef]

S. van Enk, J. Cirac, and P. Zoller, “Ideal quantum communication over noisy channels: A Quantum optical implementation,” Phys. Rev. Lett.78, 4293–4296 (1997).
[CrossRef]

J. I. Cirac and P. Zoller, “Preparation of macroscopic superpositions in many-atom systems,” Phys. Rev. A50, R2799–R2802 (1994).
[CrossRef] [PubMed]

Zou, X. B.

K. Pahlke, X. B. Zou, and W. Mathis, “The generation of the Greenberger-Horne-Zeilinger state of four distant atoms conditioned on cavity decay,” J. Opt. B Quantum Semiclass. Opt.6, S142–S146 (2004).
[CrossRef]

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A68, 024302 (2003).
[CrossRef]

Am. J. Phys.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990).
[CrossRef]

Eur. Phys. J. D

S. B. Zheng, “Generation of Greenberger-Horne-Zeilinger states for multiple atoms trapped in separated cavities,” Eur. Phys. J. D54, 719–722 (2009).
[CrossRef]

IEEE J. Quantum Electron.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength GigaHertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron.40, 900–908 (2004).
[CrossRef]

J. Opt. B Quantum Semiclass. Opt.

K. Pahlke, X. B. Zou, and W. Mathis, “The generation of the Greenberger-Horne-Zeilinger state of four distant atoms conditioned on cavity decay,” J. Opt. B Quantum Semiclass. Opt.6, S142–S146 (2004).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B: At. Mol. Opt. Phys.

A. Zheng and J. Liu, “Generation of an N-qubit Greenberger-Horne-Zeilinger state with distant atoms in bimodal cavities,” J. Phys. B: At. Mol. Opt. Phys.44, 165501 (2011).
[CrossRef]

Z.-B. Yang, S.-Y. Ye, A. Serafini, and S.-B. Zheng, “Distributed coherent manipulation of qutrits by virtual excitation processes,” J. Phys. B: At. Mol. Opt. Phys.43, 085506 (2010).
[CrossRef]

X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast CNOT gate via quantum Zeno dynamics,” J. Phys. B: At. Mol. Opt. Phys.42, 165507 (2009).
[CrossRef]

J. Phys: Conf. Ser.

P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys: Conf. Ser.196, 012017 (2009).
[CrossRef]

Nature (London)

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature (London)404, 247–255 (2000).
[CrossRef]

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature (London)438, 639–642 (2005).
[CrossRef]

M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature (London)467, 570–573 (2010).
[CrossRef]

Opt. Express

Phys. Lett. A

P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A275, 12–19 (2000).
[CrossRef]

Phys. Rev. A

X.-Y. Lv, L.-G. Si, X.-Y. Hao, and X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009).
[CrossRef]

P. Peng and F.-L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A75, 062320 (2007).
[CrossRef]

Z.-Q. Yin and F.-L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A75, 012324 (2007).
[CrossRef]

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A77, 014303 (2008).
[CrossRef]

P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A65, 012108 (2002).
[CrossRef]

A. Luis, “Quantum-state preparation and control via the Zeno effect,” Phys. Rev. A63, 052112 (2001).
[CrossRef]

X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two-qubit quantum Zeno dynamics,” Phys. Rev. A77, 062339 (2008).
[CrossRef]

R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A61, 022106 (2000).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the Zeno effect,” Phys. Rev. A70, 062302 (2004).
[CrossRef]

A. S. Parkins and H. J. Kimble, “Position-momentum Einstein-Podolsky-Rosen state of distantly separated trapped atoms,” Phys. Rev. A61, 052104 (2000).
[CrossRef]

J. I. Cirac and P. Zoller, “Preparation of macroscopic superpositions in many-atom systems,” Phys. Rev. A50, R2799–R2802 (1994).
[CrossRef] [PubMed]

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A77, 062312 (2008).
[CrossRef]

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999).
[CrossRef]

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A68, 024302 (2003).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A71, 013817 (2005).
[CrossRef]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A67, 033806 (2003).
[CrossRef]

Phys. Rev. B

L. F. Wei, Yu-xi Liu, and F. Nori, “Testing Bell’s inequality in a constantly coupled Josephson circuit by effective single-qubit operations,” Phys. Rev. B72, 104516 (2005).
[CrossRef]

Phys. Rev. Lett.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett.85, 1762–1765 (2000).
[CrossRef] [PubMed]

P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett.89, 080401 (2002).
[CrossRef] [PubMed]

L. F. Wei, Y. X. Liu, and F. Nori, “Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits,” Phys. Rev. Lett.96, 246803 (2006).
[CrossRef] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67, 661–663 (1991).
[CrossRef] [PubMed]

J. Hong and H.-W. Lee, “Quasideterministic generation of entangled atoms in a cavity,” Phys. Rev. Lett.89, 237901 (2002).
[CrossRef] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett.78, 3221–3224 (1997).
[CrossRef]

S. van Enk, J. Cirac, and P. Zoller, “Ideal quantum communication over noisy channels: A Quantum optical implementation,” Phys. Rev. Lett.78, 4293–4296 (1997).
[CrossRef]

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett.83, 5158–5161 (1999).
[CrossRef]

S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, “Long Distance, Unconditional Teleportation of Atomic States via Complete Bell State Measurements,” Phys. Rev. Lett.87, 167903 (2001).
[CrossRef] [PubMed]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett.79, 5242–5245 (1997).
[CrossRef]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett.96, 010503 (2006).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565–582 (2001).
[CrossRef]

Other

H. K. Lo, S. Popescu, and T. Spiller, Introduction to Quantum Computation and Information (World Scientific, Singapore, 1997).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Zeno manipulations of atoms in spatially-separated cavities connected via optical fibers. Here, Ω13) is the classical field coupled to the first (third) atom, and b1 and b2 are the bosonic operators in fibers and couple to the corresponding cavity modes.

Fig. 2
Fig. 2

The influence of the ratios: Ω3/g and v/g, on the fidelity of the prepared GHZ state.

Fig. 3
Fig. 3

The fidelity of the three-atom GHZ state versus various parameter errors: (a) δg1 and δg3; (b) δv1 and δv2.

Fig. 4
Fig. 4

The population probabilities of cavity photonic state Pc, fiber photonic state Pf and the atomic excited state Pe versus the dimensionless parameter gt by exactly solving the evolution equation of the system without any approximation.

Fig. 5
Fig. 5

The influences of atomic spontaneous emission γ/g, cavity field decay κc/g and fiber photonic leakage κf/g on the fidelity of the triatomic GHZ state for the typical ratios: Ω3/g = 0.04 and v/g = 1.

Fig. 6
Fig. 6

N atom trapped in distant cavities.

Fig. 7
Fig. 7

The occupation probabilities of the state |ϕ1〉 versus the dimensionless parameter gt under the total Hamiltonian (solid-line) and effective Hamiltonian (dotted-line).

Fig. 8
Fig. 8

Experimental atomic configuration used to generate tripartite GHZ state. Here, Ω1 and Ω3 are the classical fields, and π+ and π are the quantized cavity modes with different polarizations, respectively.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

H total = H l + H a c f ,
H l = Ω 1 | e 1 1 | + Ω 3 | e 3 1 | + h . c . ,
H a c f = g 1 , r a 1 , r | e 1 0 | + g 2 , r a 2 , r | e 2 0 | + g 2 , l a 2 , l | e 2 1 | + g 3 , l a 3 , l | e 3 0 | + v 1 b 1 ( a 1 , r + a 2 , r ) + v 2 b 2 ( a 2 , l + a 3 , l ) + h . c . ,
| ϕ 1 = | 1 , 0 , 0 a | 0 c 1 | 0 f 1 | 0 , 0 c 2 | 0 f 2 | 0 c 3 , | ϕ 2 = | e , 0 , 0 a | 0 c 1 | 0 f 1 | 0 , 0 c 2 | 0 f 2 | 0 c 3 , | ϕ 3 = | 0 , 0 , 0 a | 1 c 1 | 0 f 1 | 0 , 0 c 2 | 0 f 2 | 0 c 3 , | ϕ 4 = | 0 , 0 , 0 a | 0 c 1 | 1 f 1 | 0 , 0 c 2 | 0 f 2 | 0 c 3 , | ϕ 5 = | 0 , 0 , 0 a | 0 c 1 | 0 f 1 | 1 , 0 c 2 | 0 f 2 | 0 c 3 , | ϕ 6 = | 0 , e , 0 a | 0 c 1 | 0 f 1 | 0 , 0 c 2 | 0 f 2 | 0 c 3 , | ϕ 7 = | 0 , 1 , 0 a | 0 c 1 | 0 f 1 | 0 , 1 c 2 | 0 f 2 | 0 c 3 , | ϕ 8 = | 0 , 1 , 0 a | 0 c 1 | 0 f 1 | 0 , 0 c 2 | 1 f 2 | 0 c 3 , | ϕ 9 = | 0 , 1 , 0 a | 0 c 1 | 0 f 1 | 0 , 0 c 2 | 0 f 2 | 1 c 3 , | ϕ 10 = | 0 , 1 , e a | 0 c 1 | 0 f 1 | 0 , 0 c 2 | 0 f 2 | 0 c 3 , | ϕ 11 = | 0 , 1 , 1 a | 0 c 1 | 0 f 1 | 0 , 0 c 2 | 0 f 2 | 0 c 3 ,
Γ P 1 = { | ϕ 1 , | ψ 1 , | ϕ 11 } , Γ P 2 = { | ψ 2 } , Γ P 3 = { | ψ 3 } , Γ P 4 = { | ψ 4 } , Γ P 5 = { | ψ 5 } , Γ P 6 = { | ψ 6 } , Γ P 7 = { | ψ 7 } , Γ P 8 = { | ψ 8 } , Γ P 9 = { | ψ 9 } ,
P i α = | α α | , ( | α Γ P i )
| ψ 1 = N 1 ( | ϕ 2 g v | ϕ 4 + | ϕ 6 g v | ϕ 8 + | ϕ 10 ) | ψ 2 = N 2 ( | ϕ 2 + ε 1 | ϕ 3 η 1 | ϕ 4 χ 1 | ϕ 5 + χ 1 | ϕ 7 + η 1 | ϕ 8 ε 1 | ϕ 9 + | ϕ 10 ) | ψ 3 = N 3 ( | ϕ 2 ε 1 | ϕ 3 η 1 | ϕ 4 + χ 1 | ϕ 5 χ 1 | ϕ 7 + η 1 | ϕ 8 + ε 1 | ϕ 9 + | ϕ 10 ) | ψ 4 = N 4 ( | ϕ 2 μ 1 | ϕ 3 ζ 1 | ϕ 4 + δ 1 | ϕ 5 θ 1 | ϕ 6 + δ 1 | ϕ 7 ζ 1 | ϕ 8 μ 1 | ϕ 9 + | ϕ 10 ) | ψ 5 = N 5 ( | ϕ 2 + μ 1 | ϕ 3 ζ 1 | ϕ 4 δ 1 | ϕ 5 θ 1 | ϕ 6 δ 1 | ϕ 7 ζ 1 | ϕ 8 + μ 1 | ϕ 9 + | ϕ 10 ) | ψ 6 = N 6 ( | ϕ 2 + ε 2 | ϕ 3 η 2 | ϕ 4 + χ 2 | ϕ 5 χ 2 | ϕ 7 + η 2 | ϕ 8 ε 2 | ϕ 9 + | ϕ 10 ) | ψ 7 = N 7 ( | ϕ 2 ε 2 | ϕ 3 η 2 | ϕ 4 χ 2 | ϕ 5 + χ 2 | ϕ 7 + η 2 | ϕ 8 + ε 2 | ϕ 9 + | ϕ 10 ) | ψ 8 = N 8 ( | ϕ 2 μ 2 | ϕ 3 + ζ 2 | ϕ 4 δ 2 | ϕ 5 + θ 2 | ϕ 6 δ 2 | ϕ 7 + ζ 2 | ϕ 8 μ 2 | ϕ 9 + | ϕ 10 ) | ψ 9 = N 9 ( | ϕ 2 + μ 2 | ϕ 3 + ζ 2 | ϕ 4 + δ 2 | ϕ 5 + θ 2 | ϕ 6 + δ 2 | ϕ 7 + ζ 2 | ϕ 8 + μ 2 | ϕ 9 + | ϕ 10 )
ε 1 = g 2 + 2 v 2 A 2 g , η 1 = g 2 + 2 v 2 A 2 g v , χ 1 = g 2 + 2 v 2 A ( g 2 + A ) 2 2 g v 2 , μ 1 = 3 g 2 + 2 v 2 A 2 g , ζ 1 = g 2 2 v 2 + A 2 g v , δ 1 = 3 g 2 + 2 v 2 A ( g 2 + A ) 2 2 g v 2 , θ 1 = g 2 + A v 2 , ε 2 = g 2 + 2 v 2 + A 2 g , η 2 = g 2 + 2 v 2 + A 2 g v , χ 2 = g 2 + 2 v 2 + A ( g 2 + A ) 2 2 g v 2 , μ 2 = 3 g 2 + 2 v 2 + A 2 g , ζ 2 = g 2 + 2 v 2 + A 2 g v , δ 2 = 3 g 2 + 2 v 2 + A ( g 2 + A ) 2 2 g v 2 , θ 2 = g 2 + A v 2 ,
H total i , α , β λ i P i α + P i α H l P i β = i = 2 9 λ i | ψ i ψ i | + N 1 ( Ω 1 | ϕ 1 ψ 1 | + Ω 3 | ϕ 11 ψ 1 | + h . c . ) .
H eff = N 1 ( Ω 1 | ϕ 1 ψ 1 | + Ω 3 | ϕ 11 ψ 1 | + h . c . ) ,
| Ψ ( t ) = cos ( N 1 t Ω 1 2 + Ω 3 2 ) Ω 1 2 + Ω 3 2 Ω 1 2 + Ω 3 2 | ϕ 1 i Ω 1 Ω 1 2 + Ω 3 2 sin ( N 1 t Ω 1 2 + Ω 3 2 ) Ω 1 2 + Ω 3 2 | ψ 1 + [ cos ( N 1 t Ω 1 2 + Ω 3 2 ) 1 ] Ω 1 Ω 3 Ω 1 2 + Ω 3 2 | ϕ 11 .
| Ψ ( τ ) = 1 2 ( | ϕ 1 + | ϕ 11 ) = | Ψ a | 0 c 1 | 0 f 1 | 0 , 0 c 2 | 0 f 2 | 0 c 3 ,
H dec + H total i γ 2 i = 1 3 | e i e | i κ c 2 ( i = 1 , 2 a i , r a i , r + i = 2 , 3 a i , l a i , l ) i κ f 2 j = 1 , 2 b i b i ,
H total = H l + H a c f ,
H l = Ω 1 | e 1 1 | Ω N | e N 1 | + h . c . ,
H a c f = g 1 a 1 , r | e 1 0 | + j = 1 k ( g 2 j , r a 2 j , r | e 2 j 0 | + g 2 j , l a 2 j , l | e 2 j 1 | ) + j = 1 k 1 ( g 2 j + 1 , r a 2 j + 1 , r | e 2 j + 1 1 | + g 2 j + 1 , l a 2 j + 1 , l | e 2 j + 1 0 | ) + g N a N , l | e 1 0 | + j = 1 k [ v 2 j 1 b 2 j 1 + ( a 2 j 1 , r + a 2 j , r ) + v 2 j b 2 j + ( a 2 j , l + a 2 j + 1 , l ) ] + h . c . .
| ϕ 1 = | 1 , 0 , 0 , , 0 a | 0 all , | ϕ 2 = | e , 0 , 0 , , 0 a | 0 all , | ϕ 3 = | 0 , 0 , 0 , , 0 a | 1 c 1 , | ϕ 4 = | 0 , 0 , 0 , , 0 a | 1 f 1 , | ϕ 5 = | 0 , 0 , 0 , , 0 a | 1 , 0 c 2 , | ϕ 6 = | 0 , e , 0 , , 0 a | 0 all , | ϕ 7 = | 0 , 1 , 0 , , 0 a | 0 , 1 c 2 , | ϕ 8 = | 0 , 1 , 0 , , 0 a | 1 f 2 , | ϕ 9 = | 0 , 1 , 0 , , 0 a | 0 , 1 c 3 , | ϕ 10 = | 0 , 1 , e , , 0 a | 0 all , | ϕ 8 k + 3 = | 0 , 1 , 1 , , 1 a | 0 all ,
H eff = N 1 ( Ω 1 | ϕ 1 ψ 1 | + Ω N | ϕ 8 k + 3 ψ 1 | + h . c . ) ,
| ψ 1 = N 1 ( i = 1 N | ϕ 4 i 2 i = 1 N 1 g v | ϕ 4 i ) .
| Ψ ( τ ) = 1 2 ( | ϕ 1 + | ϕ 8 k + 3 ) = 1 2 ( | 1 , 0 , 0 , , 0 a + | 0 , 1 , 1 , , 1 a ) | 0 all

Metrics