Abstract

The mode conversion in tapered submicron silicon ridge optical waveguides is investigated theoretically and experimentally. Two types of optical waveguide tapers are considered in this paper. One is a regular lateral taper for which the waveguide width varies while the etching depth is kept the same. The other is a so-called “bi-level” taper, which includes two layers of lateral tapers. Mode conversion between the TM fundamental mode and higher-order TE modes is observed in tapered submicron silicon-on-insulator ridge optical waveguides due to the mode hybridization resulting from the asymmetry of the cross section. Such a mode conversion could have a very high efficiency (close to 100%) when the taper is designed appropriately. This enables some applications e.g. polarizer, polarization splitting/rotation, etc. It is also shown that this kind of mode conversion could be depressed by carefully choosing the taper parameters (like the taper width, the etching depth, etc), which is important for the applications when low-loss propagation for the TM fundamental mode is needed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shani, C. Henry, R. Kistler, K. Orlowsky, and D. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
    [CrossRef]
  2. R. Smith, C. Sullivan, G. Vawter, G. Hadley, J. Wendt, M. Snipes, and J. Klem, “Reduced coupling loss using a tapered-rib adiabatic-following fiber coupler,” IEEE Photon. Technol. Lett. 5, 1053–1056 (1993).
  3. R. Zengerle, H. Bruckner, H. Olzhausen, and A. Kohl, “Low-loss fiber-chip coupling by buried laterally tapered InP/InGaAsP waveguide structure,” Electron. Lett. 28(7), 631–632 (1992).
    [CrossRef]
  4. K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5(3), 345–347 (1993).
    [CrossRef]
  5. T. Schwander, S. Fischer, A. Kramer, M. Laich, K. Luksic, G. Spatschek, and M. Warth, “Simple and low-loss fiber-to-chip coupling by integrated field-matching waveguide in InP,” Electron. Lett. 29(4), 326–328 (1993).
    [CrossRef]
  6. L. Yang, D. Dai, B. Yang, Z. Sheng, and S. He, “Characteristic analysis of tapered lens fibers for light focusing and butt-coupling to a silicon rib waveguide,” Appl. Opt. 48(4), 672–678 (2009).
    [CrossRef] [PubMed]
  7. D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
    [CrossRef]
  8. A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Double-stage taper for coupling between SOI waveguides and single-mode fiber,” J. Lightwave Technol. 26(24), 3860–3865 (2008).
    [CrossRef]
  9. Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
    [CrossRef]
  10. R. S. Fan and R. B. Hooker, “Tapered polymer single-mode waveguides for mode transformation,” J. Lightwave Technol. 17(3), 466–474 (1999).
    [CrossRef]
  11. K. W¨orhoff, P. V. Lambeck, and A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices,” J. Lightwave Technol. 17(8), 1401–1407 (1999).
    [CrossRef]
  12. P. Sewell, T. M. Benson, and P. C. Kendall, “Rib waveguide spot-size transformers: modal properties,” J. Lightwave Technol. 17(5), 848–856 (1999).
    [CrossRef]
  13. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
    [CrossRef]
  14. D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006).
    [CrossRef]
  15. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
    [CrossRef]
  16. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
    [CrossRef] [PubMed]
  17. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
    [CrossRef]
  18. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
    [CrossRef] [PubMed]
  19. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
    [CrossRef] [PubMed]
  20. C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express 15(8), 5069–5076 (2007).
    [CrossRef] [PubMed]
  21. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [CrossRef] [PubMed]
  22. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  23. C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, “Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices,” J. Lightwave Technol. 21(10), 2332–2339 (2003).
    [CrossRef]
  24. Y. Tang, H.-W. Chen, S. Jain, J. D. Peters, U. Westergren, and J. E. Bowers, “50 Gb/s hybrid silicon traveling-wave electroabsorption modulator,” Opt. Express 19(7), 5811–5816 (2011).
    [CrossRef] [PubMed]
  25. K. Mertens, B. Scholl, and H. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol. 13(10), 2087–2092 (1995).
    [CrossRef]
  26. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
    [CrossRef] [PubMed]
  27. D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010).
    [CrossRef] [PubMed]
  28. R. S. Tummidi, T. G. Nguyen, A. Mitchell, and T. L. Koch, “An ultra-compact waveguide polarizer based on “anti-magic widths”,” 2011 8th IEEE International Conference on Group IV Photonics (GFP), London, UK, pp. 104–106, 14–16 Sept. 2011.
  29. D. Vermeulen, S. Selvaraja, W. A. D. De Cort, N. A. Yebo, E. Hallynck, K. De Vos, P. P. P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Van Thourhout, and R. Baets, “Efficient tapering to the fundamental Quasi-TM mode in asymmetrical waveguides,” ECIO 2010 (2010).
  30. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [CrossRef] [PubMed]
  31. M. Kohtoku, T. Hirono, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “Control of higher order leaky modes in deep-ridge waveguides and application to low-crosstalk arrayed waveguide gratings,” J. Lightwave Technol. 22(2), 499–508 (2004).
    [CrossRef]
  32. D. Dai, J. He, and S. He, “Elimination of multimode effects in a silicon-on-insulator etched diffraction grating demultiplexer with bi-level taper structure,” IEEE J. Sel. Top. Quantum Electron. 11(2), 439–443 (2005).
    [CrossRef]
  33. J. H. Schmid, B. Lamontagne, P. Cheben, A. Delâge, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode Converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett. 19(11), 855–857 (2007).
    [CrossRef]
  34. FIMMWAVE/FIMMPROP, Photon Design Ltd, http://www.photond.com .
  35. D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder Interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 24(8), 673–675 (2012).
    [CrossRef]

2012 (1)

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder Interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 24(8), 673–675 (2012).
[CrossRef]

2011 (3)

2010 (2)

D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010).
[CrossRef] [PubMed]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

2009 (1)

2008 (2)

2007 (3)

2006 (3)

D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006).
[CrossRef]

2005 (4)

D. Dai, J. He, and S. He, “Elimination of multimode effects in a silicon-on-insulator etched diffraction grating demultiplexer with bi-level taper structure,” IEEE J. Sel. Top. Quantum Electron. 11(2), 439–443 (2005).
[CrossRef]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

1999 (3)

1995 (1)

K. Mertens, B. Scholl, and H. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol. 13(10), 2087–2092 (1995).
[CrossRef]

1993 (3)

R. Smith, C. Sullivan, G. Vawter, G. Hadley, J. Wendt, M. Snipes, and J. Klem, “Reduced coupling loss using a tapered-rib adiabatic-following fiber coupler,” IEEE Photon. Technol. Lett. 5, 1053–1056 (1993).

K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5(3), 345–347 (1993).
[CrossRef]

T. Schwander, S. Fischer, A. Kramer, M. Laich, K. Luksic, G. Spatschek, and M. Warth, “Simple and low-loss fiber-to-chip coupling by integrated field-matching waveguide in InP,” Electron. Lett. 29(4), 326–328 (1993).
[CrossRef]

1992 (1)

R. Zengerle, H. Bruckner, H. Olzhausen, and A. Kohl, “Low-loss fiber-chip coupling by buried laterally tapered InP/InGaAsP waveguide structure,” Electron. Lett. 28(7), 631–632 (1992).
[CrossRef]

1991 (1)

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
[CrossRef]

1989 (1)

Y. Shani, C. Henry, R. Kistler, K. Orlowsky, and D. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Ackerman, D.

Y. Shani, C. Henry, R. Kistler, K. Orlowsky, and D. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Adibi, A.

Almeida, V. R.

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Baets, R. G.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Barkai, A.

Barrios, C. A.

Beckx, S.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Benson, T. M.

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Bowers, J. E.

Boyraz, O.

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Bruckner, H.

R. Zengerle, H. Bruckner, H. Olzhausen, and A. Kohl, “Low-loss fiber-chip coupling by buried laterally tapered InP/InGaAsP waveguide structure,” Electron. Lett. 28(7), 631–632 (1992).
[CrossRef]

Chang, H.-H.

Cheben, P.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delâge, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode Converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett. 19(11), 855–857 (2007).
[CrossRef]

Chen, H.-W.

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Cohen, R.

Dai, D.

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder Interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 24(8), 673–675 (2012).
[CrossRef]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[CrossRef] [PubMed]

D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010).
[CrossRef] [PubMed]

L. Yang, D. Dai, B. Yang, Z. Sheng, and S. He, “Characteristic analysis of tapered lens fibers for light focusing and butt-coupling to a silicon rib waveguide,” Appl. Opt. 48(4), 672–678 (2009).
[CrossRef] [PubMed]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006).
[CrossRef]

D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
[CrossRef]

D. Dai, J. He, and S. He, “Elimination of multimode effects in a silicon-on-insulator etched diffraction grating demultiplexer with bi-level taper structure,” IEEE J. Sel. Top. Quantum Electron. 11(2), 439–443 (2005).
[CrossRef]

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Delâge, A.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delâge, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode Converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett. 19(11), 855–857 (2007).
[CrossRef]

Densmore, A.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delâge, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode Converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett. 19(11), 855–857 (2007).
[CrossRef]

Ding, Y.

Driessen, A.

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Elek, N.

Fan, R. S.

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Fischer, S.

T. Schwander, S. Fischer, A. Kramer, M. Laich, K. Luksic, G. Spatschek, and M. Warth, “Simple and low-loss fiber-to-chip coupling by integrated field-matching waveguide in InP,” Electron. Lett. 29(4), 326–328 (1993).
[CrossRef]

Fukuda, H.

Gabay, R.

Hadley, G.

R. Smith, C. Sullivan, G. Vawter, G. Hadley, J. Wendt, M. Snipes, and J. Klem, “Reduced coupling loss using a tapered-rib adiabatic-following fiber coupler,” IEEE Photon. Technol. Lett. 5, 1053–1056 (1993).

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

He, J.

D. Dai, J. He, and S. He, “Elimination of multimode effects in a silicon-on-insulator etched diffraction grating demultiplexer with bi-level taper structure,” IEEE J. Sel. Top. Quantum Electron. 11(2), 439–443 (2005).
[CrossRef]

He, S.

L. Yang, D. Dai, B. Yang, Z. Sheng, and S. He, “Characteristic analysis of tapered lens fibers for light focusing and butt-coupling to a silicon rib waveguide,” Appl. Opt. 48(4), 672–678 (2009).
[CrossRef] [PubMed]

D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
[CrossRef]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006).
[CrossRef]

D. Dai, J. He, and S. He, “Elimination of multimode effects in a silicon-on-insulator etched diffraction grating demultiplexer with bi-level taper structure,” IEEE J. Sel. Top. Quantum Electron. 11(2), 439–443 (2005).
[CrossRef]

Henry, C.

Y. Shani, C. Henry, R. Kistler, K. Orlowsky, and D. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
[CrossRef]

Hirono, T.

Hooker, R. B.

Hvam, J. M.

Itabashi, S.

Izhaky, N.

Jaenen, P.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Jain, S.

Jalali, B.

Janz, S.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delâge, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode Converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett. 19(11), 855–857 (2007).
[CrossRef]

Jones, R.

Julian, N.

Kadota, Y.

Kasaya, K.

K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5(3), 345–347 (1993).
[CrossRef]

Kazarinov, R. F.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
[CrossRef]

Kendall, P. C.

Kim, D.

Kistler, R.

Y. Shani, C. Henry, R. Kistler, K. Orlowsky, and D. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
[CrossRef]

Klem, J.

R. Smith, C. Sullivan, G. Vawter, G. Hadley, J. Wendt, M. Snipes, and J. Klem, “Reduced coupling loss using a tapered-rib adiabatic-following fiber coupler,” IEEE Photon. Technol. Lett. 5, 1053–1056 (1993).

Kohl, A.

R. Zengerle, H. Bruckner, H. Olzhausen, and A. Kohl, “Low-loss fiber-chip coupling by buried laterally tapered InP/InGaAsP waveguide structure,” Electron. Lett. 28(7), 631–632 (1992).
[CrossRef]

Kohtoku, M.

Kondo, Y.

K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5(3), 345–347 (1993).
[CrossRef]

Kramer, A.

T. Schwander, S. Fischer, A. Kramer, M. Laich, K. Luksic, G. Spatschek, and M. Warth, “Simple and low-loss fiber-to-chip coupling by integrated field-matching waveguide in InP,” Electron. Lett. 29(4), 326–328 (1993).
[CrossRef]

Laich, M.

T. Schwander, S. Fischer, A. Kramer, M. Laich, K. Luksic, G. Spatschek, and M. Warth, “Simple and low-loss fiber-to-chip coupling by integrated field-matching waveguide in InP,” Electron. Lett. 29(4), 326–328 (1993).
[CrossRef]

Lambeck, P. V.

Lamontagne, B.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delâge, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode Converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett. 19(11), 855–857 (2007).
[CrossRef]

Lapointe, J.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delâge, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode Converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett. 19(11), 855–857 (2007).
[CrossRef]

Li, C.

Lipson, M.

Liu, A.

Liu, L.

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
[CrossRef] [PubMed]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006).
[CrossRef]

Luksic, K.

T. Schwander, S. Fischer, A. Kramer, M. Laich, K. Luksic, G. Spatschek, and M. Warth, “Simple and low-loss fiber-to-chip coupling by integrated field-matching waveguide in InP,” Electron. Lett. 29(4), 326–328 (1993).
[CrossRef]

Malik, B. H.

Mertens, K.

K. Mertens, B. Scholl, and H. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol. 13(10), 2087–2092 (1995).
[CrossRef]

Mitomi, O.

K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5(3), 345–347 (1993).
[CrossRef]

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

Naganuma, M.

K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5(3), 345–347 (1993).
[CrossRef]

Noguchi, Y.

K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5(3), 345–347 (1993).
[CrossRef]

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

Oku, S.

Olzhausen, H.

R. Zengerle, H. Bruckner, H. Olzhausen, and A. Kohl, “Low-loss fiber-chip coupling by buried laterally tapered InP/InGaAsP waveguide structure,” Electron. Lett. 28(7), 631–632 (1992).
[CrossRef]

Orlowsky, K.

Y. Shani, C. Henry, R. Kistler, K. Orlowsky, and D. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Orlowsky, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
[CrossRef]

Panepucci, R.

Paniccia, M.

Peters, J.

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder Interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 24(8), 673–675 (2012).
[CrossRef]

Peters, J. D.

Poon, A. W.

Post, E.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delâge, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode Converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett. 19(11), 855–857 (2007).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

Schmid, J. H.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delâge, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode Converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett. 19(11), 855–857 (2007).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schmitt, H.

K. Mertens, B. Scholl, and H. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol. 13(10), 2087–2092 (1995).
[CrossRef]

Scholl, B.

K. Mertens, B. Scholl, and H. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol. 13(10), 2087–2092 (1995).
[CrossRef]

Schwander, T.

T. Schwander, S. Fischer, A. Kramer, M. Laich, K. Luksic, G. Spatschek, and M. Warth, “Simple and low-loss fiber-to-chip coupling by integrated field-matching waveguide in InP,” Electron. Lett. 29(4), 326–328 (1993).
[CrossRef]

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Sewell, P.

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
[CrossRef]

Y. Shani, C. Henry, R. Kistler, K. Orlowsky, and D. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Sheng, Z.

Shibata, Y.

Shinojima, H.

Smith, R.

R. Smith, C. Sullivan, G. Vawter, G. Hadley, J. Wendt, M. Snipes, and J. Klem, “Reduced coupling loss using a tapered-rib adiabatic-following fiber coupler,” IEEE Photon. Technol. Lett. 5, 1053–1056 (1993).

Snipes, M.

R. Smith, C. Sullivan, G. Vawter, G. Hadley, J. Wendt, M. Snipes, and J. Klem, “Reduced coupling loss using a tapered-rib adiabatic-following fiber coupler,” IEEE Photon. Technol. Lett. 5, 1053–1056 (1993).

Soltani, M.

Spatschek, G.

T. Schwander, S. Fischer, A. Kramer, M. Laich, K. Luksic, G. Spatschek, and M. Warth, “Simple and low-loss fiber-to-chip coupling by integrated field-matching waveguide in InP,” Electron. Lett. 29(4), 326–328 (1993).
[CrossRef]

Sullivan, C.

R. Smith, C. Sullivan, G. Vawter, G. Hadley, J. Wendt, M. Snipes, and J. Klem, “Reduced coupling loss using a tapered-rib adiabatic-following fiber coupler,” IEEE Photon. Technol. Lett. 5, 1053–1056 (1993).

Taillaert, D.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Tang, Y.

Thourhout, D. V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Tsang, H. K.

Tsuchizawa, T.

Van Thourhout, D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Vawter, G.

R. Smith, C. Sullivan, G. Vawter, G. Hadley, J. Wendt, M. Snipes, and J. Klem, “Reduced coupling loss using a tapered-rib adiabatic-following fiber coupler,” IEEE Photon. Technol. Lett. 5, 1053–1056 (1993).

W¨orhoff, K.

Waldron, P.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delâge, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode Converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett. 19(11), 855–857 (2007).
[CrossRef]

Wang, Z.

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder Interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 24(8), 673–675 (2012).
[CrossRef]

D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010).
[CrossRef] [PubMed]

Warth, M.

T. Schwander, S. Fischer, A. Kramer, M. Laich, K. Luksic, G. Spatschek, and M. Warth, “Simple and low-loss fiber-to-chip coupling by integrated field-matching waveguide in InP,” Electron. Lett. 29(4), 326–328 (1993).
[CrossRef]

Watanabe, T.

Wendt, J.

R. Smith, C. Sullivan, G. Vawter, G. Hadley, J. Wendt, M. Snipes, and J. Klem, “Reduced coupling loss using a tapered-rib adiabatic-following fiber coupler,” IEEE Photon. Technol. Lett. 5, 1053–1056 (1993).

Westergren, U.

Wiaux, V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Wosinski, L.

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006).
[CrossRef]

Wouters, J.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Xu, D.-X.

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delâge, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode Converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett. 19(11), 855–857 (2007).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yamada, K.

Yang, B.

Yang, L.

Yegnanarayanan, S.

Yoshikuni, Y.

Yvind, K.

Zengerle, R.

R. Zengerle, H. Bruckner, H. Olzhausen, and A. Kohl, “Low-loss fiber-chip coupling by buried laterally tapered InP/InGaAsP waveguide structure,” Electron. Lett. 28(7), 631–632 (1992).
[CrossRef]

Zhou, L.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Shani, C. Henry, R. Kistler, K. Orlowsky, and D. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Electron. Lett. (4)

R. Zengerle, H. Bruckner, H. Olzhausen, and A. Kohl, “Low-loss fiber-chip coupling by buried laterally tapered InP/InGaAsP waveguide structure,” Electron. Lett. 28(7), 631–632 (1992).
[CrossRef]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006).
[CrossRef]

T. Schwander, S. Fischer, A. Kramer, M. Laich, K. Luksic, G. Spatschek, and M. Warth, “Simple and low-loss fiber-to-chip coupling by integrated field-matching waveguide in InP,” Electron. Lett. 29(4), 326–328 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, “Integrated optic adiabatic devices on silicon,” IEEE J. Quantum Electron. 27(3), 556–566 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

D. Dai, J. He, and S. He, “Elimination of multimode effects in a silicon-on-insulator etched diffraction grating demultiplexer with bi-level taper structure,” IEEE J. Sel. Top. Quantum Electron. 11(2), 439–443 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. H. Schmid, B. Lamontagne, P. Cheben, A. Delâge, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode Converters for coupling to high aspect ratio silicon-on-insulator channel waveguides,” IEEE Photon. Technol. Lett. 19(11), 855–857 (2007).
[CrossRef]

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder Interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 24(8), 673–675 (2012).
[CrossRef]

K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photon. Technol. Lett. 5(3), 345–347 (1993).
[CrossRef]

R. Smith, C. Sullivan, G. Vawter, G. Hadley, J. Wendt, M. Snipes, and J. Klem, “Reduced coupling loss using a tapered-rib adiabatic-following fiber coupler,” IEEE Photon. Technol. Lett. 5, 1053–1056 (1993).

J. Lightwave Technol. (8)

R. S. Fan and R. B. Hooker, “Tapered polymer single-mode waveguides for mode transformation,” J. Lightwave Technol. 17(3), 466–474 (1999).
[CrossRef]

K. W¨orhoff, P. V. Lambeck, and A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices,” J. Lightwave Technol. 17(8), 1401–1407 (1999).
[CrossRef]

P. Sewell, T. M. Benson, and P. C. Kendall, “Rib waveguide spot-size transformers: modal properties,” J. Lightwave Technol. 17(5), 848–856 (1999).
[CrossRef]

M. Kohtoku, T. Hirono, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “Control of higher order leaky modes in deep-ridge waveguides and application to low-crosstalk arrayed waveguide gratings,” J. Lightwave Technol. 22(2), 499–508 (2004).
[CrossRef]

C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, “Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices,” J. Lightwave Technol. 21(10), 2332–2339 (2003).
[CrossRef]

D. Dai, S. He, and H. K. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
[CrossRef]

A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Double-stage taper for coupling between SOI waveguides and single-mode fiber,” J. Lightwave Technol. 26(24), 3860–3865 (2008).
[CrossRef]

K. Mertens, B. Scholl, and H. Schmitt, “New highly efficient polarization converters based on hybrid supermodes,” J. Lightwave Technol. 13(10), 2087–2092 (1995).
[CrossRef]

Nature (2)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (8)

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
[CrossRef] [PubMed]

D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010).
[CrossRef] [PubMed]

Y. Tang, H.-W. Chen, S. Jain, J. D. Peters, U. Westergren, and J. E. Bowers, “50 Gb/s hybrid silicon traveling-wave electroabsorption modulator,” Opt. Express 19(7), 5811–5816 (2011).
[CrossRef] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
[CrossRef] [PubMed]

C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express 15(8), 5069–5076 (2007).
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
[CrossRef] [PubMed]

Other (3)

FIMMWAVE/FIMMPROP, Photon Design Ltd, http://www.photond.com .

R. S. Tummidi, T. G. Nguyen, A. Mitchell, and T. L. Koch, “An ultra-compact waveguide polarizer based on “anti-magic widths”,” 2011 8th IEEE International Conference on Group IV Photonics (GFP), London, UK, pp. 104–106, 14–16 Sept. 2011.

D. Vermeulen, S. Selvaraja, W. A. D. De Cort, N. A. Yebo, E. Hallynck, K. De Vos, P. P. P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Van Thourhout, and R. Baets, “Efficient tapering to the fundamental Quasi-TM mode in asymmetrical waveguides,” ECIO 2010 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

(a) The schematic configuration of a regular lateral taper; (b) the cross section for a SOI rib waveguide.

Fig. 2
Fig. 2

The calculated effective indices for the eigen modes of SOI rib waveguide with different etching depths. (a) het = 0.4H; (b) het = 0.5H; (c) het = 0.6H. Here the total height of the Si layer is H = 400nm.

Fig. 3
Fig. 3

The field profiles (Ex and Ey) for modes #1 and #2 of a SOI ridge waveguide with wco = 2.45μm, (a) mode #1; (b) mode #2. The total height of the Si core layer is H = 400nm, and the etching depth het = 0.5H. Here modes #1 and #2 are the two hybridization modes in the region around w = 2.45μm.

Fig. 4
Fig. 4

The field profiles (Ex and Ey) for modes #1 and #2 of a SOI ridge waveguide with wco = 1.0μm, (a) mode #1; (b) mode #2. The total height of the Si core layer is H = 400nm, and het = 0.5H. Here modes #1 and #2 are the two hybridization modes in the region around w = 1.0μm.

Fig. 5
Fig. 5

The mode conversion efficiency η as the taper length Ltp varies when the TM0 mode is launched. The parameters are het = 0.5H, w1 = 2.7μm, and w2 = 2μm.

Fig. 6
Fig. 6

The light propagation in the designed long taper when the launched field is TE polarization (a), and TM polarization (b), respectively. The parameters are: H = 400nm, het = 0.5H, w1 = 2.7μm, w2 = 2μm, Ltp = 1500μm.

Fig. 7
Fig. 7

The light propagation in the designed short (non-adiabatic) taper when the launched field is TE polarization (a), and TM polarization (b), respectively. The parameters are: H = 400nm, het = 0.5H, w1 = 2.7μm, w2 = 2μm, and Ltp = 10μm.

Fig. 8
Fig. 8

The mode conversion efficiency η as the taper length Ltp varies when the TM0 mode is launched. The parameters are het = 0.5H, w1 = 1.5μm, and w2 = 0.8μm.

Fig. 9
Fig. 9

The light propagation in the designed taper when the input is the TE0 modal field (a), and the TM0 modal field (b), respectively. The parameters are: H = 400nm, het = 0.5H, w1 = 1.5μm, w2 = 0.8μm, Ltp = 215μm.

Fig. 10
Fig. 10

Light propagation in the taper when the input is the TE0 modal field (a), and the TM0 modal field (b), respectively. The parameters are: H = 400nm, het = 0.5H, w1 = 1.5μm, w2 = 0.8μm, Ltp = 22.4μm.

Fig. 11
Fig. 11

(a) The schematic configuration of a bi-level lateral taper; (b) the cross section for an SOI double-rib waveguide in the taper section.

Fig. 12
Fig. 12

The calculated effective indices for the eigen modes of SOI double-ridge waveguides with different rib widths wco: (a) wco = 0.85μm, and het = 0.5H; (b) wco = 1.0μm, and het = 0.5H; (c) wco = 1.2μm, and het = 0.5H; (d) wco = 1.0μm, and het = 0.6H. Here H = 400nm.

Fig. 13
Fig. 13

The field profiles (Ex and Ey) for modes #1 and #2 of a double ridge waveguide with: (a) wside = 0.5μm; (b) wside = 0.5μm. The parameters are: wco = 1μm, H = 400nm, and het = 0.5H. Here modes #1 and #2 are the two lowest order modes except the TE0 mode.

Fig. 14
Fig. 14

The field profiles (Ex and Ey) for modes #1 and #2 of a double ridge waveguide with the following parameters: (a) wco = 0.85μm, (b) wco = 1.2μm. The parameters are: wside = 0.5μm, H = 400nm, and het = 0.5H. Here modes #1 and #2 are the two lowest-order modes except the TE0 mode.

Fig. 15
Fig. 15

The mode conversion efficiency η as Ltp varies when TM0 modal field is launched. The parameters are wco = 1.0μm, wside = 3.0μm, and het = 0.5H.

Fig. 16
Fig. 16

The light propagation in the taper when the input field is TE polarization (a), and TM polarization (b), respectively. The parameters are: H = 400nm, het = 0.5H, wco = 1.0μm, Ltp = 300μm.

Fig. 17
Fig. 17

The mode conversion efficiency η after light propagating the taper section as Ltp varies when the TM0 mode is launched. (a) wco = 0.85μm; (b) wco = 1.2μm. Here het = 0.5H.

Fig. 18
Fig. 18

The light propagation in the designed adiabatic taper when the input field is TE polarization (a), TM polarization (b), respectively. The parameters are: H = 400nm, het = 0.5H, wco = 1.2μm, Ltp = 100μm. Here het = 0.5H.

Fig. 19
Fig. 19

(a) The structure of the lateral taper in our experiments; (b) the measured spectral responses for taper structures when the TM0 modal field is launched; (c) the measured spectral responses for taper structures when the input TE0 modal field is launched; (d) the measured and calculated quasi-FSR. H = 400nm, and het = 0.5H.

Fig. 20
Fig. 20

(a) The measured spectral responses for bi-level taper structures when the TE0 modal field is launched; (b) the measured spectral responses for taper structures when the TM0 modal field is launched; The parameters are: H = 400nm, wco = 1μm, H = 400nm, and het = 0.6H.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ FSR = λ 2 ( n g_TE1 n g_TM0 ) L 1 +λ ,

Metrics