Abstract

Herein, we propose a phenomenon of “polarization-coupling (PC) cascading” generated in MgO doped periodically poled lithium niobate crystal (PPMgLN). PC cascading contributes to the effective electro-optical (EO) Kerr effect that is several orders of magnitude stronger than the classical ones. Experiment of Newton’s rings demonstrates the large phase accumulation during the PC cascaded processes, and the experimental data is identical with the theoretical simulation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Commun.4(5), 329–334 (1972).
    [CrossRef]
  2. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron.28(12), 1691–1740 (1996).
    [CrossRef]
  3. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett.17(1), 28–30 (1992).
    [CrossRef] [PubMed]
  4. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett.74(25), 5036–5039 (1995).
    [CrossRef] [PubMed]
  5. L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett.87(1), 013601–013604 (2001).
    [CrossRef] [PubMed]
  6. A. Fratalocchi, R. Asquini, and G. Assanto, “Integrated electro-optic switch in liquid crystals,” Opt. Express13(1), 32–37 (2005).
    [CrossRef] [PubMed]
  7. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett.30(2), 147–149 (2005).
    [CrossRef] [PubMed]
  8. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
    [CrossRef]
  9. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (John Wiley & Sons, Inc., 1984).
  10. X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett.28(21), 2115–2117 (2003).
    [CrossRef] [PubMed]
  11. J. Huo, K. Liu, and X. Chen, “1 x 2 precise electro-optic switch in periodically poled lithium niobate,” Opt. Express18(15), 15603–15608 (2010).
    [CrossRef] [PubMed]
  12. K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett.94(10), 101106 (2009).
    [CrossRef]
  13. Y. H. Chen and Y. C. Huang, “Actively Q-switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch,” Opt. Lett.28(16), 1460–1462 (2003).
    [CrossRef] [PubMed]
  14. S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278(5339), 843–846 (1997).
    [CrossRef]
  15. G. Alexakis, N. Theofanous, A. Arapoyianni, M. Aillerie, C. Carabatos-Nedelec, and M. Fontana, “Measurement of quadratic electrooptic coefficients in LiNbO3 using a variation of the FDEOM method,” Opt. Quantum Electron.26(12), 1043–1059 (1994).
    [CrossRef]
  16. Y. Lee, N. Yu, C. S. Kee, D. K. Ko, Y. C. Noh, B. A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Solc filter based on Ti: PPLN waveguide,” Electron. Lett.44(1), 30–32 (2008).
    [CrossRef]

2010

2009

K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett.94(10), 101106 (2009).
[CrossRef]

2008

Y. Lee, N. Yu, C. S. Kee, D. K. Ko, Y. C. Noh, B. A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Solc filter based on Ti: PPLN waveguide,” Electron. Lett.44(1), 30–32 (2008).
[CrossRef]

2005

2003

2001

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett.87(1), 013601–013604 (2001).
[CrossRef] [PubMed]

2000

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
[CrossRef]

1997

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278(5339), 843–846 (1997).
[CrossRef]

1996

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron.28(12), 1691–1740 (1996).
[CrossRef]

1995

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett.74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

1994

G. Alexakis, N. Theofanous, A. Arapoyianni, M. Aillerie, C. Carabatos-Nedelec, and M. Fontana, “Measurement of quadratic electrooptic coefficients in LiNbO3 using a variation of the FDEOM method,” Opt. Quantum Electron.26(12), 1043–1059 (1994).
[CrossRef]

1992

1972

J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Commun.4(5), 329–334 (1972).
[CrossRef]

Aillerie, M.

G. Alexakis, N. Theofanous, A. Arapoyianni, M. Aillerie, C. Carabatos-Nedelec, and M. Fontana, “Measurement of quadratic electrooptic coefficients in LiNbO3 using a variation of the FDEOM method,” Opt. Quantum Electron.26(12), 1043–1059 (1994).
[CrossRef]

Alexakis, G.

G. Alexakis, N. Theofanous, A. Arapoyianni, M. Aillerie, C. Carabatos-Nedelec, and M. Fontana, “Measurement of quadratic electrooptic coefficients in LiNbO3 using a variation of the FDEOM method,” Opt. Quantum Electron.26(12), 1043–1059 (1994).
[CrossRef]

Arapoyianni, A.

G. Alexakis, N. Theofanous, A. Arapoyianni, M. Aillerie, C. Carabatos-Nedelec, and M. Fontana, “Measurement of quadratic electrooptic coefficients in LiNbO3 using a variation of the FDEOM method,” Opt. Quantum Electron.26(12), 1043–1059 (1994).
[CrossRef]

Asquini, R.

Assanto, G.

Backus, S.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett.87(1), 013601–013604 (2001).
[CrossRef] [PubMed]

Bartels, R.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett.87(1), 013601–013604 (2001).
[CrossRef] [PubMed]

Carabatos-Nedelec, C.

G. Alexakis, N. Theofanous, A. Arapoyianni, M. Aillerie, C. Carabatos-Nedelec, and M. Fontana, “Measurement of quadratic electrooptic coefficients in LiNbO3 using a variation of the FDEOM method,” Opt. Quantum Electron.26(12), 1043–1059 (1994).
[CrossRef]

Chen, X.

Chen, Y.

Chen, Y. H.

Chen, Z.

DeSalvo, R.

Durfee, C. G.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett.87(1), 013601–013604 (2001).
[CrossRef] [PubMed]

Eom, T. J.

Y. Lee, N. Yu, C. S. Kee, D. K. Ko, Y. C. Noh, B. A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Solc filter based on Ti: PPLN waveguide,” Electron. Lett.44(1), 30–32 (2008).
[CrossRef]

Fontana, M.

G. Alexakis, N. Theofanous, A. Arapoyianni, M. Aillerie, C. Carabatos-Nedelec, and M. Fontana, “Measurement of quadratic electrooptic coefficients in LiNbO3 using a variation of the FDEOM method,” Opt. Quantum Electron.26(12), 1043–1059 (1994).
[CrossRef]

Fratalocchi, A.

Hagan, D. J.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron.28(12), 1691–1740 (1996).
[CrossRef]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett.74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett.17(1), 28–30 (1992).
[CrossRef] [PubMed]

Huang, Y. C.

Huo, J.

Kapteyn, H. C.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett.87(1), 013601–013604 (2001).
[CrossRef] [PubMed]

Kee, C. S.

Y. Lee, N. Yu, C. S. Kee, D. K. Ko, Y. C. Noh, B. A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Solc filter based on Ti: PPLN waveguide,” Electron. Lett.44(1), 30–32 (2008).
[CrossRef]

Ko, D. K.

Y. Lee, N. Yu, C. S. Kee, D. K. Ko, Y. C. Noh, B. A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Solc filter based on Ti: PPLN waveguide,” Electron. Lett.44(1), 30–32 (2008).
[CrossRef]

Lee, J.

Y. Lee, N. Yu, C. S. Kee, D. K. Ko, Y. C. Noh, B. A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Solc filter based on Ti: PPLN waveguide,” Electron. Lett.44(1), 30–32 (2008).
[CrossRef]

Lee, Y.

Y. Lee, N. Yu, C. S. Kee, D. K. Ko, Y. C. Noh, B. A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Solc filter based on Ti: PPLN waveguide,” Electron. Lett.44(1), 30–32 (2008).
[CrossRef]

Liu, K.

J. Huo, K. Liu, and X. Chen, “1 x 2 precise electro-optic switch in periodically poled lithium niobate,” Opt. Express18(15), 15603–15608 (2010).
[CrossRef] [PubMed]

K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett.94(10), 101106 (2009).
[CrossRef]

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
[CrossRef]

Menyuk, C. R.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett.74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

Ming, N.

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278(5339), 843–846 (1997).
[CrossRef]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
[CrossRef]

Misoguti, L.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett.87(1), 013601–013604 (2001).
[CrossRef] [PubMed]

Murnane, M. M.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett.87(1), 013601–013604 (2001).
[CrossRef] [PubMed]

Nelson, J. S.

Noh, Y. C.

Y. Lee, N. Yu, C. S. Kee, D. K. Ko, Y. C. Noh, B. A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Solc filter based on Ti: PPLN waveguide,” Electron. Lett.44(1), 30–32 (2008).
[CrossRef]

Oh, K.

Y. Lee, N. Yu, C. S. Kee, D. K. Ko, Y. C. Noh, B. A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Solc filter based on Ti: PPLN waveguide,” Electron. Lett.44(1), 30–32 (2008).
[CrossRef]

Sheik-Bahae, M.

Shi, J.

K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett.94(10), 101106 (2009).
[CrossRef]

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett.28(21), 2115–2117 (2003).
[CrossRef] [PubMed]

Shin, W.

Y. Lee, N. Yu, C. S. Kee, D. K. Ko, Y. C. Noh, B. A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Solc filter based on Ti: PPLN waveguide,” Electron. Lett.44(1), 30–32 (2008).
[CrossRef]

Stegeman, G.

Stegeman, G. I.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron.28(12), 1691–1740 (1996).
[CrossRef]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett.74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

Taran, J. P. E.

J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Commun.4(5), 329–334 (1972).
[CrossRef]

Theofanous, N.

G. Alexakis, N. Theofanous, A. Arapoyianni, M. Aillerie, C. Carabatos-Nedelec, and M. Fontana, “Measurement of quadratic electrooptic coefficients in LiNbO3 using a variation of the FDEOM method,” Opt. Quantum Electron.26(12), 1043–1059 (1994).
[CrossRef]

Thomas, J. M. R.

J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Commun.4(5), 329–334 (1972).
[CrossRef]

Torner, L.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron.28(12), 1691–1740 (1996).
[CrossRef]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett.74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

Torruellas, W. E.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett.74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

Van Stryland, E. W.

Vanherzeele, H.

VanStryland, E. W.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett.74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
[CrossRef]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
[CrossRef]

Wang, Z.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett.74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
[CrossRef]

Xia, Y.

Yu, B. A.

Y. Lee, N. Yu, C. S. Kee, D. K. Ko, Y. C. Noh, B. A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Solc filter based on Ti: PPLN waveguide,” Electron. Lett.44(1), 30–32 (2008).
[CrossRef]

Yu, N.

Y. Lee, N. Yu, C. S. Kee, D. K. Ko, Y. C. Noh, B. A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Solc filter based on Ti: PPLN waveguide,” Electron. Lett.44(1), 30–32 (2008).
[CrossRef]

Zhang, J.

Zhu, S.

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278(5339), 843–846 (1997).
[CrossRef]

Zhu, Y.

X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett.28(21), 2115–2117 (2003).
[CrossRef] [PubMed]

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278(5339), 843–846 (1997).
[CrossRef]

Appl. Phys. Lett.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett.77(23), 3719–3721 (2000).
[CrossRef]

K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett.94(10), 101106 (2009).
[CrossRef]

Electron. Lett.

Y. Lee, N. Yu, C. S. Kee, D. K. Ko, Y. C. Noh, B. A. Yu, W. Shin, T. J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Solc filter based on Ti: PPLN waveguide,” Electron. Lett.44(1), 30–32 (2008).
[CrossRef]

Opt. Commun.

J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Commun.4(5), 329–334 (1972).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

G. Alexakis, N. Theofanous, A. Arapoyianni, M. Aillerie, C. Carabatos-Nedelec, and M. Fontana, “Measurement of quadratic electrooptic coefficients in LiNbO3 using a variation of the FDEOM method,” Opt. Quantum Electron.26(12), 1043–1059 (1994).
[CrossRef]

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron.28(12), 1691–1740 (1996).
[CrossRef]

Phys. Rev. Lett.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett.74(25), 5036–5039 (1995).
[CrossRef] [PubMed]

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett.87(1), 013601–013604 (2001).
[CrossRef] [PubMed]

Science

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278(5339), 843–846 (1997).
[CrossRef]

Other

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (John Wiley & Sons, Inc., 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The physic pictures of SHG cascading processes and PC cascading processes. (a), (b) The physical illustrations of the SHG cascading and PC cascaded processes. (c) The phase shifts inside PPMgLN, the external electric field is 0.245 V/μm .

Fig. 2
Fig. 2

Typical variation of the nonlinear phase shifts with external electric field for EW and OW. The dashed lines present the transmission as a function of electric fields for T = 21 C o . The length of PPMgLN for calculation was set as 50 mm.

Fig. 3
Fig. 3

Experimental setup for demonstrating the nonlinear phase shifts yielded in PC cascading. A PPMgLN crystal, which is 5mol%MgO: PPLN, with the period of 21.1μm and the length of 50 mm. High-voltage is used to supply transverse electric fields.

Fig. 4
Fig. 4

The comparison of experimental results and theoretical simulation for demonstrating the enhanced phase shift yielded in PC cascading; (a), (b) the center experiences “dark-light” changes by changing the transverse electric field at different vector-mismatches. (c), the comparison of simulated curve and experimental results at 21.3 C o .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

{ d A 1 /dz=iκ A 2 e iΔβz d A 2 /dz=iκ A 1 e iΔβz ,
{ A 1 (0)=1 A 2 (0)=0 .
{ A 1 (z)= e i( Δβ/2 )z [cosszi Δβ 2s sinsz] A 2 (z)= e i( Δβ/2 )z (i κ * ) sinsz s ,
Δ Φ e NL ={ Δβ 2 z,C>0 Δβ 2 z±π,C<0 ,
Δ Φ o NL (z=L)= ΔβL 2 (1 1+ (2 κ * κ/Δβ) 2 ).
Δ Φ o NL | κL | 2 ΔβL .
Δ n o eff = ω n e 3 n o 2 γ 51 2 π 2 cΔβ E y 2 .
n= n 0 + 1 2 γ n 0 3 E+ 1 2 s eff n 0 3 E 2 + 1 2 s n 0 3 E 2 +.

Metrics