Abstract

An all-optical generation of a millimeter wave carrier from a multiwavelength Brillouin-erbium fiber laser is presented. Four-channel output with spacing of about 21.5 GHz is generated from the fiber laser by controlling the gain in the cavity. A dual-wavelength signal with spacing correspondent to six orders of Brillouin frequency shift is obtained by suppressing the two channels at the middle. Heterodyning these signals at the high-speed photodetector produces a millimeter wave carrier at 64.17 GHz. Temperature dependence characteristic of Brillouin frequency shift realize the flexibility of generated millimeter wave frequency to be tuned at 6.6 MHz/ °C.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun.30(18), 3598–3613 (2007).
    [CrossRef]
  2. J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett.28, 2309–2311 (1992).
  3. L. A. Johansson and A. J. Seeds, “Generation and transmission of millimeter-wave data-modulated optical signals using an optical injection phase-lock loop,” J. Lightwave Technol.21(2), 511–520 (2003).
    [CrossRef]
  4. M. Hyodo and M. Watanabe, “Optical generation of millimetre-wave signals up to 110 GHz by phase-locking of two external-cavity semiconductor lasers,” Electron. Lett.38(25), 1679–1680 (2002).
    [CrossRef]
  5. J. Qian, J. Su, and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Opt. Commun.281(17), 4432–4434 (2008).
    [CrossRef]
  6. X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett.10(1), 138–140 (1998).
    [CrossRef]
  7. T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin scattering in optical fibers for the generation of millimeter waves,” J. Lightwave Technol.24(1), 295–304 (2006).
    [CrossRef]
  8. K.-H. Lee and W.-Y. Choi, “Harmonic signal generation and frequency upconversion using selective sideband Brillouin amplification in single-mode fiber,” Opt. Lett.32(12), 1686–1688 (2007).
    [CrossRef] [PubMed]
  9. W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun.284(13), 3437–3439 (2011).
    [CrossRef]
  10. Y. Shen, X. Zhang, and K. Chen, “All-optical generation of microwave and millimeter wave using a two-frequency Bragg grating-based Brillouin fiber laser,” J. Lightwave Technol.23(5), 1860–1865 (2005).
    [CrossRef]
  11. G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, “Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser,” Prog. Electromagn. Res.80, 307–320 (2008).
    [CrossRef]
  12. S. Gao, H. Fu, and Y. Gao, “Photonic generation of microwave/millimeter-wave sources without cavity or modulation using fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett.51(5), 1203–1206 (2009).
    [CrossRef]
  13. Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett.22(8), 568–570 (2010).
    [CrossRef]
  14. X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol.43(7), 1355–1357 (2011).
    [CrossRef]
  15. D. Yu and G. J. Cowle, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Quantum Electron.3(4), 1049–1057 (1997).
    [CrossRef]
  16. G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett.8(11), 1465–1467 (1996).
    [CrossRef]
  17. N. M. Samsuri, A. K. Zamzuri, M. H. Al-Mansoori, A. Ahmad, and M. A. Mahdi, “Brillouin-erbium fiber laser with enhanced feedback coupling using common Erbium gain section,” Opt. Express16(21), 16475–16480 (2008).
    [CrossRef] [PubMed]
  18. M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol.27(22), 5038–5044 (2009).
    [CrossRef]
  19. J. Fu, D. Chen, B. Sun, and S. Gao, “A novel-configuration multi-wavelength Brillouin erbium fiber laser and its application in switchable high-frequency microwave generation,” Laser Phys.20(10), 1907–1912 (2010).
    [CrossRef]
  20. J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express19(15), 14682–14689 (2011).
    [CrossRef] [PubMed]
  21. Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Double Brillouin frequency shift through circulation of odd-order Stokes signal,” Appl. Opt.49(20), 3956–3959 (2010).
    [CrossRef] [PubMed]
  22. Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing,” Opt. Express19(3), 1699–1706 (2011).
    [CrossRef] [PubMed]
  23. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett.30(11), 1276–1278 (2005).
    [CrossRef] [PubMed]
  24. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett.22(11), 787–789 (1997).
    [CrossRef] [PubMed]
  25. X. Bao, Q. Yu, and L. Chen, “Simultaneous strain and temperature measurements with polarization-maintaining fibers and their error analysis by use of a distributed Brillouin loss system,” Opt. Lett.29(12), 1342–1344 (2004).
    [CrossRef] [PubMed]

2011

W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun.284(13), 3437–3439 (2011).
[CrossRef]

X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol.43(7), 1355–1357 (2011).
[CrossRef]

Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing,” Opt. Express19(3), 1699–1706 (2011).
[CrossRef] [PubMed]

J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express19(15), 14682–14689 (2011).
[CrossRef] [PubMed]

2010

Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Double Brillouin frequency shift through circulation of odd-order Stokes signal,” Appl. Opt.49(20), 3956–3959 (2010).
[CrossRef] [PubMed]

J. Fu, D. Chen, B. Sun, and S. Gao, “A novel-configuration multi-wavelength Brillouin erbium fiber laser and its application in switchable high-frequency microwave generation,” Laser Phys.20(10), 1907–1912 (2010).
[CrossRef]

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett.22(8), 568–570 (2010).
[CrossRef]

2009

S. Gao, H. Fu, and Y. Gao, “Photonic generation of microwave/millimeter-wave sources without cavity or modulation using fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett.51(5), 1203–1206 (2009).
[CrossRef]

M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol.27(22), 5038–5044 (2009).
[CrossRef]

2008

N. M. Samsuri, A. K. Zamzuri, M. H. Al-Mansoori, A. Ahmad, and M. A. Mahdi, “Brillouin-erbium fiber laser with enhanced feedback coupling using common Erbium gain section,” Opt. Express16(21), 16475–16480 (2008).
[CrossRef] [PubMed]

G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, “Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser,” Prog. Electromagn. Res.80, 307–320 (2008).
[CrossRef]

J. Qian, J. Su, and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Opt. Commun.281(17), 4432–4434 (2008).
[CrossRef]

2007

B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun.30(18), 3598–3613 (2007).
[CrossRef]

K.-H. Lee and W.-Y. Choi, “Harmonic signal generation and frequency upconversion using selective sideband Brillouin amplification in single-mode fiber,” Opt. Lett.32(12), 1686–1688 (2007).
[CrossRef] [PubMed]

2006

2005

2004

2003

2002

M. Hyodo and M. Watanabe, “Optical generation of millimetre-wave signals up to 110 GHz by phase-locking of two external-cavity semiconductor lasers,” Electron. Lett.38(25), 1679–1680 (2002).
[CrossRef]

1998

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett.10(1), 138–140 (1998).
[CrossRef]

1997

1996

G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett.8(11), 1465–1467 (1996).
[CrossRef]

1992

J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett.28, 2309–2311 (1992).

Ahmad, A.

Alahbabi, M. N.

Al-Mansoori, M. H.

Bao, X.

Chen, D.

J. Fu, D. Chen, B. Sun, and S. Gao, “A novel-configuration multi-wavelength Brillouin erbium fiber laser and its application in switchable high-frequency microwave generation,” Laser Phys.20(10), 1907–1912 (2010).
[CrossRef]

Chen, K.

Chen, L.

Chen, T.

Cheng, L.

X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol.43(7), 1355–1357 (2011).
[CrossRef]

Chi, H.

G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, “Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser,” Prog. Electromagn. Res.80, 307–320 (2008).
[CrossRef]

Cho, Y. T.

Choi, W.-Y.

Cowle, G. J.

D. Yu and G. J. Cowle, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Quantum Electron.3(4), 1049–1057 (1997).
[CrossRef]

G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett.8(11), 1465–1467 (1996).
[CrossRef]

Dang, B. L.

B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun.30(18), 3598–3613 (2007).
[CrossRef]

Farhadiroushan, M.

Feng, X.

X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol.43(7), 1355–1357 (2011).
[CrossRef]

Fu, H.

S. Gao, H. Fu, and Y. Gao, “Photonic generation of microwave/millimeter-wave sources without cavity or modulation using fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett.51(5), 1203–1206 (2009).
[CrossRef]

Fu, J.

J. Fu, D. Chen, B. Sun, and S. Gao, “A novel-configuration multi-wavelength Brillouin erbium fiber laser and its application in switchable high-frequency microwave generation,” Laser Phys.20(10), 1907–1912 (2010).
[CrossRef]

Gao, S.

J. Fu, D. Chen, B. Sun, and S. Gao, “A novel-configuration multi-wavelength Brillouin erbium fiber laser and its application in switchable high-frequency microwave generation,” Laser Phys.20(10), 1907–1912 (2010).
[CrossRef]

S. Gao, H. Fu, and Y. Gao, “Photonic generation of microwave/millimeter-wave sources without cavity or modulation using fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett.51(5), 1203–1206 (2009).
[CrossRef]

Gao, Y.

S. Gao, H. Fu, and Y. Gao, “Photonic generation of microwave/millimeter-wave sources without cavity or modulation using fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett.51(5), 1203–1206 (2009).
[CrossRef]

Guan, B.

X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol.43(7), 1355–1357 (2011).
[CrossRef]

Handerek, V. A.

Hannover, D.

Heidemann, R.

J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett.28, 2309–2311 (1992).

Hitam, S.

Hofstetter, R.

J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett.28, 2309–2311 (1992).

Hong, L.

J. Qian, J. Su, and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Opt. Commun.281(17), 4432–4434 (2008).
[CrossRef]

Huang, T.

Hyodo, M.

M. Hyodo and M. Watanabe, “Optical generation of millimetre-wave signals up to 110 GHz by phase-locking of two external-cavity semiconductor lasers,” Electron. Lett.38(25), 1679–1680 (2002).
[CrossRef]

Ismail, A.

Jin, X. F.

G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, “Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser,” Prog. Electromagn. Res.80, 307–320 (2008).
[CrossRef]

Johansson, L. A.

Junker, M.

Koonen, A. M. J.

B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun.30(18), 3598–3613 (2007).
[CrossRef]

Lane, P. M.

J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett.28, 2309–2311 (1992).

Larrode, M. G.

B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun.30(18), 3598–3613 (2007).
[CrossRef]

Lee, K.-H.

Li, J.

X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol.43(7), 1355–1357 (2011).
[CrossRef]

Li, W.

W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun.284(13), 3437–3439 (2011).
[CrossRef]

Li, Z.

X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol.43(7), 1355–1357 (2011).
[CrossRef]

Liu, J.

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett.22(8), 568–570 (2010).
[CrossRef]

Mahdi, M. A.

Newson, T. P.

Niemegeers, I.

B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun.30(18), 3598–3613 (2007).
[CrossRef]

O'Reilly, J. J.

J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett.28, 2309–2311 (1992).

Parker, T. R.

Prasad, R. V.

B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun.30(18), 3598–3613 (2007).
[CrossRef]

Qian, J.

J. Qian, J. Su, and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Opt. Commun.281(17), 4432–4434 (2008).
[CrossRef]

Rogers, A. J.

Samsuri, N. M.

Schneider, T.

Seeds, A. J.

Shee, Y. G.

Shen, G. F.

G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, “Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser,” Prog. Electromagn. Res.80, 307–320 (2008).
[CrossRef]

Shen, Q.

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett.22(8), 568–570 (2010).
[CrossRef]

Shen, Y.

Stepanov, D. Y.

G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett.8(11), 1465–1467 (1996).
[CrossRef]

Su, J.

J. Qian, J. Su, and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Opt. Commun.281(17), 4432–4434 (2008).
[CrossRef]

Sun, B.

J. Fu, D. Chen, B. Sun, and S. Gao, “A novel-configuration multi-wavelength Brillouin erbium fiber laser and its application in switchable high-frequency microwave generation,” Laser Phys.20(10), 1907–1912 (2010).
[CrossRef]

Sun, J.

Tang, J.

Wang, L. X.

W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun.284(13), 3437–3439 (2011).
[CrossRef]

Wang, Y.

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett.22(8), 568–570 (2010).
[CrossRef]

Watanabe, M.

M. Hyodo and M. Watanabe, “Optical generation of millimetre-wave signals up to 110 GHz by phase-locking of two external-cavity semiconductor lasers,” Electron. Lett.38(25), 1679–1680 (2002).
[CrossRef]

Wu, Z.

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett.22(8), 568–570 (2010).
[CrossRef]

Yao, X. S.

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett.10(1), 138–140 (1998).
[CrossRef]

Yu, D.

D. Yu and G. J. Cowle, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Quantum Electron.3(4), 1049–1057 (1997).
[CrossRef]

Yu, Q.

Yuan, W.

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett.22(8), 568–570 (2010).
[CrossRef]

Zamzuri, A. K.

Zhan, L.

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett.22(8), 568–570 (2010).
[CrossRef]

Zhang, X.

Zhang, X. M.

G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, “Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser,” Prog. Electromagn. Res.80, 307–320 (2008).
[CrossRef]

Zhao, L.

Zhou, Y.

Zhu, N. H.

W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun.284(13), 3437–3439 (2011).
[CrossRef]

Appl. Opt.

Comput. Commun.

B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun.30(18), 3598–3613 (2007).
[CrossRef]

Electron. Lett.

J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett.28, 2309–2311 (1992).

M. Hyodo and M. Watanabe, “Optical generation of millimetre-wave signals up to 110 GHz by phase-locking of two external-cavity semiconductor lasers,” Electron. Lett.38(25), 1679–1680 (2002).
[CrossRef]

IEEE J. Quantum Electron.

D. Yu and G. J. Cowle, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Quantum Electron.3(4), 1049–1057 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett.8(11), 1465–1467 (1996).
[CrossRef]

Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett.22(8), 568–570 (2010).
[CrossRef]

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett.10(1), 138–140 (1998).
[CrossRef]

J. Lightwave Technol.

Laser Phys.

J. Fu, D. Chen, B. Sun, and S. Gao, “A novel-configuration multi-wavelength Brillouin erbium fiber laser and its application in switchable high-frequency microwave generation,” Laser Phys.20(10), 1907–1912 (2010).
[CrossRef]

Microw. Opt. Technol. Lett.

S. Gao, H. Fu, and Y. Gao, “Photonic generation of microwave/millimeter-wave sources without cavity or modulation using fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett.51(5), 1203–1206 (2009).
[CrossRef]

Opt. Commun.

J. Qian, J. Su, and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Opt. Commun.281(17), 4432–4434 (2008).
[CrossRef]

W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun.284(13), 3437–3439 (2011).
[CrossRef]

Opt. Express

Opt. Laser Technol.

X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol.43(7), 1355–1357 (2011).
[CrossRef]

Opt. Lett.

Prog. Electromagn. Res.

G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, “Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser,” Prog. Electromagn. Res.80, 307–320 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Architecture of the millimeter wave generation from multiwavelength BEFL.

Fig. 2
Fig. 2

(a) Transmission spectra of FBG1, FBG2 and filter block, (b) optical spectrum at the output of the multiwavelength fiber laser and the filter block transmission spectrum, and (c) filtered dual-wavelength output before and after the EDFA.

Fig. 3
Fig. 3

Generated RF spectrum at 64.1667 GHz.

Fig. 4
Fig. 4

Frequency and power stabilities of the generated millimeter wave carrier.

Fig. 5
Fig. 5

Thermally-tuned characteristics of the generated millimeter wave carrier.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ ν B = C νε δε+ C νT δT

Metrics