W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun. 284(13), 3437–3439 (2011).
[Crossref]
X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol. 43(7), 1355–1357 (2011).
[Crossref]
Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing,” Opt. Express 19(3), 1699–1706 (2011).
[Crossref]
[PubMed]
J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express 19(15), 14682–14689 (2011).
[Crossref]
[PubMed]
Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Double Brillouin frequency shift through circulation of odd-order Stokes signal,” Appl. Opt. 49(20), 3956–3959 (2010).
[Crossref]
[PubMed]
J. Fu, D. Chen, B. Sun, and S. Gao, “A novel-configuration multi-wavelength Brillouin erbium fiber laser and its application in switchable high-frequency microwave generation,” Laser Phys. 20(10), 1907–1912 (2010).
[Crossref]
Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22(8), 568–570 (2010).
[Crossref]
N. M. Samsuri, A. K. Zamzuri, M. H. Al-Mansoori, A. Ahmad, and M. A. Mahdi, “Brillouin-erbium fiber laser with enhanced feedback coupling using common Erbium gain section,” Opt. Express 16(21), 16475–16480 (2008).
[Crossref]
[PubMed]
G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, “Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser,” Prog. Electromagn. Res. 80, 307–320 (2008).
[Crossref]
J. Qian, J. Su, and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Opt. Commun. 281(17), 4432–4434 (2008).
[Crossref]
B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun. 30(18), 3598–3613 (2007).
[Crossref]
K.-H. Lee and W.-Y. Choi, “Harmonic signal generation and frequency upconversion using selective sideband Brillouin amplification in single-mode fiber,” Opt. Lett. 32(12), 1686–1688 (2007).
[Crossref]
[PubMed]
M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30(11), 1276–1278 (2005).
[Crossref]
[PubMed]
Y. Shen, X. Zhang, and K. Chen, “All-optical generation of microwave and millimeter wave using a two-frequency Bragg grating-based Brillouin fiber laser,” J. Lightwave Technol. 23(5), 1860–1865 (2005).
[Crossref]
M. Hyodo and M. Watanabe, “Optical generation of millimetre-wave signals up to 110 GHz by phase-locking of two external-cavity semiconductor lasers,” Electron. Lett. 38(25), 1679–1680 (2002).
[Crossref]
X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10(1), 138–140 (1998).
[Crossref]
G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett. 8(11), 1465–1467 (1996).
[Crossref]
J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28, 2309–2311 (1992).
Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing,” Opt. Express 19(3), 1699–1706 (2011).
[Crossref]
[PubMed]
Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Double Brillouin frequency shift through circulation of odd-order Stokes signal,” Appl. Opt. 49(20), 3956–3959 (2010).
[Crossref]
[PubMed]
M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).
[Crossref]
N. M. Samsuri, A. K. Zamzuri, M. H. Al-Mansoori, A. Ahmad, and M. A. Mahdi, “Brillouin-erbium fiber laser with enhanced feedback coupling using common Erbium gain section,” Opt. Express 16(21), 16475–16480 (2008).
[Crossref]
[PubMed]
J. Fu, D. Chen, B. Sun, and S. Gao, “A novel-configuration multi-wavelength Brillouin erbium fiber laser and its application in switchable high-frequency microwave generation,” Laser Phys. 20(10), 1907–1912 (2010).
[Crossref]
X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol. 43(7), 1355–1357 (2011).
[Crossref]
G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, “Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser,” Prog. Electromagn. Res. 80, 307–320 (2008).
[Crossref]
D. Yu and G. J. Cowle, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Quantum Electron. 3(4), 1049–1057 (1997).
[Crossref]
G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett. 8(11), 1465–1467 (1996).
[Crossref]
B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun. 30(18), 3598–3613 (2007).
[Crossref]
X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol. 43(7), 1355–1357 (2011).
[Crossref]
S. Gao, H. Fu, and Y. Gao, “Photonic generation of microwave/millimeter-wave sources without cavity or modulation using fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett. 51(5), 1203–1206 (2009).
[Crossref]
J. Fu, D. Chen, B. Sun, and S. Gao, “A novel-configuration multi-wavelength Brillouin erbium fiber laser and its application in switchable high-frequency microwave generation,” Laser Phys. 20(10), 1907–1912 (2010).
[Crossref]
J. Fu, D. Chen, B. Sun, and S. Gao, “A novel-configuration multi-wavelength Brillouin erbium fiber laser and its application in switchable high-frequency microwave generation,” Laser Phys. 20(10), 1907–1912 (2010).
[Crossref]
S. Gao, H. Fu, and Y. Gao, “Photonic generation of microwave/millimeter-wave sources without cavity or modulation using fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett. 51(5), 1203–1206 (2009).
[Crossref]
S. Gao, H. Fu, and Y. Gao, “Photonic generation of microwave/millimeter-wave sources without cavity or modulation using fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett. 51(5), 1203–1206 (2009).
[Crossref]
X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol. 43(7), 1355–1357 (2011).
[Crossref]
J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28, 2309–2311 (1992).
Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing,” Opt. Express 19(3), 1699–1706 (2011).
[Crossref]
[PubMed]
Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Double Brillouin frequency shift through circulation of odd-order Stokes signal,” Appl. Opt. 49(20), 3956–3959 (2010).
[Crossref]
[PubMed]
J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28, 2309–2311 (1992).
J. Qian, J. Su, and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Opt. Commun. 281(17), 4432–4434 (2008).
[Crossref]
M. Hyodo and M. Watanabe, “Optical generation of millimetre-wave signals up to 110 GHz by phase-locking of two external-cavity semiconductor lasers,” Electron. Lett. 38(25), 1679–1680 (2002).
[Crossref]
Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing,” Opt. Express 19(3), 1699–1706 (2011).
[Crossref]
[PubMed]
Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Double Brillouin frequency shift through circulation of odd-order Stokes signal,” Appl. Opt. 49(20), 3956–3959 (2010).
[Crossref]
[PubMed]
G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, “Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser,” Prog. Electromagn. Res. 80, 307–320 (2008).
[Crossref]
B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun. 30(18), 3598–3613 (2007).
[Crossref]
J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28, 2309–2311 (1992).
B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun. 30(18), 3598–3613 (2007).
[Crossref]
X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol. 43(7), 1355–1357 (2011).
[Crossref]
W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun. 284(13), 3437–3439 (2011).
[Crossref]
X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol. 43(7), 1355–1357 (2011).
[Crossref]
Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22(8), 568–570 (2010).
[Crossref]
Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing,” Opt. Express 19(3), 1699–1706 (2011).
[Crossref]
[PubMed]
Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Double Brillouin frequency shift through circulation of odd-order Stokes signal,” Appl. Opt. 49(20), 3956–3959 (2010).
[Crossref]
[PubMed]
M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).
[Crossref]
N. M. Samsuri, A. K. Zamzuri, M. H. Al-Mansoori, A. Ahmad, and M. A. Mahdi, “Brillouin-erbium fiber laser with enhanced feedback coupling using common Erbium gain section,” Opt. Express 16(21), 16475–16480 (2008).
[Crossref]
[PubMed]
B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun. 30(18), 3598–3613 (2007).
[Crossref]
J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28, 2309–2311 (1992).
B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun. 30(18), 3598–3613 (2007).
[Crossref]
J. Qian, J. Su, and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Opt. Commun. 281(17), 4432–4434 (2008).
[Crossref]
Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing,” Opt. Express 19(3), 1699–1706 (2011).
[Crossref]
[PubMed]
Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Double Brillouin frequency shift through circulation of odd-order Stokes signal,” Appl. Opt. 49(20), 3956–3959 (2010).
[Crossref]
[PubMed]
G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, “Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser,” Prog. Electromagn. Res. 80, 307–320 (2008).
[Crossref]
Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22(8), 568–570 (2010).
[Crossref]
G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett. 8(11), 1465–1467 (1996).
[Crossref]
J. Qian, J. Su, and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Opt. Commun. 281(17), 4432–4434 (2008).
[Crossref]
J. Fu, D. Chen, B. Sun, and S. Gao, “A novel-configuration multi-wavelength Brillouin erbium fiber laser and its application in switchable high-frequency microwave generation,” Laser Phys. 20(10), 1907–1912 (2010).
[Crossref]
W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun. 284(13), 3437–3439 (2011).
[Crossref]
Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22(8), 568–570 (2010).
[Crossref]
M. Hyodo and M. Watanabe, “Optical generation of millimetre-wave signals up to 110 GHz by phase-locking of two external-cavity semiconductor lasers,” Electron. Lett. 38(25), 1679–1680 (2002).
[Crossref]
Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22(8), 568–570 (2010).
[Crossref]
X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10(1), 138–140 (1998).
[Crossref]
D. Yu and G. J. Cowle, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Quantum Electron. 3(4), 1049–1057 (1997).
[Crossref]
Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22(8), 568–570 (2010).
[Crossref]
Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22(8), 568–570 (2010).
[Crossref]
G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, “Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser,” Prog. Electromagn. Res. 80, 307–320 (2008).
[Crossref]
W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun. 284(13), 3437–3439 (2011).
[Crossref]
B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber based architecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun. 30(18), 3598–3613 (2007).
[Crossref]
J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28, 2309–2311 (1992).
M. Hyodo and M. Watanabe, “Optical generation of millimetre-wave signals up to 110 GHz by phase-locking of two external-cavity semiconductor lasers,” Electron. Lett. 38(25), 1679–1680 (2002).
[Crossref]
D. Yu and G. J. Cowle, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Quantum Electron. 3(4), 1049–1057 (1997).
[Crossref]
G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett. 8(11), 1465–1467 (1996).
[Crossref]
Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22(8), 568–570 (2010).
[Crossref]
X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10(1), 138–140 (1998).
[Crossref]
L. A. Johansson and A. J. Seeds, “Generation and transmission of millimeter-wave data-modulated optical signals using an optical injection phase-lock loop,” J. Lightwave Technol. 21(2), 511–520 (2003).
[Crossref]
Y. Shen, X. Zhang, and K. Chen, “All-optical generation of microwave and millimeter wave using a two-frequency Bragg grating-based Brillouin fiber laser,” J. Lightwave Technol. 23(5), 1860–1865 (2005).
[Crossref]
T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin scattering in optical fibers for the generation of millimeter waves,” J. Lightwave Technol. 24(1), 295–304 (2006).
[Crossref]
M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).
[Crossref]
J. Fu, D. Chen, B. Sun, and S. Gao, “A novel-configuration multi-wavelength Brillouin erbium fiber laser and its application in switchable high-frequency microwave generation,” Laser Phys. 20(10), 1907–1912 (2010).
[Crossref]
S. Gao, H. Fu, and Y. Gao, “Photonic generation of microwave/millimeter-wave sources without cavity or modulation using fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett. 51(5), 1203–1206 (2009).
[Crossref]
J. Qian, J. Su, and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Opt. Commun. 281(17), 4432–4434 (2008).
[Crossref]
W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun. 284(13), 3437–3439 (2011).
[Crossref]
N. M. Samsuri, A. K. Zamzuri, M. H. Al-Mansoori, A. Ahmad, and M. A. Mahdi, “Brillouin-erbium fiber laser with enhanced feedback coupling using common Erbium gain section,” Opt. Express 16(21), 16475–16480 (2008).
[Crossref]
[PubMed]
Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing,” Opt. Express 19(3), 1699–1706 (2011).
[Crossref]
[PubMed]
J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express 19(15), 14682–14689 (2011).
[Crossref]
[PubMed]
X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump,” Opt. Laser Technol. 43(7), 1355–1357 (2011).
[Crossref]
X. Bao, Q. Yu, and L. Chen, “Simultaneous strain and temperature measurements with polarization-maintaining fibers and their error analysis by use of a distributed Brillouin loss system,” Opt. Lett. 29(12), 1342–1344 (2004).
[Crossref]
[PubMed]
M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30(11), 1276–1278 (2005).
[Crossref]
[PubMed]
T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22(11), 787–789 (1997).
[Crossref]
[PubMed]
K.-H. Lee and W.-Y. Choi, “Harmonic signal generation and frequency upconversion using selective sideband Brillouin amplification in single-mode fiber,” Opt. Lett. 32(12), 1686–1688 (2007).
[Crossref]
[PubMed]
G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, “Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser,” Prog. Electromagn. Res. 80, 307–320 (2008).
[Crossref]