Abstract

The key importance of the sign of the stress-optic anisotropy ratio for reducing thermally induced depolarization in cubic crystals with 432, 4¯3m and m3m symmetry is addressed. A simple method for measuring the stress-optic anisotropy ratio (including its sign) was proposed and verified in CaF2 and TGG crystals by experiment. The ratio at room temperature for the wavelength 1076 nm was measured to be −0.47 and + 2.25, respectively. In crystals with a negative value of this parameter thermally induced depolarization may be reduced significantly by choosing crystal orientation. In a CaF2 crystal with the [111] orientation a 20-fold reduction of thermally induced depolarization as compared to the [001] orientation was obtained in experiment, which is very promising for using CaF2 as an active element in high-average-power lasers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. W. Quelle., “Thermal distortion of diffraction-limited optical elements,” Appl. Opt. 5(4), 633–637 (1966).
    [CrossRef] [PubMed]
  2. Y. A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, “Thermal deformation of the resonator of a solid-state laser,” J. Appl. Spectrosc. 5(1), 36–39 (1966).
    [CrossRef]
  3. J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
    [CrossRef]
  4. G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17(5), 213–215 (1970).
    [CrossRef]
  5. W. Koechner, “Absorbed pump power, thermal profile and stresses in a cw pumped Nd:YAG crystal,” Appl. Opt. 9(6), 1429–1434 (1970).
    [CrossRef] [PubMed]
  6. W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
    [CrossRef]
  7. M. A. Karr, “Nd:YAIG laser cavity loss due to an internal Brewster polarizer,” Appl. Opt. 10(4), 893–895 (1971).
    [CrossRef] [PubMed]
  8. W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61(6), 758–766 (1971).
    [CrossRef]
  9. I. B. Vitrishchak, L. N. Soms, and A. A. Tarasov, “On intrinsic polarizations of a resonator with thermally distorted active element,” Zh. Tekhn. Fiz. [J. Techn. Phys.] 44, 1055–1062 (1974) (in Russian).
  10. W. Koechner, Solid-State Laser Engineering (Springer, Berlin, 1999).
  11. L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG: Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
    [CrossRef]
  12. R. E. Joiner, J. Marburger, and W. H. Steier, “Elimination of stress-induced birefringence effects in single-crystal high-power laser windows,” Appl. Phys. Lett. 30(9), 485–486 (1977).
    [CrossRef]
  13. J. F. Nye, Physical Properties of Crystals (Oxford University Press, London, 1964).
  14. C. A. Klein, “Optical distortion coefficient of 111oriented CaF2 windows at chemical laser wavelengths,” Appl. Phys. Lett. 35(1), 52–54 (1979).
    [CrossRef]
  15. L. N. Soms and A. A. Tarasov, “Thermal strains in active elements of color-center lasers. I. Theory,” Sov. J. Quantum Electron. 9(12), 1506–1509 (1979).
    [CrossRef]
  16. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Termooptika tverdotel'nykh lazerov [Thermooptics of solid-state lasers] (Mashinostroenie, Leningrad, 1986). (in Russian)
  17. I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
    [CrossRef]
  18. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
    [CrossRef] [PubMed]
  19. I. Mukhin, O. Palashov, E. Khazanov, and I. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–94 (2005).
    [CrossRef]
  20. E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
    [CrossRef]
  21. I. B. Mukhin and E. A. Khazanov, “Use of thin discs in Faraday isolators for high-average-power lasers,” Quantum Electron. 34(10), 973–978 (2004).
    [CrossRef]
  22. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27(9), 716–718 (2002).
    [CrossRef] [PubMed]
  23. M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
    [CrossRef]
  24. I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Properties of a thermal lens in laser ceramics,” Quantum Electron. 37(7), 633–638 (2007).
    [CrossRef]
  25. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, “Experimental study of thermally induced depolarization in Nd:YAG ceramics,” Opt. Express 13(16), 5983–5987 (2005).
    [CrossRef] [PubMed]
  26. A. A. Soloviev, I. L. Snetkov, V. V. Zelenogorsky, I. E. Kozhevatov, O. V. Palashov, and E. A. Khazanov, “Experimental study of thermal lens features in laser ceramics,” Opt. Express 16(25), 21012–21021 (2008).
    [CrossRef] [PubMed]
  27. M. A. Kagan and E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
    [CrossRef] [PubMed]
  28. A. A. Soloviev, I. L. Snetkov, and E. A. Khazanov, “Study of a thermal lens in thin laser-ceramics discs,” Quantum Electron. 39(4), 302–308 (2009).
    [CrossRef]
  29. V. M. Mit'kin and O. Shaveleov, “Method of assessment of thermooptical constants P and Q of glasses,” Optiko-mechanicheskaya promishlennost [Optomechanical Industry] 9, 26–29 (1973) (in Russian).
  30. E. M. Dianov, “Thermal distortion of laser cavity in case of rectangular garnet slab,” Kratkiye soobsheniya po fisike [Brief Commun. on Phys.] 8, 67–75 (1971). (in Russian).
  31. “Data Sheet for Calcium Fluoride (Hellma Materials)” (2010), retrieved http://www.hellma-materials.com/html/seiten/output_adb_file.php?id=51 .
  32. “CaF2 Product Information Sheet (Corning Incorporated)” (2003), retrieved http://www.corning.com/docs/specialtymaterials/pisheets/H0607_CaF2_Product_Sheet.pdf .
  33. M. J. Weber, Handbook of Optical Materials, Laser and Optical Science and Technology Series (CRC PRESS, 2003).
  34. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
    [CrossRef]
  35. D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
    [CrossRef]
  36. A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
    [CrossRef]
  37. V. N. Kitaeva, E. V. Zharikov, and I. L. Chistyi, “The properties of crystals with garnet structure,” Phys. Status Solidi (A) 92(2), 475–488 (1985).
    [CrossRef]
  38. A. G. Vyatkin and E. A. Khazanov, “Thermally induced depolarization in sesquioxide class m3 single crystals,” J. Opt. Soc. Am. B 28(4), 805–811 (2011).
    [CrossRef]

2011

2009

A. A. Soloviev, I. L. Snetkov, and E. A. Khazanov, “Study of a thermal lens in thin laser-ceramics discs,” Quantum Electron. 39(4), 302–308 (2009).
[CrossRef]

2008

2007

I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Properties of a thermal lens in laser ceramics,” Quantum Electron. 37(7), 633–638 (2007).
[CrossRef]

2006

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[CrossRef]

2005

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, “Experimental study of thermally induced depolarization in Nd:YAG ceramics,” Opt. Express 13(16), 5983–5987 (2005).
[CrossRef] [PubMed]

I. Mukhin, O. Palashov, E. Khazanov, and I. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–94 (2005).
[CrossRef]

2004

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

I. B. Mukhin and E. A. Khazanov, “Use of thin discs in Faraday isolators for high-average-power lasers,” Quantum Electron. 34(10), 973–978 (2004).
[CrossRef]

M. A. Kagan and E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
[CrossRef] [PubMed]

2003

M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
[CrossRef]

2002

1999

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

1985

V. N. Kitaeva, E. V. Zharikov, and I. L. Chistyi, “The properties of crystals with garnet structure,” Phys. Status Solidi (A) 92(2), 475–488 (1985).
[CrossRef]

1980

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG: Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

1979

C. A. Klein, “Optical distortion coefficient of 111oriented CaF2 windows at chemical laser wavelengths,” Appl. Phys. Lett. 35(1), 52–54 (1979).
[CrossRef]

L. N. Soms and A. A. Tarasov, “Thermal strains in active elements of color-center lasers. I. Theory,” Sov. J. Quantum Electron. 9(12), 1506–1509 (1979).
[CrossRef]

1977

R. E. Joiner, J. Marburger, and W. H. Steier, “Elimination of stress-induced birefringence effects in single-crystal high-power laser windows,” Appl. Phys. Lett. 30(9), 485–486 (1977).
[CrossRef]

1974

I. B. Vitrishchak, L. N. Soms, and A. A. Tarasov, “On intrinsic polarizations of a resonator with thermally distorted active element,” Zh. Tekhn. Fiz. [J. Techn. Phys.] 44, 1055–1062 (1974) (in Russian).

1973

V. M. Mit'kin and O. Shaveleov, “Method of assessment of thermooptical constants P and Q of glasses,” Optiko-mechanicheskaya promishlennost [Optomechanical Industry] 9, 26–29 (1973) (in Russian).

1971

1970

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
[CrossRef]

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17(5), 213–215 (1970).
[CrossRef]

W. Koechner, “Absorbed pump power, thermal profile and stresses in a cw pumped Nd:YAG crystal,” Appl. Opt. 9(6), 1429–1434 (1970).
[CrossRef] [PubMed]

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[CrossRef]

1966

F. W. Quelle., “Thermal distortion of diffraction-limited optical elements,” Appl. Opt. 5(4), 633–637 (1966).
[CrossRef] [PubMed]

Y. A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, “Thermal deformation of the resonator of a solid-state laser,” J. Appl. Spectrosc. 5(1), 36–39 (1966).
[CrossRef]

Amin, R. S.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Anan'ev, Y. A.

Y. A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, “Thermal deformation of the resonator of a solid-state laser,” J. Appl. Spectrosc. 5(1), 36–39 (1966).
[CrossRef]

Andreev, N.

Andreev, N. F.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Aung, Y. L.

Chistyi, I. L.

V. N. Kitaeva, E. V. Zharikov, and I. L. Chistyi, “The properties of crystals with garnet structure,” Phys. Status Solidi (A) 92(2), 475–488 (1985).
[CrossRef]

Dianov, E. M.

E. M. Dianov, “Thermal distortion of laser cavity in case of rectangular garnet slab,” Kratkiye soobsheniya po fisike [Brief Commun. on Phys.] 8, 67–75 (1971). (in Russian).

Foster, J. D.

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
[CrossRef]

Ikesue, A.

Ivanov, I.

I. Mukhin, O. Palashov, E. Khazanov, and I. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–94 (2005).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Joiner, R. E.

R. E. Joiner, J. Marburger, and W. H. Steier, “Elimination of stress-induced birefringence effects in single-crystal high-power laser windows,” Appl. Phys. Lett. 30(9), 485–486 (1977).
[CrossRef]

Kagan, M. A.

M. A. Kagan and E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
[CrossRef] [PubMed]

M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
[CrossRef]

Karr, M. A.

Khazanov, E.

I. Mukhin, O. Palashov, E. Khazanov, and I. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–94 (2005).
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[CrossRef] [PubMed]

Khazanov, E. A.

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
[CrossRef]

A. G. Vyatkin and E. A. Khazanov, “Thermally induced depolarization in sesquioxide class m3 single crystals,” J. Opt. Soc. Am. B 28(4), 805–811 (2011).
[CrossRef]

A. A. Soloviev, I. L. Snetkov, and E. A. Khazanov, “Study of a thermal lens in thin laser-ceramics discs,” Quantum Electron. 39(4), 302–308 (2009).
[CrossRef]

A. A. Soloviev, I. L. Snetkov, V. V. Zelenogorsky, I. E. Kozhevatov, O. V. Palashov, and E. A. Khazanov, “Experimental study of thermal lens features in laser ceramics,” Opt. Express 16(25), 21012–21021 (2008).
[CrossRef] [PubMed]

I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Properties of a thermal lens in laser ceramics,” Quantum Electron. 37(7), 633–638 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, “Experimental study of thermally induced depolarization in Nd:YAG ceramics,” Opt. Express 13(16), 5983–5987 (2005).
[CrossRef] [PubMed]

M. A. Kagan and E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
[CrossRef] [PubMed]

I. B. Mukhin and E. A. Khazanov, “Use of thin discs in Faraday isolators for high-average-power lasers,” Quantum Electron. 34(10), 973–978 (2004).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
[CrossRef]

E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27(9), 716–718 (2002).
[CrossRef] [PubMed]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Kitaeva, V. N.

V. N. Kitaeva, E. V. Zharikov, and I. L. Chistyi, “The properties of crystals with garnet structure,” Phys. Status Solidi (A) 92(2), 475–488 (1985).
[CrossRef]

Klein, C. A.

C. A. Klein, “Optical distortion coefficient of 111oriented CaF2 windows at chemical laser wavelengths,” Appl. Phys. Lett. 35(1), 52–54 (1979).
[CrossRef]

Koechner, W.

Kozhevatov, I. E.

Kozlov, N. A.

Y. A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, “Thermal deformation of the resonator of a solid-state laser,” J. Appl. Spectrosc. 5(1), 36–39 (1966).
[CrossRef]

Kulagin, O. V.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Mak, A. A.

Y. A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, “Thermal deformation of the resonator of a solid-state laser,” J. Appl. Spectrosc. 5(1), 36–39 (1966).
[CrossRef]

Mal'shakov, A. N.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Marburger, J.

R. E. Joiner, J. Marburger, and W. H. Steier, “Elimination of stress-induced birefringence effects in single-crystal high-power laser windows,” Appl. Phys. Lett. 30(9), 485–486 (1977).
[CrossRef]

Massey, G. A.

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17(5), 213–215 (1970).
[CrossRef]

Mehl, O.

Mit'kin, V. M.

V. M. Mit'kin and O. Shaveleov, “Method of assessment of thermooptical constants P and Q of glasses,” Optiko-mechanicheskaya promishlennost [Optomechanical Industry] 9, 26–29 (1973) (in Russian).

Mueller, G.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Mukhin, I.

I. Mukhin, O. Palashov, E. Khazanov, and I. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–94 (2005).
[CrossRef]

Mukhin, I. B.

I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Properties of a thermal lens in laser ceramics,” Quantum Electron. 37(7), 633–638 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, “Experimental study of thermally induced depolarization in Nd:YAG ceramics,” Opt. Express 13(16), 5983–5987 (2005).
[CrossRef] [PubMed]

I. B. Mukhin and E. A. Khazanov, “Use of thin discs in Faraday isolators for high-average-power lasers,” Quantum Electron. 34(10), 973–978 (2004).
[CrossRef]

Osterink, L. M.

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
[CrossRef]

Palashov, O.

I. Mukhin, O. Palashov, E. Khazanov, and I. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–94 (2005).
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[CrossRef] [PubMed]

Palashov, O. V.

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
[CrossRef]

A. A. Soloviev, I. L. Snetkov, V. V. Zelenogorsky, I. E. Kozhevatov, O. V. Palashov, and E. A. Khazanov, “Experimental study of thermal lens features in laser ceramics,” Opt. Express 16(25), 21012–21021 (2008).
[CrossRef] [PubMed]

I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Properties of a thermal lens in laser ceramics,” Quantum Electron. 37(7), 633–638 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. Ikesue, and Y. L. Aung, “Experimental study of thermally induced depolarization in Nd:YAG ceramics,” Opt. Express 13(16), 5983–5987 (2005).
[CrossRef] [PubMed]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Poteomkin, A.

Poteomkin, A. K.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Quelle, F. W.

Reitze, D.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Reitze, D. H.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[CrossRef] [PubMed]

Rice, D. K.

W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61(6), 758–766 (1971).
[CrossRef]

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[CrossRef]

Sergeev, A.

Sergeev, A. M.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Shashkin, V. V.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG: Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

Shaveleov, O.

V. M. Mit'kin and O. Shaveleov, “Method of assessment of thermooptical constants P and Q of glasses,” Optiko-mechanicheskaya promishlennost [Optomechanical Industry] 9, 26–29 (1973) (in Russian).

Shaykin, A. A.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Shoji, I.

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[CrossRef]

Snetkov, I. L.

A. A. Soloviev, I. L. Snetkov, and E. A. Khazanov, “Study of a thermal lens in thin laser-ceramics discs,” Quantum Electron. 39(4), 302–308 (2009).
[CrossRef]

A. A. Soloviev, I. L. Snetkov, V. V. Zelenogorsky, I. E. Kozhevatov, O. V. Palashov, and E. A. Khazanov, “Experimental study of thermal lens features in laser ceramics,” Opt. Express 16(25), 21012–21021 (2008).
[CrossRef] [PubMed]

I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Properties of a thermal lens in laser ceramics,” Quantum Electron. 37(7), 633–638 (2007).
[CrossRef]

Soloviev, A. A.

Soms, L. N.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG: Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

L. N. Soms and A. A. Tarasov, “Thermal strains in active elements of color-center lasers. I. Theory,” Sov. J. Quantum Electron. 9(12), 1506–1509 (1979).
[CrossRef]

I. B. Vitrishchak, L. N. Soms, and A. A. Tarasov, “On intrinsic polarizations of a resonator with thermally distorted active element,” Zh. Tekhn. Fiz. [J. Techn. Phys.] 44, 1055–1062 (1974) (in Russian).

Starobor, A. V.

Steier, W. H.

R. E. Joiner, J. Marburger, and W. H. Steier, “Elimination of stress-induced birefringence effects in single-crystal high-power laser windows,” Appl. Phys. Lett. 30(9), 485–486 (1977).
[CrossRef]

Stepanov, A. I.

Y. A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, “Thermal deformation of the resonator of a solid-state laser,” J. Appl. Spectrosc. 5(1), 36–39 (1966).
[CrossRef]

Taira, T.

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[CrossRef]

Tanner, D.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Tanner, D. B.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Tarasov, A. A.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG: Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

L. N. Soms and A. A. Tarasov, “Thermal strains in active elements of color-center lasers. I. Theory,” Sov. J. Quantum Electron. 9(12), 1506–1509 (1979).
[CrossRef]

I. B. Vitrishchak, L. N. Soms, and A. A. Tarasov, “On intrinsic polarizations of a resonator with thermally distorted active element,” Zh. Tekhn. Fiz. [J. Techn. Phys.] 44, 1055–1062 (1974) (in Russian).

Vitrishchak, I. B.

I. B. Vitrishchak, L. N. Soms, and A. A. Tarasov, “On intrinsic polarizations of a resonator with thermally distorted active element,” Zh. Tekhn. Fiz. [J. Techn. Phys.] 44, 1055–1062 (1974) (in Russian).

Voitovich, A. V.

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[CrossRef]

Vyatkin, A. G.

Yoshida, S.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

Zelenogorsky, V. V.

A. A. Soloviev, I. L. Snetkov, V. V. Zelenogorsky, I. E. Kozhevatov, O. V. Palashov, and E. A. Khazanov, “Experimental study of thermal lens features in laser ceramics,” Opt. Express 16(25), 21012–21021 (2008).
[CrossRef] [PubMed]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Zharikov, E. V.

V. N. Kitaeva, E. V. Zharikov, and I. L. Chistyi, “The properties of crystals with garnet structure,” Phys. Status Solidi (A) 92(2), 475–488 (1985).
[CrossRef]

Zheleznov, D. S.

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28(6), 1409–1415 (2011).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. E. Joiner, J. Marburger, and W. H. Steier, “Elimination of stress-induced birefringence effects in single-crystal high-power laser windows,” Appl. Phys. Lett. 30(9), 485–486 (1977).
[CrossRef]

C. A. Klein, “Optical distortion coefficient of 111oriented CaF2 windows at chemical laser wavelengths,” Appl. Phys. Lett. 35(1), 52–54 (1979).
[CrossRef]

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[CrossRef]

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17(5), 213–215 (1970).
[CrossRef]

IEEE J. Quantum Electron.

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

J. Appl. Phys.

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41(9), 3656–3663 (1970).
[CrossRef]

J. Appl. Spectrosc.

Y. A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, “Thermal deformation of the resonator of a solid-state laser,” J. Appl. Spectrosc. 5(1), 36–39 (1966).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

JETP Lett.

I. Mukhin, O. Palashov, E. Khazanov, and I. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–94 (2005).
[CrossRef]

Kratkiye soobsheniya po fisike [Brief Commun. on Phys.]

E. M. Dianov, “Thermal distortion of laser cavity in case of rectangular garnet slab,” Kratkiye soobsheniya po fisike [Brief Commun. on Phys.] 8, 67–75 (1971). (in Russian).

Opt. Express

Opt. Lett.

Optiko-mechanicheskaya promishlennost [Optomechanical Industry]

V. M. Mit'kin and O. Shaveleov, “Method of assessment of thermooptical constants P and Q of glasses,” Optiko-mechanicheskaya promishlennost [Optomechanical Industry] 9, 26–29 (1973) (in Russian).

Phys. Status Solidi (A)

V. N. Kitaeva, E. V. Zharikov, and I. L. Chistyi, “The properties of crystals with garnet structure,” Phys. Status Solidi (A) 92(2), 475–488 (1985).
[CrossRef]

Quantum Electron.

M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
[CrossRef]

I. L. Snetkov, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Properties of a thermal lens in laser ceramics,” Quantum Electron. 37(7), 633–638 (2007).
[CrossRef]

I. B. Mukhin and E. A. Khazanov, “Use of thin discs in Faraday isolators for high-average-power lasers,” Quantum Electron. 34(10), 973–978 (2004).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36(4), 383–388 (2006).
[CrossRef]

A. A. Soloviev, I. L. Snetkov, and E. A. Khazanov, “Study of a thermal lens in thin laser-ceramics discs,” Quantum Electron. 39(4), 302–308 (2009).
[CrossRef]

Sov. J. Quantum Electron.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG: Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

L. N. Soms and A. A. Tarasov, “Thermal strains in active elements of color-center lasers. I. Theory,” Sov. J. Quantum Electron. 9(12), 1506–1509 (1979).
[CrossRef]

Zh. Tekhn. Fiz. [J. Techn. Phys.]

I. B. Vitrishchak, L. N. Soms, and A. A. Tarasov, “On intrinsic polarizations of a resonator with thermally distorted active element,” Zh. Tekhn. Fiz. [J. Techn. Phys.] 44, 1055–1062 (1974) (in Russian).

Other

W. Koechner, Solid-State Laser Engineering (Springer, Berlin, 1999).

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Termooptika tverdotel'nykh lazerov [Thermooptics of solid-state lasers] (Mashinostroenie, Leningrad, 1986). (in Russian)

J. F. Nye, Physical Properties of Crystals (Oxford University Press, London, 1964).

“Data Sheet for Calcium Fluoride (Hellma Materials)” (2010), retrieved http://www.hellma-materials.com/html/seiten/output_adb_file.php?id=51 .

“CaF2 Product Information Sheet (Corning Incorporated)” (2003), retrieved http://www.corning.com/docs/specialtymaterials/pisheets/H0607_CaF2_Product_Sheet.pdf .

M. J. Weber, Handbook of Optical Materials, Laser and Optical Science and Technology Series (CRC PRESS, 2003).

Supplementary Material (4)

» Media 1: MOV (1739 KB)     
» Media 2: MOV (2299 KB)     
» Media 3: MOV (1865 KB)     
» Media 4: MOV (1976 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Plots of φ0(θ) for ξ = 2.25 (a) and for ξ = −0.47 (c). And single-frame excerpts from video recordings of distribution Г(r,φ) as a function of angle θ for ξ = 2.25 (b) (Media 1) and for ξ = −0.47 (d) (Media 2).

Fig. 2
Fig. 2

Schematic of the experiment: 1 – calcite wedge, 2 – absorbers, 3 – crystal under study, 4 – quartz wedges; 5 – Glan prism, 6 – CCD camera. On the right – crystal geometry.

Fig. 3
Fig. 3

Experimental dependences (circle) and theoretical curves for γmax and γmin as a function of laser radiation power for TGG (a) and for CaF2 (b) with [001] orientation.

Fig. 4
Fig. 4

Experimental (red circles) and theoretical (blue curve) dependences φ0(θ) for TGG (a) and CaF2 (c), and single-frame excerpts from video recordings of experimental distribution Г(r,φ) as a function of angle θ for TGG (b) (Media 3) and for CaF2 (d) (Media 4)

Fig. 5
Fig. 5

Ψ profiles for α = 45°, β = 0…90°, ξ = −0.192 in a long rod heated by a flat-top beam with a diameter equal to 0.7 diameter of the crystal.

Fig. 6
Fig. 6

Curves for γmin(β) in (a) CaF2 (ξ = −0.47) and (b) BaF2 (ξ = −0.192) for α = 45° and different p. The characteristic orientations are shown by arrows.

Fig. 7
Fig. 7

Integral depolarization for two orientations of crystallographic axes of a CaF2 crystal. The [001] orientation in minimum depolarization: experiment – blue circles, theory – blue dashed curves. The [111] orientation: experiment – red circles, theory – red dashed curves, taking into account that one of the Euler angles differs from its value in the [111] orientation by 2 degrees. Theoretical calculation for the [111] orientation – black dashed curve.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ξ= π 44 π 11 π 12 ,
ξ p = 2 p 44 p 11 p 12 ,
p= P h λ α T κ n 0 3 4 E 1ν ( π 11 π 12 ),
ξ1  and   pp( 1+2ξ )/3.
Г= sin 2 ( 2Ψ ) sin 2 (δ/2),
δ=ph(r) 1+ ξ 2 tan 2 ( 2θ2ϕ ) 1+ tan 2 ( 2θ2ϕ ) , tan( 2Ψ2θ )=ξtan( 2ϕ2θ ),
Г= p 2 h 2 (r) 4 ( tan( 2θ )ξtan( 2θ2φ ) ) 2 ( 1+ tan 2 ( 2θ ) )( 1+ tan 2 ( 2θ2φ ) ) .
tan( 2 ϕ 0 )= ( ξ1 )tan( 2θ ) tan 2 ( 2θ )+ξ .
tan( 2θ )=± ξ .

Metrics