Abstract

Diffraction efficiency, relaxation behavior and dependence on pump-beam intensity of small-polaron based holograms are studied in thermally reduced, nominally undoped lithium niobate in the visible spectrum (λ = 488 nm). The pronounced phase gratings with diffraction efficiency up to η = (10.8 ± 1.0)% appeared upon irradiation by single ns-laser pulses (λ = 532 nm) and are comprehensively assigned to the optical formation of spatially modulated densities of small bound NbLi4+ electron polarons, NbLi4+:NbNb4+ electron bipolarons, and O hole polarons. A remarkable quadratic dependence on the pump-beam intensity is discovered for the recording configuration K || c-axis and can be explained by the electro-optic contribution of the optically generated small bound polarons. We discuss the build-up of local space-charge fields via small-polaron based bulk photovoltaic currents.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Imlau, H. Brüning, B. Schoke, R.-S. Hardt, D. Conradi, and C. Merschjann, “Hologram recording via spatial density modulation of NbLi4+/5+ antisites in lithium niobate,” Opt. Express 19, 15322–15338 (2011).
    [CrossRef] [PubMed]
  2. D. Emin, “Polaron” in McGraw-Hill Encyclopedia of Science and Technology, (McGraw-Hill, New York, 2007) 125
  3. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
    [CrossRef] [PubMed]
  4. C. Gu, Fu, and J.-R. Lien, “Correlation patterns and cross-talk noise in volume holographic optical correlators,” J. Opt. Soc. Am. A 12, 861–868 (1995).
    [CrossRef]
  5. D. Sadot and E. Boimovich, “Tunable optical filters for dense wdm networks,” IEEE Commun. Mag. 36, 50 –55 (1998).
    [CrossRef]
  6. Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C 2, 232–235 (2005).
    [CrossRef]
  7. O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter. 21, 123201 (2009).
    [CrossRef]
  8. O. F. Schirmer, “O− Bound small polarons in oxide materials,” J. Phys.: Condens. Matter 18, R667–R704 (2006).
    [CrossRef]
  9. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
    [CrossRef] [PubMed]
  10. O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation,” Phys. Rev. B 83, 165106 (2011).
    [CrossRef]
  11. S. Torbruegge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B 78, 125112 (2008).
    [CrossRef]
  12. C. Merschjann, B. Schoke, and M. Imlau, “Influence of chemical reduction on the particular number densities of light–induced small electron and hole polarons in nominally pure LiNbO3,” Phys. Rev. B 76, 085114 (2007).
    [CrossRef]
  13. J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett. 4, 1055–1059 (1987).
    [CrossRef]
  14. C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgar, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21, 015906 (2009).
    [CrossRef]
  15. F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B 59, 437–443 (1994).
    [CrossRef]
  16. R. S. Weis and T. K. Gaylord, “Lithium niobate: summery of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [CrossRef]
  17. G. Williams and D. C. Watts, “Non–symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday. Soc 66, 80–85 (1970).
    [CrossRef]
  18. O. F. Schirmer, H.-J. Reyher, and M. Woehlecke, “Characterization of point defects in photorefractive oxide crystals by paramagnetic resonance methods” in Insulting Materials for Optoelectronics: New Developments, (World Scientific Publishing, Singapore, 1995), 93–124.
    [CrossRef]
  19. L. Hesselink, S. S. Orlov, A. Lie, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
    [CrossRef] [PubMed]
  20. K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B 64, 391–407 (1997).
    [CrossRef]
  21. M. Imlau, “Defects and photorefraction: A relation with mutual benefit,” Phys. Status Solidi A 204, 642–652 (2007).
    [CrossRef]
  22. J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B 16, 1392–1397 (1999).
    [CrossRef]
  23. D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Stat. Sol. RRL 2, 284–286 (2008).
    [CrossRef]
  24. O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83, 527–530 (2006).
    [CrossRef]
  25. V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen eds., Kramers-Kronig Relations in Optical Materials Research (Springer Verlag, 2005).
  26. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  27. D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332–335 (1976).
    [CrossRef]
  28. T. Fujiwara, M. Takahasi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
    [CrossRef]
  29. C.-T. Chen, D. M. Kim, and D. von der Linde, “Efficient hologram recording in LiNbO3:Fe using optical pulses,” Appl. Phys. Lett. 34, 321–324 (1979).
    [CrossRef]
  30. D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B 95, 399–405 (2009)
    [CrossRef]
  31. C. Nölleke, J. Imbrock, and C. Denz, “Two-step holographic recording in photorefractive lithium niobate crystals using ultrashort laser pulses,” Appl. Phys. B 95, 391–397 (2009).
    [CrossRef]
  32. M. Simon, F. Jermann, and E. Krätzig, “Photorefractive effects in LiNbO3:Fe, me at high light intensities,” Opt. Mat. 4, 286 – 289 (1995).
    [CrossRef]
  33. O. F. Schirmer and D. von der Linde, “Two-photon and x-ray-induced Nb4+ and O− small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35 (1978).
    [CrossRef]
  34. D. von der Linde, O. F. Schirmer, and H. Kurz, “Intrinsic photorefractive effect of LiNbO3,” Appl. Phys. A 15, 153–156 (1978).
  35. G. A. Brost, R. A. Motes, and J. R. Rotge, “Intensity-dependent absorption and photorefractive effects in barium titanate,” J. Opt. Soc. Am. B 5, 1879–1885 (1988).
    [CrossRef]
  36. H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Communications 49, 843–847 (1984).
    [CrossRef]
  37. Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
    [CrossRef]
  38. S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105, 083102 (2009).
    [CrossRef]

2011 (2)

M. Imlau, H. Brüning, B. Schoke, R.-S. Hardt, D. Conradi, and C. Merschjann, “Hologram recording via spatial density modulation of NbLi4+/5+ antisites in lithium niobate,” Opt. Express 19, 15322–15338 (2011).
[CrossRef] [PubMed]

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation,” Phys. Rev. B 83, 165106 (2011).
[CrossRef]

2010 (1)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

2009 (5)

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgar, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21, 015906 (2009).
[CrossRef]

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter. 21, 123201 (2009).
[CrossRef]

D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B 95, 399–405 (2009)
[CrossRef]

C. Nölleke, J. Imbrock, and C. Denz, “Two-step holographic recording in photorefractive lithium niobate crystals using ultrashort laser pulses,” Appl. Phys. B 95, 391–397 (2009).
[CrossRef]

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105, 083102 (2009).
[CrossRef]

2008 (3)

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Stat. Sol. RRL 2, 284–286 (2008).
[CrossRef]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

S. Torbruegge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B 78, 125112 (2008).
[CrossRef]

2007 (2)

C. Merschjann, B. Schoke, and M. Imlau, “Influence of chemical reduction on the particular number densities of light–induced small electron and hole polarons in nominally pure LiNbO3,” Phys. Rev. B 76, 085114 (2007).
[CrossRef]

M. Imlau, “Defects and photorefraction: A relation with mutual benefit,” Phys. Status Solidi A 204, 642–652 (2007).
[CrossRef]

2006 (2)

O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83, 527–530 (2006).
[CrossRef]

O. F. Schirmer, “O− Bound small polarons in oxide materials,” J. Phys.: Condens. Matter 18, R667–R704 (2006).
[CrossRef]

2005 (1)

Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C 2, 232–235 (2005).
[CrossRef]

1999 (2)

J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B 16, 1392–1397 (1999).
[CrossRef]

T. Fujiwara, M. Takahasi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

1998 (2)

D. Sadot and E. Boimovich, “Tunable optical filters for dense wdm networks,” IEEE Commun. Mag. 36, 50 –55 (1998).
[CrossRef]

L. Hesselink, S. S. Orlov, A. Lie, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

1997 (2)

K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B 64, 391–407 (1997).
[CrossRef]

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

1995 (2)

M. Simon, F. Jermann, and E. Krätzig, “Photorefractive effects in LiNbO3:Fe, me at high light intensities,” Opt. Mat. 4, 286 – 289 (1995).
[CrossRef]

C. Gu, Fu, and J.-R. Lien, “Correlation patterns and cross-talk noise in volume holographic optical correlators,” J. Opt. Soc. Am. A 12, 861–868 (1995).
[CrossRef]

1994 (1)

F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B 59, 437–443 (1994).
[CrossRef]

1988 (1)

1987 (1)

J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett. 4, 1055–1059 (1987).
[CrossRef]

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summery of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

1984 (1)

H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Communications 49, 843–847 (1984).
[CrossRef]

1979 (1)

C.-T. Chen, D. M. Kim, and D. von der Linde, “Efficient hologram recording in LiNbO3:Fe using optical pulses,” Appl. Phys. Lett. 34, 321–324 (1979).
[CrossRef]

1978 (2)

O. F. Schirmer and D. von der Linde, “Two-photon and x-ray-induced Nb4+ and O− small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35 (1978).
[CrossRef]

D. von der Linde, O. F. Schirmer, and H. Kurz, “Intrinsic photorefractive effect of LiNbO3,” Appl. Phys. A 15, 153–156 (1978).

1976 (1)

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332–335 (1976).
[CrossRef]

1970 (1)

G. Williams and D. C. Watts, “Non–symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday. Soc 66, 80–85 (1970).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Akella, A.

L. Hesselink, S. S. Orlov, A. Lie, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

Ashihara, S.

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105, 083102 (2009).
[CrossRef]

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

Bai, Y. S.

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Beyer, O.

O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83, 527–530 (2006).
[CrossRef]

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Boimovich, E.

D. Sadot and E. Boimovich, “Tunable optical filters for dense wdm networks,” IEEE Commun. Mag. 36, 50 –55 (1998).
[CrossRef]

Brost, G. A.

Brüning, H.

Bückers, J.

D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B 95, 399–405 (2009)
[CrossRef]

Buse, K.

D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B 95, 399–405 (2009)
[CrossRef]

O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83, 527–530 (2006).
[CrossRef]

J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B 16, 1392–1397 (1999).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B 64, 391–407 (1997).
[CrossRef]

F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B 59, 437–443 (1994).
[CrossRef]

Chen, C.-T.

C.-T. Chen, D. M. Kim, and D. von der Linde, “Efficient hologram recording in LiNbO3:Fe using optical pulses,” Appl. Phys. Lett. 34, 321–324 (1979).
[CrossRef]

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

Conradi, D.

M. Imlau, H. Brüning, B. Schoke, R.-S. Hardt, D. Conradi, and C. Merschjann, “Hologram recording via spatial density modulation of NbLi4+/5+ antisites in lithium niobate,” Opt. Express 19, 15322–15338 (2011).
[CrossRef] [PubMed]

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgar, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21, 015906 (2009).
[CrossRef]

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Stat. Sol. RRL 2, 284–286 (2008).
[CrossRef]

Corradi, G.

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgar, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21, 015906 (2009).
[CrossRef]

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Stat. Sol. RRL 2, 284–286 (2008).
[CrossRef]

Denz, C.

C. Nölleke, J. Imbrock, and C. Denz, “Two-step holographic recording in photorefractive lithium niobate crystals using ultrashort laser pulses,” Appl. Phys. B 95, 391–397 (2009).
[CrossRef]

Edwin, R. P.

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332–335 (1976).
[CrossRef]

Emin, D.

D. Emin, “Polaron” in McGraw-Hill Encyclopedia of Science and Technology, (McGraw-Hill, New York, 2007) 125

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Fu,

Fujiwara, T.

T. Fujiwara, M. Takahasi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

Furukawa, Y.

T. Fujiwara, M. Takahasi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summery of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Gross, A.

S. Torbruegge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B 78, 125112 (2008).
[CrossRef]

Gu, C.

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Haertle, D.

D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B 95, 399–405 (2009)
[CrossRef]

Hardt, R.-S.

Hesselink, L.

L. Hesselink, S. S. Orlov, A. Lie, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

Hirohashi, J.

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105, 083102 (2009).
[CrossRef]

Hsieh, W.-Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

Ikushima, A. J.

T. Fujiwara, M. Takahasi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

Imbrock, J.

C. Nölleke, J. Imbrock, and C. Denz, “Two-step holographic recording in photorefractive lithium niobate crystals using ultrashort laser pulses,” Appl. Phys. B 95, 391–397 (2009).
[CrossRef]

J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B 16, 1392–1397 (1999).
[CrossRef]

Imlau, M.

M. Imlau, H. Brüning, B. Schoke, R.-S. Hardt, D. Conradi, and C. Merschjann, “Hologram recording via spatial density modulation of NbLi4+/5+ antisites in lithium niobate,” Opt. Express 19, 15322–15338 (2011).
[CrossRef] [PubMed]

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation,” Phys. Rev. B 83, 165106 (2011).
[CrossRef]

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter. 21, 123201 (2009).
[CrossRef]

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgar, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21, 015906 (2009).
[CrossRef]

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Stat. Sol. RRL 2, 284–286 (2008).
[CrossRef]

S. Torbruegge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B 78, 125112 (2008).
[CrossRef]

M. Imlau, “Defects and photorefraction: A relation with mutual benefit,” Phys. Status Solidi A 204, 642–652 (2007).
[CrossRef]

C. Merschjann, B. Schoke, and M. Imlau, “Influence of chemical reduction on the particular number densities of light–induced small electron and hole polarons in nominally pure LiNbO3,” Phys. Rev. B 76, 085114 (2007).
[CrossRef]

Jermann, F.

M. Simon, F. Jermann, and E. Krätzig, “Photorefractive effects in LiNbO3:Fe, me at high light intensities,” Opt. Mat. 4, 286 – 289 (1995).
[CrossRef]

F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B 59, 437–443 (1994).
[CrossRef]

Kachru, R.

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

Kim, D. M.

C.-T. Chen, D. M. Kim, and D. von der Linde, “Efficient hologram recording in LiNbO3:Fe using optical pulses,” Appl. Phys. Lett. 34, 321–324 (1979).
[CrossRef]

Kitamura, K.

T. Fujiwara, M. Takahasi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Koppitz, J.

J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett. 4, 1055–1059 (1987).
[CrossRef]

Krätzig, E.

J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, “Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses,” J. Opt. Soc. Am. B 16, 1392–1397 (1999).
[CrossRef]

M. Simon, F. Jermann, and E. Krätzig, “Photorefractive effects in LiNbO3:Fe, me at high light intensities,” Opt. Mat. 4, 286 – 289 (1995).
[CrossRef]

H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Communications 49, 843–847 (1984).
[CrossRef]

Kurz, H.

D. von der Linde, O. F. Schirmer, and H. Kurz, “Intrinsic photorefractive effect of LiNbO3,” Appl. Phys. A 15, 153–156 (1978).

Kuznetsov, A. I.

J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett. 4, 1055–1059 (1987).
[CrossRef]

Lande, D.

L. Hesselink, S. S. Orlov, A. Lie, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

Li, G.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Lie, A.

L. Hesselink, S. S. Orlov, A. Lie, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

Lien, J.-R.

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Maxein, D.

D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B 95, 399–405 (2009)
[CrossRef]

O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83, 527–530 (2006).
[CrossRef]

Merschjann, C.

M. Imlau, H. Brüning, B. Schoke, R.-S. Hardt, D. Conradi, and C. Merschjann, “Hologram recording via spatial density modulation of NbLi4+/5+ antisites in lithium niobate,” Opt. Express 19, 15322–15338 (2011).
[CrossRef] [PubMed]

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation,” Phys. Rev. B 83, 165106 (2011).
[CrossRef]

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter. 21, 123201 (2009).
[CrossRef]

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgar, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21, 015906 (2009).
[CrossRef]

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Stat. Sol. RRL 2, 284–286 (2008).
[CrossRef]

S. Torbruegge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B 78, 125112 (2008).
[CrossRef]

C. Merschjann, B. Schoke, and M. Imlau, “Influence of chemical reduction on the particular number densities of light–induced small electron and hole polarons in nominally pure LiNbO3,” Phys. Rev. B 76, 085114 (2007).
[CrossRef]

Motes, R. A.

Neurgaonkar, R. R.

L. Hesselink, S. S. Orlov, A. Lie, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

Nölleke, C.

C. Nölleke, J. Imbrock, and C. Denz, “Two-step holographic recording in photorefractive lithium niobate crystals using ultrashort laser pulses,” Appl. Phys. B 95, 391–397 (2009).
[CrossRef]

Norwood, R. A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Ohama, M.

T. Fujiwara, M. Takahasi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

Orlov, S. S.

L. Hesselink, S. S. Orlov, A. Lie, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

Peyghambarian, N.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Polgar, K.

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgar, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21, 015906 (2009).
[CrossRef]

Polgár, K.

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Stat. Sol. RRL 2, 284–286 (2008).
[CrossRef]

Qiu, Y.

Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C 2, 232–235 (2005).
[CrossRef]

Rachwal, B.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

Reyher, H.-J.

O. F. Schirmer, H.-J. Reyher, and M. Woehlecke, “Characterization of point defects in photorefractive oxide crystals by paramagnetic resonance methods” in Insulting Materials for Optoelectronics: New Developments, (World Scientific Publishing, Singapore, 1995), 93–124.
[CrossRef]

Riccius, H. D.

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332–335 (1976).
[CrossRef]

Rokutanda, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Rotge, J. R.

Rytz, D.

S. Torbruegge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B 78, 125112 (2008).
[CrossRef]

Sadot, D.

D. Sadot and E. Boimovich, “Tunable optical filters for dense wdm networks,” IEEE Commun. Mag. 36, 50 –55 (1998).
[CrossRef]

Sasamoto, S.

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105, 083102 (2009).
[CrossRef]

Schirmer, O. F.

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation,” Phys. Rev. B 83, 165106 (2011).
[CrossRef]

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter. 21, 123201 (2009).
[CrossRef]

S. Torbruegge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B 78, 125112 (2008).
[CrossRef]

O. F. Schirmer, “O− Bound small polarons in oxide materials,” J. Phys.: Condens. Matter 18, R667–R704 (2006).
[CrossRef]

J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett. 4, 1055–1059 (1987).
[CrossRef]

O. F. Schirmer and D. von der Linde, “Two-photon and x-ray-induced Nb4+ and O− small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35 (1978).
[CrossRef]

D. von der Linde, O. F. Schirmer, and H. Kurz, “Intrinsic photorefractive effect of LiNbO3,” Appl. Phys. A 15, 153–156 (1978).

O. F. Schirmer, H.-J. Reyher, and M. Woehlecke, “Characterization of point defects in photorefractive oxide crystals by paramagnetic resonance methods” in Insulting Materials for Optoelectronics: New Developments, (World Scientific Publishing, Singapore, 1995), 93–124.
[CrossRef]

Schoke, B.

M. Imlau, H. Brüning, B. Schoke, R.-S. Hardt, D. Conradi, and C. Merschjann, “Hologram recording via spatial density modulation of NbLi4+/5+ antisites in lithium niobate,” Opt. Express 19, 15322–15338 (2011).
[CrossRef] [PubMed]

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgar, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21, 015906 (2009).
[CrossRef]

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter. 21, 123201 (2009).
[CrossRef]

S. Torbruegge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B 78, 125112 (2008).
[CrossRef]

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Stat. Sol. RRL 2, 284–286 (2008).
[CrossRef]

C. Merschjann, B. Schoke, and M. Imlau, “Influence of chemical reduction on the particular number densities of light–induced small electron and hole polarons in nominally pure LiNbO3,” Phys. Rev. B 76, 085114 (2007).
[CrossRef]

Siddiqui, O.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

Simon, M.

M. Simon, F. Jermann, and E. Krätzig, “Photorefractive effects in LiNbO3:Fe, me at high light intensities,” Opt. Mat. 4, 286 – 289 (1995).
[CrossRef]

Smith, D. S.

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332–335 (1976).
[CrossRef]

St Hilaire, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Takahasi, M.

T. Fujiwara, M. Takahasi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

Tay, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Thomas, J.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Torbruegge, S.

S. Torbruegge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B 78, 125112 (2008).
[CrossRef]

Tunc, A. V.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Ucer, K. B.

Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C 2, 232–235 (2005).
[CrossRef]

Vernay, S.

S. Torbruegge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B 78, 125112 (2008).
[CrossRef]

von der Linde, D.

C.-T. Chen, D. M. Kim, and D. von der Linde, “Efficient hologram recording in LiNbO3:Fe using optical pulses,” Appl. Phys. Lett. 34, 321–324 (1979).
[CrossRef]

O. F. Schirmer and D. von der Linde, “Two-photon and x-ray-induced Nb4+ and O− small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35 (1978).
[CrossRef]

D. von der Linde, O. F. Schirmer, and H. Kurz, “Intrinsic photorefractive effect of LiNbO3,” Appl. Phys. A 15, 153–156 (1978).

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Vormann, H.

H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Communications 49, 843–847 (1984).
[CrossRef]

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Watts, D. C.

G. Williams and D. C. Watts, “Non–symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday. Soc 66, 80–85 (1970).
[CrossRef]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summery of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Wesemann, V.

S. Torbruegge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B 78, 125112 (2008).
[CrossRef]

Wevering, S.

Williams, G.

G. Williams and D. C. Watts, “Non–symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday. Soc 66, 80–85 (1970).
[CrossRef]

Williams, R. T.

Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C 2, 232–235 (2005).
[CrossRef]

Woehlecke, M.

O. F. Schirmer, H.-J. Reyher, and M. Woehlecke, “Characterization of point defects in photorefractive oxide crystals by paramagnetic resonance methods” in Insulting Materials for Optoelectronics: New Developments, (World Scientific Publishing, Singapore, 1995), 93–124.
[CrossRef]

Woike, T.

O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83, 527–530 (2006).
[CrossRef]

Yamamoto, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

Appl. Phys. A (2)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summery of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

D. von der Linde, O. F. Schirmer, and H. Kurz, “Intrinsic photorefractive effect of LiNbO3,” Appl. Phys. A 15, 153–156 (1978).

Appl. Phys. B (5)

D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B 95, 399–405 (2009)
[CrossRef]

C. Nölleke, J. Imbrock, and C. Denz, “Two-step holographic recording in photorefractive lithium niobate crystals using ultrashort laser pulses,” Appl. Phys. B 95, 391–397 (2009).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B 64, 391–407 (1997).
[CrossRef]

O. Beyer, D. Maxein, T. Woike, and K. Buse, “Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale,” Appl. Phys. B 83, 527–530 (2006).
[CrossRef]

F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B 59, 437–443 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

C.-T. Chen, D. M. Kim, and D. von der Linde, “Efficient hologram recording in LiNbO3:Fe using optical pulses,” Appl. Phys. Lett. 34, 321–324 (1979).
[CrossRef]

O. F. Schirmer and D. von der Linde, “Two-photon and x-ray-induced Nb4+ and O− small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35 (1978).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Electron. Lett. (1)

T. Fujiwara, M. Takahasi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

Europhys. Lett. (1)

J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett. 4, 1055–1059 (1987).
[CrossRef]

IEEE Commun. Mag. (1)

D. Sadot and E. Boimovich, “Tunable optical filters for dense wdm networks,” IEEE Commun. Mag. 36, 50 –55 (1998).
[CrossRef]

J. Appl. Phys. (1)

S. Sasamoto, J. Hirohashi, and S. Ashihara, “Polaron dynamics in lithium niobate upon femtosecond pulse irradiation: Influence of magnesium doping and stoichiometry control,” J. Appl. Phys. 105, 083102 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys.: Condens. Matter (2)

O. F. Schirmer, “O− Bound small polarons in oxide materials,” J. Phys.: Condens. Matter 18, R667–R704 (2006).
[CrossRef]

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgar, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21, 015906 (2009).
[CrossRef]

J. Phys.: Condens. Matter. (1)

O. F. Schirmer, M. Imlau, C. Merschjann, and B. Schoke, “Electron small polarons and bipolarons in LiNbO3,” J. Phys.: Condens. Matter. 21, 123201 (2009).
[CrossRef]

Nature (2)

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451, 694–698 (2008).
[CrossRef] [PubMed]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef] [PubMed]

Opt. Commun. (1)

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332–335 (1976).
[CrossRef]

Opt. Express (1)

Opt. Mat. (1)

M. Simon, F. Jermann, and E. Krätzig, “Photorefractive effects in LiNbO3:Fe, me at high light intensities,” Opt. Mat. 4, 286 – 289 (1995).
[CrossRef]

Phys. Rev. B (3)

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation,” Phys. Rev. B 83, 165106 (2011).
[CrossRef]

S. Torbruegge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B 78, 125112 (2008).
[CrossRef]

C. Merschjann, B. Schoke, and M. Imlau, “Influence of chemical reduction on the particular number densities of light–induced small electron and hole polarons in nominally pure LiNbO3,” Phys. Rev. B 76, 085114 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Phys. Stat. Sol. RRL (1)

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Stat. Sol. RRL 2, 284–286 (2008).
[CrossRef]

Phys. Status Solidi A (1)

M. Imlau, “Defects and photorefraction: A relation with mutual benefit,” Phys. Status Solidi A 204, 642–652 (2007).
[CrossRef]

Phys. Status Solidi C (1)

Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C 2, 232–235 (2005).
[CrossRef]

Science (1)

L. Hesselink, S. S. Orlov, A. Lie, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

Solid State Communications (1)

H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Communications 49, 843–847 (1984).
[CrossRef]

Trans. Faraday. Soc (1)

G. Williams and D. C. Watts, “Non–symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Trans. Faraday. Soc 66, 80–85 (1970).
[CrossRef]

Other (3)

O. F. Schirmer, H.-J. Reyher, and M. Woehlecke, “Characterization of point defects in photorefractive oxide crystals by paramagnetic resonance methods” in Insulting Materials for Optoelectronics: New Developments, (World Scientific Publishing, Singapore, 1995), 93–124.
[CrossRef]

D. Emin, “Polaron” in McGraw-Hill Encyclopedia of Science and Technology, (McGraw-Hill, New York, 2007) 125

V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen eds., Kramers-Kronig Relations in Optical Materials Research (Springer Verlag, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Semilogarithmic plot of the temporal dynamics of the normalized intensity of the first order diffracted beam I(1st)/I0 for (a) Kc-axis (s-polarization) and (b) K || c-axis (p-polarization). Recording conditions: λp = 532 nm, ep || c-axis and Bragg angle ΘB = 6.3°. Ip = IR + IS = 380 GW/m2. Bragg-matched probing conditions: λ = 488 nm, e || c-axis. The solid lines correspond to fits of Eq. (1) to the data. The insets sketch the respective recording and probing configurations.

Fig. 2
Fig. 2

Normalized intensity of the first order diffracted beam I(1st)/I0 at t = 1μs as a function of pump intensity Ip for (a) Kc-axis (s-polarization) and (b) K || c-axis (p-polarization) using the same recording and probing condition as in Fig. 1. The solid line corresponds to a fit of a saturation function Eq. (6) while the dashed line represents a fit of a quadratic intensity dependence to the data.

Fig. 3
Fig. 3

(a) Spatial modulation of the absorption coefficient α(x) with amplitude α1 and average value of α0 +α1. The overall absorption change in the maximum of the fringe pattern αli is assembled from absorption changes of the individual polaron types: αGP,HP,BP. All absorption contributions are related to λ = 488 nm and extraordinary light polarization. (b) Sinusoidal intensity pattern I(x) applied for exposure with average intensity Ip = IR + IS and modulation depth unity resulting in a modulated density of polarons and, therefore, a modulated change of absorption α(x). This modulated absorption change is linked to a modulated change of the index of refraction n(x) via the Kramers-Kronig relation as shown in figure 7 in Ref. [1].

Fig. 4
Fig. 4

(a) Dispersion of the diffraction efficiency ηest.(λ) (solid line) that has been estimated according to Eq. (3) and the parameters published in Ref. [1]. The grey area denotes the error for ηest.(λ). The experimentally determined efficiencies at a probing wavelength of 488 nm (△, this work) and 785 nm (□, Ref. [1]) have been added for comparison. (b) Dispersion of the ratio of the diffraction efficiency for a pure absorption grating and a pure index grating. A predominant contribution of the absorption grating is found at 785 nm while amplitude and index grating likewise contribute to the overall efficiency at 488 nm.

Tables (2)

Tables Icon

Table 1 Absorption features and polaron number densities of the reduced lithium niobate sample under study in the steady state at room temperature. The sample is identical to the one used in Ref. [1].

Tables Icon

Table 2 Parameters obtained from fitting Eq. (1) to the experimental data depicted in Fig. 1 and of Eq. (6) to the data in Fig. 2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( 1 st ) ( t ) I 0 = I ( 1 st ) ( t = 0 ) I 0 exp [ ( t τ ) β ]
S | ns 488 nm = δ η δ t 1 I p d 8.4 cm / J ,
η ( λ ) = exp ( 2 ( α 0 ( λ ) + α 1 ( λ ) ) d h cos Θ B ) × [ sin 2 ( π n 1 ( λ ) d h λ cos Θ B ) + sinh 2 ( α 1 ( λ ) d h 2 cos Θ B ) ] .
N li , GP = 2 N li , BP .
N li , BP = N BP [ 1 exp ( I p I c ) ]
η ( I p ) ( c 1 n 1 ( I p ) ) 2 + ( c 2 α 1 ( I p ) ) 2 = η sat . [ 1 exp ( I p I c ) ] 2 .

Metrics