Abstract

A novel fiber sensor capable of simultaneously measuring force and temperature is proposed and investigated. A section of high-index-fluid-filled photonic bandgap fiber (HIFF-PBGF) is inserted in a fiber loop to act as the sensing head. Photonic bandgap effect of the HIFF-PBGF as well as Fabry-Perot interferometer (FPI) introduced by controlling the splicing between the HIFF-PBGF and single mode fiber is used for achieving force and temperature discrimination. Taking advantage of the bandgap being high sensitivity to the temperature, a high temperature sensitivity of more than −1.94 dB/°C is achieved, which is the highest based on the intensity measurement, to our best knowledge. Meanwhile, a force sensitivity of 3.25 nm/N (~3.9 pm/με) is obtained, which could be enhanced by controlling the FPI shape. The device also has the strong points of easy fabrication, compact structure and high interference fringe contrast.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Chen, L. Liu, H. Jia, J. Yu, L. Xu, and W. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett. 16(1), 221–223 (2004).
    [CrossRef]
  2. O. Frazao and J. L. Santos, “Simultaneous measurement of strain and temperature using a Bragg grating structure written in germanosilicate ðbres,” J. Opt. A, Pure Appl. Opt. 6(6), 553–556 (2004).
    [CrossRef]
  3. J. Xu, Y. G. Liu, Z. Wang, and B. Tai, “Simultaneous force and temperature measurement using long-period grating written on the joint of a microstructured optical fiber and a single mode fiber,” Appl. Opt. 49(3), 492–496 (2010).
    [CrossRef] [PubMed]
  4. B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
    [CrossRef]
  5. P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using Bragg gratings written in Germanosilicate and Boron-Codoped Germanosilicate fibers,” IEEE Photon. Technol. Lett. 11(12), 1635–1637 (1999).
    [CrossRef]
  6. X. Shu, Y. Liu, D. Zhao, B. Gwandu, F. Floreani, L. Zhang, and I. Bennion, “Dependence of temperature and strain coefficients on fiber grating type and its application to simultaneous temperature and strain measurement,” Opt. Lett. 27(9), 701–703 (2002).
    [CrossRef] [PubMed]
  7. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8(9), 1223–1225 (1996).
    [CrossRef]
  8. D.-P. Zhou, L. Wei, W.-K. Liu, Y. Liu, and J. W. Y. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47(10), 1668–1672 (2008).
    [CrossRef] [PubMed]
  9. B. Dong, J. Hao, C.-Y. Liaw, B. Lin, and S. C. Tjin, “Simultaneous strain and temperature measurement using a compact photonic crystal fiber inter-modal interferometer and a fiber Bragg grating,” Appl. Opt. 49(32), 6232–6235 (2010).
    [CrossRef] [PubMed]
  10. D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Simultaneous measurement of strain and temperature based on a ðber Bragg grating combined with a high-birefringence ðber loop mirror,” Opt. Commun. 281(18), 4640–4643 (2008).
    [CrossRef]
  11. M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-Based Fabry–Pérot Interferometric sensor for Strain Measurement at High Temperatures,” IEEE Photon. Technol. Lett. 23(11), 700–702 (2011).
    [CrossRef]
  12. F. C. Favero, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Fabry-Perot interferometers built by photonic crystal fiber pressurization during fusion splicing,” Opt. Lett. 36(21), 4191–4193 (2011).
    [CrossRef] [PubMed]
  13. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
    [CrossRef] [PubMed]
  14. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47(29), 5321–5324 (2008).
    [CrossRef] [PubMed]
  15. Q. Shi and B. T. Kuhlmey, “Optimization of photonic bandgap ðber long period grating refractive-index sensors,” Opt. Commun. 282(24), 4723–4728 (2009).
    [CrossRef]
  16. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  17. T. Han, Y.-G. Liu, Z. Wang, B. Zou, B. Tai, and B. Liu, “Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 35(12), 2061–2063 (2010).
    [CrossRef] [PubMed]
  18. M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
    [CrossRef]
  19. J. Jung, H. Nam, J. H. Lee, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38(13), 2749–2751 (1999).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

F. C. Favero, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Fabry-Perot interferometers built by photonic crystal fiber pressurization during fusion splicing,” Opt. Lett. 36(21), 4191–4193 (2011).
[CrossRef] [PubMed]

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-Based Fabry–Pérot Interferometric sensor for Strain Measurement at High Temperatures,” IEEE Photon. Technol. Lett. 23(11), 700–702 (2011).
[CrossRef]

2010 (3)

2009 (2)

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[CrossRef] [PubMed]

Q. Shi and B. T. Kuhlmey, “Optimization of photonic bandgap ðber long period grating refractive-index sensors,” Opt. Commun. 282(24), 4723–4728 (2009).
[CrossRef]

2008 (3)

2004 (2)

G. Chen, L. Liu, H. Jia, J. Yu, L. Xu, and W. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett. 16(1), 221–223 (2004).
[CrossRef]

O. Frazao and J. L. Santos, “Simultaneous measurement of strain and temperature using a Bragg grating structure written in germanosilicate ðbres,” J. Opt. A, Pure Appl. Opt. 6(6), 553–556 (2004).
[CrossRef]

2002 (1)

2000 (1)

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[CrossRef]

1999 (2)

P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using Bragg gratings written in Germanosilicate and Boron-Codoped Germanosilicate fibers,” IEEE Photon. Technol. Lett. 11(12), 1635–1637 (1999).
[CrossRef]

J. Jung, H. Nam, J. H. Lee, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38(13), 2749–2751 (1999).
[CrossRef] [PubMed]

1996 (1)

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8(9), 1223–1225 (1996).
[CrossRef]

1986 (1)

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Araujo, F. M.

P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using Bragg gratings written in Germanosilicate and Boron-Codoped Germanosilicate fibers,” IEEE Photon. Technol. Lett. 11(12), 1635–1637 (1999).
[CrossRef]

Araujo, L.

Bennion, I.

Bouwmans, G.

Cavaleiro, P. M.

P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using Bragg gratings written in Germanosilicate and Boron-Codoped Germanosilicate fibers,” IEEE Photon. Technol. Lett. 11(12), 1635–1637 (1999).
[CrossRef]

Chen, G.

G. Chen, L. Liu, H. Jia, J. Yu, L. Xu, and W. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett. 16(1), 221–223 (2004).
[CrossRef]

Deng, M.

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-Based Fabry–Pérot Interferometric sensor for Strain Measurement at High Temperatures,” IEEE Photon. Technol. Lett. 23(11), 700–702 (2011).
[CrossRef]

Dong, B.

Dong, X.

Dong, X.-Y.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[CrossRef]

Du, J.

Duguay, M. A.

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Eggleton, B. J.

Farahi, F.

P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using Bragg gratings written in Germanosilicate and Boron-Codoped Germanosilicate fibers,” IEEE Photon. Technol. Lett. 11(12), 1635–1637 (1999).
[CrossRef]

Favero, F. C.

Ferreira, L. A.

P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using Bragg gratings written in Germanosilicate and Boron-Codoped Germanosilicate fibers,” IEEE Photon. Technol. Lett. 11(12), 1635–1637 (1999).
[CrossRef]

Finazzi, V.

Floreani, F.

Frazao, O.

O. Frazao and J. L. Santos, “Simultaneous measurement of strain and temperature using a Bragg grating structure written in germanosilicate ðbres,” J. Opt. A, Pure Appl. Opt. 6(6), 553–556 (2004).
[CrossRef]

Guan, B.-O.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[CrossRef]

Gwandu, B.

Han, T.

Hao, J.

Jia, H.

G. Chen, L. Liu, H. Jia, J. Yu, L. Xu, and W. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett. 16(1), 221–223 (2004).
[CrossRef]

Jung, J.

Kersey, A. D.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8(9), 1223–1225 (1996).
[CrossRef]

Koch, T. L.

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Kuhlmey, B. T.

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[CrossRef] [PubMed]

Q. Shi and B. T. Kuhlmey, “Optimization of photonic bandgap ðber long period grating refractive-index sensors,” Opt. Commun. 282(24), 4723–4728 (2009).
[CrossRef]

Kukubun, Y.

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Lee, B.

Lee, J. H.

Liaw, C.-Y.

Lin, B.

Lit, J. W. Y.

D.-P. Zhou, L. Wei, W.-K. Liu, Y. Liu, and J. W. Y. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47(10), 1668–1672 (2008).
[CrossRef] [PubMed]

D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Simultaneous measurement of strain and temperature based on a ðber Bragg grating combined with a high-birefringence ðber loop mirror,” Opt. Commun. 281(18), 4640–4643 (2008).
[CrossRef]

Liu, B.

Liu, L.

G. Chen, L. Liu, H. Jia, J. Yu, L. Xu, and W. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett. 16(1), 221–223 (2004).
[CrossRef]

Liu, W.-K.

D.-P. Zhou, L. Wei, W.-K. Liu, Y. Liu, and J. W. Y. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47(10), 1668–1672 (2008).
[CrossRef] [PubMed]

D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Simultaneous measurement of strain and temperature based on a ðber Bragg grating combined with a high-birefringence ðber loop mirror,” Opt. Commun. 281(18), 4640–4643 (2008).
[CrossRef]

Liu, Y.

Liu, Y. G.

Liu, Y.-G.

Nam, H.

Park, N.

Patrick, H. J.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8(9), 1223–1225 (1996).
[CrossRef]

Pedrazzani, J. R.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8(9), 1223–1225 (1996).
[CrossRef]

Pfeiffer, L.

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Pruneri, V.

Rao, Y.-J.

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-Based Fabry–Pérot Interferometric sensor for Strain Measurement at High Temperatures,” IEEE Photon. Technol. Lett. 23(11), 700–702 (2011).
[CrossRef]

Santos, J. L.

O. Frazao and J. L. Santos, “Simultaneous measurement of strain and temperature using a Bragg grating structure written in germanosilicate ðbres,” J. Opt. A, Pure Appl. Opt. 6(6), 553–556 (2004).
[CrossRef]

P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using Bragg gratings written in Germanosilicate and Boron-Codoped Germanosilicate fibers,” IEEE Photon. Technol. Lett. 11(12), 1635–1637 (1999).
[CrossRef]

Shi, Q.

Q. Shi and B. T. Kuhlmey, “Optimization of photonic bandgap ðber long period grating refractive-index sensors,” Opt. Commun. 282(24), 4723–4728 (2009).
[CrossRef]

Shu, X.

Tai, B.

Tam, H.-Y.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[CrossRef]

Tang, C.-P.

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-Based Fabry–Pérot Interferometric sensor for Strain Measurement at High Temperatures,” IEEE Photon. Technol. Lett. 23(11), 700–702 (2011).
[CrossRef]

Tao, X.-M.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[CrossRef]

Tjin, S. C.

Vengsarkar, A. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8(9), 1223–1225 (1996).
[CrossRef]

Villatoro, J.

Wang, W.

G. Chen, L. Liu, H. Jia, J. Yu, L. Xu, and W. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett. 16(1), 221–223 (2004).
[CrossRef]

Wang, Z.

Wei, L.

D.-P. Zhou, L. Wei, W.-K. Liu, Y. Liu, and J. W. Y. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47(10), 1668–1672 (2008).
[CrossRef] [PubMed]

D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Simultaneous measurement of strain and temperature based on a ðber Bragg grating combined with a high-birefringence ðber loop mirror,” Opt. Commun. 281(18), 4640–4643 (2008).
[CrossRef]

Williams, G. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8(9), 1223–1225 (1996).
[CrossRef]

Wu, D. K. C.

Xu, J.

Xu, L.

G. Chen, L. Liu, H. Jia, J. Yu, L. Xu, and W. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett. 16(1), 221–223 (2004).
[CrossRef]

Yu, J.

G. Chen, L. Liu, H. Jia, J. Yu, L. Xu, and W. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett. 16(1), 221–223 (2004).
[CrossRef]

Zhang, L.

Zhao, D.

Zhou, D.-P.

D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Simultaneous measurement of strain and temperature based on a ðber Bragg grating combined with a high-birefringence ðber loop mirror,” Opt. Commun. 281(18), 4640–4643 (2008).
[CrossRef]

D.-P. Zhou, L. Wei, W.-K. Liu, Y. Liu, and J. W. Y. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47(10), 1668–1672 (2008).
[CrossRef] [PubMed]

Zhu, T.

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-Based Fabry–Pérot Interferometric sensor for Strain Measurement at High Temperatures,” IEEE Photon. Technol. Lett. 23(11), 700–702 (2011).
[CrossRef]

Zou, B.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “PCF-Based Fabry–Pérot Interferometric sensor for Strain Measurement at High Temperatures,” IEEE Photon. Technol. Lett. 23(11), 700–702 (2011).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8(9), 1223–1225 (1996).
[CrossRef]

G. Chen, L. Liu, H. Jia, J. Yu, L. Xu, and W. Wang, “Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber,” IEEE Photon. Technol. Lett. 16(1), 221–223 (2004).
[CrossRef]

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(6), 675–677 (2000).
[CrossRef]

P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using Bragg gratings written in Germanosilicate and Boron-Codoped Germanosilicate fibers,” IEEE Photon. Technol. Lett. 11(12), 1635–1637 (1999).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

O. Frazao and J. L. Santos, “Simultaneous measurement of strain and temperature using a Bragg grating structure written in germanosilicate ðbres,” J. Opt. A, Pure Appl. Opt. 6(6), 553–556 (2004).
[CrossRef]

Opt. Commun. (2)

D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Simultaneous measurement of strain and temperature based on a ðber Bragg grating combined with a high-birefringence ðber loop mirror,” Opt. Commun. 281(18), 4640–4643 (2008).
[CrossRef]

Q. Shi and B. T. Kuhlmey, “Optimization of photonic bandgap ðber long period grating refractive-index sensors,” Opt. Commun. 282(24), 4723–4728 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the experimental setup. Insets are microscope image of the used PCF and the FPI with the cavity width of 18 μm and height of 40 μm. (b) Transmission spectra of the experimental setup based on the HIFF-PCF combined with the FPI (black symbol curves) and that of the HIFF-PCF (blue curves). Red curves show the reflection spectrum of the FPI.

Fig. 2
Fig. 2

(a) Transmission spectra of the interference dips under different forces. The inset is the dip A. (b) Characteristics of the dip A’s dependence on the force (black circled points) and temperature (blue square points). The black line is the linear fit.

Fig. 3
Fig. 3

(a) Transmission spectra of the sensing setup at different temperatures. (b) Transmission losses of the dips B, C and D with the temperature, respectively. The red lines are the linear fit of the experimental results.

Fig. 4
Fig. 4

The response of the loss of interference dip B to the force at a certain temperature.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ ΔT ΔF ]= [ K TA K FA K TB K FB ] -1 [ Δ λ A Δ L B ].
[ ΔT ΔF ]= 1 -6.305 [ 1.99 3.25 -1.94 0 ][ Δ λ A Δ L B ],

Metrics