Abstract

A novel optoelectronic oscillator (OEO) using cascaded recirculating delay lines (RDLs) is proposed and experimentally demonstrated. In the proposed OEO, instead of the use of an electronic microwave ðlter, two infinite impulse response (IIR) photonic microwave ðlters (PMFs) formed by two RDLs are employed to select oscillation frequencies. Specifically, an amplified spontaneous emission (ASE) source is adopted to avoid self-interference of each RDL, and two approximately equal gain RDLs are employed to reduce the influence of mutual interference between the two RDLs. Therefore, a stable microwave signal can be generated from the OEO loop. In the experiment, by tuning the lengths of RDLs, microwave signals at different frequencies, such as 194.1MHz, 648.5MHz and 2.99GHz, have been generated. The phase noise performance of the generated microwave signal is also investigated. The proposed approach has the potential for the generation of microwave signals up to tens of GHz with the use of integrated micro-ring devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [CrossRef]
  2. X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
    [CrossRef]
  3. M. Shin and P. Kumar, “Optical microwave frequency up-conversion via a frequency-doubling optoelectronic oscillator,” IEEE Photon. Technol. Lett. 19(21), 1726–1728 (2007).
    [CrossRef]
  4. S. L. Pan and J. P. Yao, “Optical clock recovery using a polarization-modulator-based frequency-doubling optoelectronic oscillator,” J. Lightwave Technol. 27(16), 3531–3539 (2009).
    [CrossRef]
  5. L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
    [CrossRef]
  6. L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
    [CrossRef]
  7. H. Tsuchida and M. Suzuki, “40-Gb/s optical clock recovery using an injection-locked optoelectronic oscillator,” IEEE Photon. Technol. Lett. 17(1), 211–213 (2005).
    [CrossRef]
  8. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator employing reciprocating optical modulator for millimetre-wave generation,” Electron. Lett. 43(19), 1031–1033 (2007).
    [CrossRef]
  9. M. Li, W. Z. Li, and J. P. Yao, “A tunable optoelectronic oscillator based on a high-Q spectrum sliced photonic microwave transversal filter,” Proc. MWP 2011, 304–307 (2011).
  10. W. Z. Li and J. P. Yao, “An optically tunable optoelectronic oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010).
    [CrossRef]
  11. E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, Y. Yu, X. Li, and D. X. Huang, “Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops,” Opt. Lett. 35(8), 1242–1244 (2010).
    [CrossRef] [PubMed]
  12. E. H. W. Chan, “High-order inðnite impulse response microwave photonic filters,” J. Lightwave Technol. 29(12), 1775–1782 (2011).
    [CrossRef]
  13. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [CrossRef]
  14. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
    [CrossRef]
  15. C. Caspar and E. J. Bachus, “Fiber-optic micro-ring-resonator with 2mm diameter,” Electron. Lett. 25(22), 1506–1508 (1989).
    [CrossRef]
  16. J. Capmany, “On the cascade of incoherent discrete-time microwave photonic filters,” J. Lightwave Technol. 24(7), 2564–2578 (2006).
    [CrossRef]

2011 (2)

L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[CrossRef]

E. H. W. Chan, “High-order inðnite impulse response microwave photonic filters,” J. Lightwave Technol. 29(12), 1775–1782 (2011).
[CrossRef]

2010 (2)

2009 (1)

2007 (2)

M. Shin and P. Kumar, “Optical microwave frequency up-conversion via a frequency-doubling optoelectronic oscillator,” IEEE Photon. Technol. Lett. 19(21), 1726–1728 (2007).
[CrossRef]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator employing reciprocating optical modulator for millimetre-wave generation,” Electron. Lett. 43(19), 1031–1033 (2007).
[CrossRef]

2006 (2)

2005 (1)

H. Tsuchida and M. Suzuki, “40-Gb/s optical clock recovery using an injection-locked optoelectronic oscillator,” IEEE Photon. Technol. Lett. 17(1), 211–213 (2005).
[CrossRef]

2003 (1)

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

2002 (1)

2000 (1)

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[CrossRef]

1996 (1)

1989 (1)

C. Caspar and E. J. Bachus, “Fiber-optic micro-ring-resonator with 2mm diameter,” Electron. Lett. 25(22), 1506–1508 (1989).
[CrossRef]

Bachus, E. J.

C. Caspar and E. J. Bachus, “Fiber-optic micro-ring-resonator with 2mm diameter,” Electron. Lett. 25(22), 1506–1508 (1989).
[CrossRef]

Capmany, J.

Caspar, C.

C. Caspar and E. J. Bachus, “Fiber-optic micro-ring-resonator with 2mm diameter,” Electron. Lett. 25(22), 1506–1508 (1989).
[CrossRef]

Chan, E. H. W.

Dalton, L. R.

Dong, Y.

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

Gao, Y. Z.

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

Huang, D. X.

Huo, L.

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator employing reciprocating optical modulator for millimetre-wave generation,” Electron. Lett. 43(19), 1031–1033 (2007).
[CrossRef]

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator employing reciprocating optical modulator for millimetre-wave generation,” Electron. Lett. 43(19), 1031–1033 (2007).
[CrossRef]

Kumar, P.

M. Shin and P. Kumar, “Optical microwave frequency up-conversion via a frequency-doubling optoelectronic oscillator,” IEEE Photon. Technol. Lett. 19(21), 1726–1728 (2007).
[CrossRef]

Li, W.

L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[CrossRef]

Li, W. Z.

Li, X.

Liu, J. G.

L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[CrossRef]

Lou, C. Y.

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

Maleki, L.

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[CrossRef]

Ortega, B.

Pan, S. L.

Pastor, D.

Rabiei, P.

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator employing reciprocating optical modulator for millimetre-wave generation,” Electron. Lett. 43(19), 1031–1033 (2007).
[CrossRef]

Shin, M.

M. Shin and P. Kumar, “Optical microwave frequency up-conversion via a frequency-doubling optoelectronic oscillator,” IEEE Photon. Technol. Lett. 19(21), 1726–1728 (2007).
[CrossRef]

Steier, W. H.

Suzuki, M.

H. Tsuchida and M. Suzuki, “40-Gb/s optical clock recovery using an injection-locked optoelectronic oscillator,” IEEE Photon. Technol. Lett. 17(1), 211–213 (2005).
[CrossRef]

Tsuchida, H.

H. Tsuchida and M. Suzuki, “40-Gb/s optical clock recovery using an injection-locked optoelectronic oscillator,” IEEE Photon. Technol. Lett. 17(1), 211–213 (2005).
[CrossRef]

Wang, L. X.

L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[CrossRef]

Xu, E. M.

Yao, J. P.

Yao, X. S.

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[CrossRef]

Yu, Y.

Zhang, C.

Zhang, X. L.

Zhang, Y.

Zhou, L. N.

Zhu, N. H.

L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[CrossRef]

Electron. Lett. (2)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator employing reciprocating optical modulator for millimetre-wave generation,” Electron. Lett. 43(19), 1031–1033 (2007).
[CrossRef]

C. Caspar and E. J. Bachus, “Fiber-optic micro-ring-resonator with 2mm diameter,” Electron. Lett. 25(22), 1506–1508 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

M. Shin and P. Kumar, “Optical microwave frequency up-conversion via a frequency-doubling optoelectronic oscillator,” IEEE Photon. Technol. Lett. 19(21), 1726–1728 (2007).
[CrossRef]

L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[CrossRef]

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

H. Tsuchida and M. Suzuki, “40-Gb/s optical clock recovery using an injection-locked optoelectronic oscillator,” IEEE Photon. Technol. Lett. 17(1), 211–213 (2005).
[CrossRef]

J. Lightwave Technol. (6)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Other (1)

M. Li, W. Z. Li, and J. P. Yao, “A tunable optoelectronic oscillator based on a high-Q spectrum sliced photonic microwave transversal filter,” Proc. MWP 2011, 304–307 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the proposed reconfigurable OEO. ASE: amplified spontaneous emission source diode; PC: polarization controller; MZM: Mach-Zehnder modulator; EDFA: erbium doped fiber amplifier; OC: optical coupler; RDL: recirculating delay line; PD: photodetector; EA: electronic amplifier.

Fig. 2
Fig. 2

Principle illustration of principle for the proposed OEO. The FSR of two cascaded RDLs is the least common multiple of their FSRs.

Fig. 3
Fig. 3

Spectra of the generated microwave signals: (a) RDL having a length of 0.98m; (b) RDL having a length of 1.65m; (c) cascaded IIR PMFs. (RBW: resolution bandwidth)

Fig. 4
Fig. 4

(a) Spectrum and (b) phase noise of the generated microwave signal at 2.99 GHz in the experiment. (c) Spectra of the generated microwave signals with different cascaded RDLs. (d) Spectrum of the generated microwave signal at 40GHz in the simulation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P out ( t ) V bias + V RF cos( Ωt )
H( t )= m=0 1 2 h m δ( tm τ 1 ) n=0 1 2 g n δ( tn τ 2 ) = 1 4 m=0 n=0 h m g n δ[ t( m τ 1 +n τ 2 ) ] τ i = 1 FS R i = L i ×n c ( i=1,2 )
H( t ) 1 4 k=0 ( k+1 ) 2 ( 1 2 ) 2k δ[ tx( k ) τ 1 τ 2 ]
I 0 ( f ) π 4 G P 0 V RF { δ[ ( ωΩ )t ]+δ[ ( ω+Ω )t ] } × k=0 { ( 2k+1 )× ( 1 2 ) 2k exp[ kjω( τ 1 + τ 2 ) ] [ 1 1 2 exp(jω τ 1 ) ][ 1 1 2 exp(jω τ 2 ) ] }

Metrics