Abstract

We have developed fully non-blocking optical matrix switches using a thermo-optic polymer 1 × 2 total-internal-reflection (TIR) switch as a unit switching element. The TIR switch consists of crossed multimode polymer waveguides and an offset heater electrode at the switching node. The fabricated 4 × 4 and 8 × 8 optical matrix switch chips show excellent switching performances. The insertion losses are less than 2.5 and 4.5 dB for the 4 × 4 and 8 × 8 matrix switches, respectively, and their switching isolations during a turned-off state are higher than 38 dB. The switching time is about 3 ms, and the power consumption for each switching element is below 30 mW. Compact integration of the 4 × 4 and 8 × 8 switch chips is achieved at sizes of 25 mm × 4.25 mm, and 42.4 mm × 5 mm, respectively, through an optimization of the waveguide and heater geometries.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sato, “Photonic transport network OAM technologies,” IEEE Commun. Mag. 34(12), 86–94 (1996).
    [CrossRef]
  2. A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic inter-module connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E 77-B, 155–162 (1994).
  3. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24(12), 4433–4454 (2006).
    [CrossRef]
  4. J. E. Fouquet, “Compact optical cross-connect switch based on total internal reflection in a fluid-containing planar lightwave circuit,” in Proceedings of Opt. Fiber Commun. Conf. Tech. Dig. Postconference Edition. Trends Opt. and Photon.37, (Washington, DC, 2000), 204–206.
  5. T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ration and low-loss silica-based 8×8 thermooptic matrix switch,” IEEE Photon. Technol. Lett. 10(3), 358–360 (1998).
    [CrossRef]
  6. T. Goh, A. M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol. 19(3), 371–379 (2001).
    [CrossRef]
  7. Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and Y. Baek, “Crosstalk-enhanced DOS integrated with modified radiation-type attenuators,” ETRI Journal 30(5), 744–746 (2008).
    [CrossRef]
  8. Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
    [CrossRef]
  9. J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and K.-H. Park, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI Journal 31(6), 770–777 (2009).
    [CrossRef]
  10. R. Hauffee, U. Siebel, and K. Petermann, “Crosstalk-optimized integrated optical switching matrices in polymers by use of redundant switch,” IEEE Photon. Technol. Lett. 13(3), 200–202 (2001).
    [CrossRef]
  11. J. Fujita, T. Izuhara, A. Radojevic, R. Gerhardt, and L. Eldada, “Ultrahigh index contrast planar polymeric strictly non-blocking 1024×1024 cross-connect switch matrix,” in Proceedings of Integrated Photonics Research Conf.IThC3, (San Francisco, Calif., 2004).
  12. Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
    [CrossRef]
  13. X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4×4 non-blocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron. 12(5), 997–1000 (2006).
    [CrossRef]
  14. Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, and H.-H. Park, “Polymer 1×2 thermo-optic digital optical switch based on the total-internal-reflection effect,” ETRI Journal 33(2), 275–278 (2011).
    [CrossRef]
  15. ChemOptics Inc, http://www.chemoptics.co.kr

2011 (1)

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, and H.-H. Park, “Polymer 1×2 thermo-optic digital optical switch based on the total-internal-reflection effect,” ETRI Journal 33(2), 275–278 (2011).
[CrossRef]

2009 (2)

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and K.-H. Park, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI Journal 31(6), 770–777 (2009).
[CrossRef]

2008 (1)

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and Y. Baek, “Crosstalk-enhanced DOS integrated with modified radiation-type attenuators,” ETRI Journal 30(5), 744–746 (2008).
[CrossRef]

2006 (3)

M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24(12), 4433–4454 (2006).
[CrossRef]

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[CrossRef]

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4×4 non-blocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron. 12(5), 997–1000 (2006).
[CrossRef]

2001 (2)

1998 (1)

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ration and low-loss silica-based 8×8 thermooptic matrix switch,” IEEE Photon. Technol. Lett. 10(3), 358–360 (1998).
[CrossRef]

1996 (1)

K. Sato, “Photonic transport network OAM technologies,” IEEE Commun. Mag. 34(12), 86–94 (1996).
[CrossRef]

1994 (1)

A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic inter-module connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E 77-B, 155–162 (1994).

Baek, Y.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, and H.-H. Park, “Polymer 1×2 thermo-optic digital optical switch based on the total-internal-reflection effect,” ETRI Journal 33(2), 275–278 (2011).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and K.-H. Park, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI Journal 31(6), 770–777 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and Y. Baek, “Crosstalk-enhanced DOS integrated with modified radiation-type attenuators,” ETRI Journal 30(5), 744–746 (2008).
[CrossRef]

Chen, M. Y.

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4×4 non-blocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron. 12(5), 997–1000 (2006).
[CrossRef]

Chen, R. T.

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4×4 non-blocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron. 12(5), 997–1000 (2006).
[CrossRef]

Ford, J. E.

Goh, T.

T. Goh, A. M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol. 19(3), 371–379 (2001).
[CrossRef]

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ration and low-loss silica-based 8×8 thermooptic matrix switch,” IEEE Photon. Technol. Lett. 10(3), 358–360 (1998).
[CrossRef]

Han, S.-P.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, and H.-H. Park, “Polymer 1×2 thermo-optic digital optical switch based on the total-internal-reflection effect,” ETRI Journal 33(2), 275–278 (2011).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and K.-H. Park, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI Journal 31(6), 770–777 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and Y. Baek, “Crosstalk-enhanced DOS integrated with modified radiation-type attenuators,” ETRI Journal 30(5), 744–746 (2008).
[CrossRef]

Han, Y.-T.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, and H.-H. Park, “Polymer 1×2 thermo-optic digital optical switch based on the total-internal-reflection effect,” ETRI Journal 33(2), 275–278 (2011).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and K.-H. Park, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI Journal 31(6), 770–777 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and Y. Baek, “Crosstalk-enhanced DOS integrated with modified radiation-type attenuators,” ETRI Journal 30(5), 744–746 (2008).
[CrossRef]

Hattori, K.

T. Goh, A. M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol. 19(3), 371–379 (2001).
[CrossRef]

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ration and low-loss silica-based 8×8 thermooptic matrix switch,” IEEE Photon. Technol. Lett. 10(3), 358–360 (1998).
[CrossRef]

Hauffee, R.

R. Hauffee, U. Siebel, and K. Petermann, “Crosstalk-optimized integrated optical switching matrices in polymers by use of redundant switch,” IEEE Photon. Technol. Lett. 13(3), 200–202 (2001).
[CrossRef]

Himeno, A.

T. Goh, A. M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol. 19(3), 371–379 (2001).
[CrossRef]

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ration and low-loss silica-based 8×8 thermooptic matrix switch,” IEEE Photon. Technol. Lett. 10(3), 358–360 (1998).
[CrossRef]

A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic inter-module connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E 77-B, 155–162 (1994).

Howley, B.

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4×4 non-blocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron. 12(5), 997–1000 (2006).
[CrossRef]

Ito, T.

A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic inter-module connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E 77-B, 155–162 (1994).

Kato, K.

A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic inter-module connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E 77-B, 155–162 (1994).

Lee, C.-H.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, and H.-H. Park, “Polymer 1×2 thermo-optic digital optical switch based on the total-internal-reflection effect,” ETRI Journal 33(2), 275–278 (2011).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and Y. Baek, “Crosstalk-enhanced DOS integrated with modified radiation-type attenuators,” ETRI Journal 30(5), 744–746 (2008).
[CrossRef]

Lee, H.-J.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and Y. Baek, “Crosstalk-enhanced DOS integrated with modified radiation-type attenuators,” ETRI Journal 30(5), 744–746 (2008).
[CrossRef]

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[CrossRef]

Nagase, R.

A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic inter-module connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E 77-B, 155–162 (1994).

Noh, Y.-O.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, and H.-H. Park, “Polymer 1×2 thermo-optic digital optical switch based on the total-internal-reflection effect,” ETRI Journal 33(2), 275–278 (2011).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and K.-H. Park, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI Journal 31(6), 770–777 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and Y. Baek, “Crosstalk-enhanced DOS integrated with modified radiation-type attenuators,” ETRI Journal 30(5), 744–746 (2008).
[CrossRef]

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[CrossRef]

Oh, M.-C.

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[CrossRef]

Ohmori, Y.

Okuno, M.

T. Goh, A. M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol. 19(3), 371–379 (2001).
[CrossRef]

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ration and low-loss silica-based 8×8 thermooptic matrix switch,” IEEE Photon. Technol. Lett. 10(3), 358–360 (1998).
[CrossRef]

A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic inter-module connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E 77-B, 155–162 (1994).

Park, H.-H.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, and H.-H. Park, “Polymer 1×2 thermo-optic digital optical switch based on the total-internal-reflection effect,” ETRI Journal 33(2), 275–278 (2011).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

Park, K.-H.

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and K.-H. Park, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI Journal 31(6), 770–777 (2009).
[CrossRef]

Park, S.-H.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, and H.-H. Park, “Polymer 1×2 thermo-optic digital optical switch based on the total-internal-reflection effect,” ETRI Journal 33(2), 275–278 (2011).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and K.-H. Park, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI Journal 31(6), 770–777 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and Y. Baek, “Crosstalk-enhanced DOS integrated with modified radiation-type attenuators,” ETRI Journal 30(5), 744–746 (2008).
[CrossRef]

Petermann, K.

R. Hauffee, U. Siebel, and K. Petermann, “Crosstalk-optimized integrated optical switching matrices in polymers by use of redundant switch,” IEEE Photon. Technol. Lett. 13(3), 200–202 (2001).
[CrossRef]

Sato, K.

K. Sato, “Photonic transport network OAM technologies,” IEEE Commun. Mag. 34(12), 86–94 (1996).
[CrossRef]

Shin, J.-U.

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, and H.-H. Park, “Polymer 1×2 thermo-optic digital optical switch based on the total-internal-reflection effect,” ETRI Journal 33(2), 275–278 (2011).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and K.-H. Park, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI Journal 31(6), 770–777 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and Y. Baek, “Crosstalk-enhanced DOS integrated with modified radiation-type attenuators,” ETRI Journal 30(5), 744–746 (2008).
[CrossRef]

Siebel, U.

R. Hauffee, U. Siebel, and K. Petermann, “Crosstalk-optimized integrated optical switching matrices in polymers by use of redundant switch,” IEEE Photon. Technol. Lett. 13(3), 200–202 (2001).
[CrossRef]

Solgaard, O.

Takahashi, H.

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ration and low-loss silica-based 8×8 thermooptic matrix switch,” IEEE Photon. Technol. Lett. 10(3), 358–360 (1998).
[CrossRef]

Wang, X.

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4×4 non-blocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron. 12(5), 997–1000 (2006).
[CrossRef]

Won, Y.-H.

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[CrossRef]

Wu, M. C.

Yasu, A. M.

ETRI Journal (3)

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and Y. Baek, “Crosstalk-enhanced DOS integrated with modified radiation-type attenuators,” ETRI Journal 30(5), 744–746 (2008).
[CrossRef]

J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and K.-H. Park, “Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit,” ETRI Journal 31(6), 770–777 (2009).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, and H.-H. Park, “Polymer 1×2 thermo-optic digital optical switch based on the total-internal-reflection effect,” ETRI Journal 33(2), 275–278 (2011).
[CrossRef]

IEEE Commun. Mag. (1)

K. Sato, “Photonic transport network OAM technologies,” IEEE Commun. Mag. 34(12), 86–94 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “4×4 non-blocking polymeric thermo-optic switch matrix using the total internal reflection effect,” IEEE J. Sel. Top. Quantum Electron. 12(5), 997–1000 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

R. Hauffee, U. Siebel, and K. Petermann, “Crosstalk-optimized integrated optical switching matrices in polymers by use of redundant switch,” IEEE Photon. Technol. Lett. 13(3), 200–202 (2001).
[CrossRef]

Y.-T. Han, J.-U. Shin, S.-H. Park, S.-P. Han, Y. Baek, C.-H. Lee, Y.-O. Noh, H.-J. Lee, and H.-H. Park, “Fabrication of 10-channel polymer thermo-optic digital optical switch,” IEEE Photon. Technol. Lett. 21(20), 1556–1558 (2009).
[CrossRef]

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ration and low-loss silica-based 8×8 thermooptic matrix switch,” IEEE Photon. Technol. Lett. 10(3), 358–360 (1998).
[CrossRef]

IEICE Trans. Commun. E (1)

A. Himeno, R. Nagase, T. Ito, K. Kato, and M. Okuno, “Photonic inter-module connector using 8×8 optical switches for near-future electronic switching systems,” IEICE Trans. Commun. E 77-B, 155–162 (1994).

J. Lightwave Technol. (2)

Opt. Commun. (1)

Y.-O. Noh, H.-J. Lee, Y.-H. Won, and M.-C. Oh, “Polymer waveguide thermo-optic switches with −70 dB optical crosstalk,” Opt. Commun. 258(1), 18–22 (2006).
[CrossRef]

Other (3)

ChemOptics Inc, http://www.chemoptics.co.kr

J. Fujita, T. Izuhara, A. Radojevic, R. Gerhardt, and L. Eldada, “Ultrahigh index contrast planar polymeric strictly non-blocking 1024×1024 cross-connect switch matrix,” in Proceedings of Integrated Photonics Research Conf.IThC3, (San Francisco, Calif., 2004).

J. E. Fouquet, “Compact optical cross-connect switch based on total internal reflection in a fluid-containing planar lightwave circuit,” in Proceedings of Opt. Fiber Commun. Conf. Tech. Dig. Postconference Edition. Trends Opt. and Photon.37, (Washington, DC, 2000), 204–206.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Conceptual schematic configuration of the N × N optical matrix switch and (b) detailed structure of a switching node at crossed waveguides.

Fig. 2
Fig. 2

Cross-sectional view of the polymer optical waveguide.

Fig. 3
Fig. 3

Transmittance of light passing through the crossed multimode waveguide, where half cross angle of waveguides indicates the heater angle.

Fig. 4
Fig. 4

3D-BPM simulation results for the internal reflection at the crossed node of the multimode waveguides: (a) crossed node, (b) thermal distribution near the heater electrode, and (c) beam propagation at the crossed node, where the heater angle is 4°, the heater offset is 9 µm, and the heater temperature rise is 45°C.

Fig. 5
Fig. 5

Reflectance of light reflected at the crossed multimode waveguide for variations in the heater angle, heater offset, and temperature rise of the heater electrode: heater angles of (a) 4° and (b) 4.5°.

Fig. 6
Fig. 6

Photograph and layout of the 4 × 4 polymer matrix switch chip.

Fig. 7
Fig. 7

Measured characteristics of the 4 × 4 matrix switch chip: (a) polarization-dependent loss, (b) optical power switching curves for all cases of 4 × 4 switching, and (c) temporal switching curve.

Fig. 8
Fig. 8

Packaged 4 × 4 optical matrix switch modules.

Fig. 9
Fig. 9

Controller circuit-board of the 4 × 4 optical matrix switch module.

Fig. 10
Fig. 10

Two-layer wiring scheme through the formation of a slant-etched trench of the polymer waveguides in an 8 × 8 optical matrix switch.

Fig. 11
Fig. 11

(a) Drawing of a photomask for an 8 × 8 optical matrix switch chip, (b) photographs of the electrodes in the fabricated chip, and (c) optical power switching curves for all cases of 8 × 8 switching.

Fig. 12
Fig. 12

Insertion losses of each switching element in an 8 × 8 optical matrix switch chip.

Tables (1)

Tables Icon

Table 1 Main properties of 4 × 4 matrix switch modules

Metrics