Abstract

We numerically investigate the light trapping properties of two-dimensional diffraction gratings formed from silver disks or titanium dioxide pillars, placed on the rear of Si thin-film solar cells. In contrast to previous studies of front-surface gratings, we find that metal particles out-perform dielelectric ones when placed on the rear of the cell. By optimizing the grating geometry and the position of a planar reflector, we predict short circuit current enhancements of 45% and 67% respectively for the TiO2 and silver nanoparticles. Furthermore, we show that interference effects between the grating and reflector can significantly enhance, or suppress, the light trapping performance. This demonstrates the critical importance of optimizing the reflector as an integral part of the light trapping structure.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron.18(S1), 15–19 (2007).
    [CrossRef]
  2. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys.103(9), 093102 (2008).
    [CrossRef]
  3. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007).
    [CrossRef] [PubMed]
  4. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
    [CrossRef] [PubMed]
  5. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
    [CrossRef]
  6. M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 1: native substrates,” Sol. Energy Mater. Sol. Cells68, 135–171 (2001).
    [CrossRef]
  7. C. Rockstuhl, S. Fahr, F. Lederer, F.-J. Haug, T. Soderstrom, S. Nicolay, M. Despeisse, and C. Ballif, “Light absorption in textured thin film silicon solar cells: a simple scalar scattering approach versus rigorous simulation,” Appl. Phys. Lett.98(5), 051102 (2011).
    [CrossRef]
  8. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  10. Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
    [CrossRef]
  11. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Muller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl.14(1), 13–24 (2006).
    [CrossRef]
  12. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett.91(6), 061116 (2007).
    [CrossRef]
  13. R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys.110(1), 013101 (2011).
    [CrossRef]
  14. N. S. Zin, A. Blakers, and K. Weber, “RIE-induced carrier lifetime degradation,” Prog. Photovolt. Res. Appl.18(3), 214–220 (2010).
    [CrossRef]
  15. C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater.10, 10.1002 (2012).
  16. H. Sakai, T. Yoshida, T. Hama, and Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys.29(Part 1, No. 4), 630–635 (1990).
    [CrossRef]
  17. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
    [CrossRef]
  18. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
    [CrossRef]
  19. Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett.96(7), 073111 (2010).
    [CrossRef]
  20. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009).
    [CrossRef]
  21. E. Wang, S. Mokkapati, T. Soderstrom, S. Varlamov, and K. R. Catchpole, “Effect of nanoparticle size distribution on the performance of plasmonic thin-film solar cells: mono-disperse versus multi-disperse arrays,” submitted.
  22. E. Wang, S. Mokkapati, T. P. White, T. Soderstrom, S. Varlamov, and K. R. Catchpole, “Light trapping with titanium dioxide diffraction gratings fabricated by nanoimprinting,” submitted.
  23. Lumerical FDTD Solutions, www.lumerical.com .
  24. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
    [CrossRef]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  26. E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1998).
  27. K. J. Innovation, http://software.kjinnovation.com .
  28. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett.95(5), 053115 (2009).
    [CrossRef]
  29. F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express19(S2Suppl 2), A146–A156 (2011).
    [CrossRef] [PubMed]
  30. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
    [CrossRef] [PubMed]
  31. S. Mokkapati, F. J. Beck, R. De Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
    [CrossRef]
  32. K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101(6), 063105 (2007).
    [CrossRef]
  33. M. Born, E. Wolf, and A. B. Bhatia, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, 1999).

2012

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater.10, 10.1002 (2012).

2011

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys.110(1), 013101 (2011).
[CrossRef]

C. Rockstuhl, S. Fahr, F. Lederer, F.-J. Haug, T. Soderstrom, S. Nicolay, M. Despeisse, and C. Ballif, “Light absorption in textured thin film silicon solar cells: a simple scalar scattering approach versus rigorous simulation,” Appl. Phys. Lett.98(5), 051102 (2011).
[CrossRef]

S. Mokkapati, F. J. Beck, R. De Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
[CrossRef]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express19(S2Suppl 2), A146–A156 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

2010

N. S. Zin, A. Blakers, and K. Weber, “RIE-induced carrier lifetime degradation,” Prog. Photovolt. Res. Appl.18(3), 214–220 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett.96(7), 073111 (2010).
[CrossRef]

2009

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett.95(5), 053115 (2009).
[CrossRef]

2008

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys.103(9), 093102 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

2007

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett.91(6), 061116 (2007).
[CrossRef]

M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron.18(S1), 15–19 (2007).
[CrossRef]

K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101(6), 063105 (2007).
[CrossRef]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

2006

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Muller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl.14(1), 13–24 (2006).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

2001

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 1: native substrates,” Sol. Energy Mater. Sol. Cells68, 135–171 (2001).
[CrossRef]

2000

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

1995

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

1990

H. Sakai, T. Yoshida, T. Hama, and Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys.29(Part 1, No. 4), 630–635 (1990).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Akimov, Y. A.

Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett.96(7), 073111 (2010).
[CrossRef]

Alamariu, B. A.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Ballif, C.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater.10, 10.1002 (2012).

C. Rockstuhl, S. Fahr, F. Lederer, F.-J. Haug, T. Soderstrom, S. Nicolay, M. Despeisse, and C. Ballif, “Light absorption in textured thin film silicon solar cells: a simple scalar scattering approach versus rigorous simulation,” Appl. Phys. Lett.98(5), 051102 (2011).
[CrossRef]

Battaglia, C.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater.10, 10.1002 (2012).

Beck, F. J.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express19(S2Suppl 2), A146–A156 (2011).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, R. De Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett.95(5), 053115 (2009).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009).
[CrossRef]

Bermel, P.

Biswas, R.

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys.103(9), 093102 (2008).
[CrossRef]

Blakers, A.

N. S. Zin, A. Blakers, and K. Weber, “RIE-induced carrier lifetime degradation,” Prog. Photovolt. Res. Appl.18(3), 214–220 (2010).
[CrossRef]

Blakers, A. W.

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 1: native substrates,” Sol. Energy Mater. Sol. Cells68, 135–171 (2001).
[CrossRef]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Campbell, P.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

Catchpole, K. R.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, R. De Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
[CrossRef]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express19(S2Suppl 2), A146–A156 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett.95(5), 053115 (2009).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101(6), 063105 (2007).
[CrossRef]

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 1: native substrates,” Sol. Energy Mater. Sol. Cells68, 135–171 (2001).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Cui, Y.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater.10, 10.1002 (2012).

De Waele, R.

S. Mokkapati, F. J. Beck, R. De Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
[CrossRef]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Despeisse, M.

C. Rockstuhl, S. Fahr, F. Lederer, F.-J. Haug, T. Soderstrom, S. Nicolay, M. Despeisse, and C. Ballif, “Light absorption in textured thin film silicon solar cells: a simple scalar scattering approach versus rigorous simulation,” Appl. Phys. Lett.98(5), 051102 (2011).
[CrossRef]

Dewan, R.

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys.110(1), 013101 (2011).
[CrossRef]

Duan, X.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Fahr, S.

C. Rockstuhl, S. Fahr, F. Lederer, F.-J. Haug, T. Soderstrom, S. Nicolay, M. Despeisse, and C. Ballif, “Light absorption in textured thin film silicon solar cells: a simple scalar scattering approach versus rigorous simulation,” Appl. Phys. Lett.98(5), 051102 (2011).
[CrossRef]

Fan, S.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater.10, 10.1002 (2012).

Feng, N.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Green, M.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

Green, M. A.

K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101(6), 063105 (2007).
[CrossRef]

M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron.18(S1), 15–19 (2007).
[CrossRef]

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

Haase, C.

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett.91(6), 061116 (2007).
[CrossRef]

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Muller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl.14(1), 13–24 (2006).
[CrossRef]

Hama, T.

H. Sakai, T. Yoshida, T. Hama, and Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys.29(Part 1, No. 4), 630–635 (1990).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Haug, F.-J.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater.10, 10.1002 (2012).

C. Rockstuhl, S. Fahr, F. Lederer, F.-J. Haug, T. Soderstrom, S. Nicolay, M. Despeisse, and C. Ballif, “Light absorption in textured thin film silicon solar cells: a simple scalar scattering approach versus rigorous simulation,” Appl. Phys. Lett.98(5), 051102 (2011).
[CrossRef]

Hong, C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Hsu, C.-M.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater.10, 10.1002 (2012).

Ichikawa, Y.

H. Sakai, T. Yoshida, T. Hama, and Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys.29(Part 1, No. 4), 630–635 (1990).
[CrossRef]

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Jovanov, V.

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys.110(1), 013101 (2011).
[CrossRef]

Keevers, M. J.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

Kimerling, L. C.

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Knipp, D.

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys.110(1), 013101 (2011).
[CrossRef]

Koh, W. S.

Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett.96(7), 073111 (2010).
[CrossRef]

Kunz, O.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

Lederer, F.

C. Rockstuhl, S. Fahr, F. Lederer, F.-J. Haug, T. Soderstrom, S. Nicolay, M. Despeisse, and C. Ballif, “Light absorption in textured thin film silicon solar cells: a simple scalar scattering approach versus rigorous simulation,” Appl. Phys. Lett.98(5), 051102 (2011).
[CrossRef]

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Liu, J.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Luo, C.

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

McCann, M. J.

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 1: native substrates,” Sol. Energy Mater. Sol. Cells68, 135–171 (2001).
[CrossRef]

Mokkapati, S.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express19(S2Suppl 2), A146–A156 (2011).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, R. De Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett.95(5), 053115 (2009).
[CrossRef]

Muller, J.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Muller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl.14(1), 13–24 (2006).
[CrossRef]

Nicolay, S.

C. Rockstuhl, S. Fahr, F. Lederer, F.-J. Haug, T. Soderstrom, S. Nicolay, M. Despeisse, and C. Ballif, “Light absorption in textured thin film silicon solar cells: a simple scalar scattering approach versus rigorous simulation,” Appl. Phys. Lett.98(5), 051102 (2011).
[CrossRef]

Ouyang, Z.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

Pahud, C.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater.10, 10.1002 (2012).

Pillai, S.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

Polman, A.

S. Mokkapati, F. J. Beck, R. De Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
[CrossRef]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express19(S2Suppl 2), A146–A156 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett.95(5), 053115 (2009).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

Ren, S.

Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett.96(7), 073111 (2010).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, S. Fahr, F. Lederer, F.-J. Haug, T. Soderstrom, S. Nicolay, M. Despeisse, and C. Ballif, “Light absorption in textured thin film silicon solar cells: a simple scalar scattering approach versus rigorous simulation,” Appl. Phys. Lett.98(5), 051102 (2011).
[CrossRef]

Ruan, Z.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater.10, 10.1002 (2012).

Sakai, H.

H. Sakai, T. Yoshida, T. Hama, and Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys.29(Part 1, No. 4), 630–635 (1990).
[CrossRef]

Senoussaoui, N.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Muller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl.14(1), 13–24 (2006).
[CrossRef]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Sian, S. Y.

Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett.96(7), 073111 (2010).
[CrossRef]

Soderstrom, T.

C. Rockstuhl, S. Fahr, F. Lederer, F.-J. Haug, T. Soderstrom, S. Nicolay, M. Despeisse, and C. Ballif, “Light absorption in textured thin film silicon solar cells: a simple scalar scattering approach versus rigorous simulation,” Appl. Phys. Lett.98(5), 051102 (2011).
[CrossRef]

Stiebig, H.

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett.91(6), 061116 (2007).
[CrossRef]

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Muller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl.14(1), 13–24 (2006).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Varlamov, S.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

Vasilev, I.

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys.110(1), 013101 (2011).
[CrossRef]

Verhagen, E.

Weber, K.

N. S. Zin, A. Blakers, and K. Weber, “RIE-induced carrier lifetime degradation,” Prog. Photovolt. Res. Appl.18(3), 214–220 (2010).
[CrossRef]

Weber, K. J.

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 1: native substrates,” Sol. Energy Mater. Sol. Cells68, 135–171 (2001).
[CrossRef]

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Yoshida, T.

H. Sakai, T. Yoshida, T. Hama, and Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys.29(Part 1, No. 4), 630–635 (1990).
[CrossRef]

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Zahren, C.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Muller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl.14(1), 13–24 (2006).
[CrossRef]

Zeng, L.

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

Zhou, D.

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys.103(9), 093102 (2008).
[CrossRef]

Zin, N. S.

N. S. Zin, A. Blakers, and K. Weber, “RIE-induced carrier lifetime degradation,” Prog. Photovolt. Res. Appl.18(3), 214–220 (2010).
[CrossRef]

Adv. Energy Mater.

C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater.10, 10.1002 (2012).

Appl. Phys. Lett.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010).
[CrossRef]

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett.91(6), 061116 (2007).
[CrossRef]

Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett.96(7), 073111 (2010).
[CrossRef]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett.95(5), 053115 (2009).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006).
[CrossRef]

C. Rockstuhl, S. Fahr, F. Lederer, F.-J. Haug, T. Soderstrom, S. Nicolay, M. Despeisse, and C. Ballif, “Light absorption in textured thin film silicon solar cells: a simple scalar scattering approach versus rigorous simulation,” Appl. Phys. Lett.98(5), 051102 (2011).
[CrossRef]

J. Appl. Phys.

D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys.103(9), 093102 (2008).
[CrossRef]

K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101(6), 063105 (2007).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009).
[CrossRef]

R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys.110(1), 013101 (2011).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

J. Mater. Sci. Mater. Electron.

M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron.18(S1), 15–19 (2007).
[CrossRef]

J. Phys. D Appl. Phys.

S. Mokkapati, F. J. Beck, R. De Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
[CrossRef]

Jpn. J. Appl. Phys.

H. Sakai, T. Yoshida, T. Hama, and Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys.29(Part 1, No. 4), 630–635 (1990).
[CrossRef]

Nat. Mater.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nature

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Prog. Photovolt. Res. Appl.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

N. S. Zin, A. Blakers, and K. Weber, “RIE-induced carrier lifetime degradation,” Prog. Photovolt. Res. Appl.18(3), 214–220 (2010).
[CrossRef]

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Muller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl.14(1), 13–24 (2006).
[CrossRef]

Sol. Energy Mater. Sol. Cells

M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 1: native substrates,” Sol. Energy Mater. Sol. Cells68, 135–171 (2001).
[CrossRef]

Other

M. Born, E. Wolf, and A. B. Bhatia, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, 1999).

E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1998).

K. J. Innovation, http://software.kjinnovation.com .

E. Wang, S. Mokkapati, T. Soderstrom, S. Varlamov, and K. R. Catchpole, “Effect of nanoparticle size distribution on the performance of plasmonic thin-film solar cells: mono-disperse versus multi-disperse arrays,” submitted.

E. Wang, S. Mokkapati, T. P. White, T. Soderstrom, S. Varlamov, and K. R. Catchpole, “Light trapping with titanium dioxide diffraction gratings fabricated by nanoimprinting,” submitted.

Lumerical FDTD Solutions, www.lumerical.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

FDTD simulations: (a) Structure setup for Ag nanoparticle gratings and TiO2 pillar gratings, where a Ag mirror is integrated but separated by air with a distance L (Diagram not to scale) (b) Contour plot of simulated Jsc (mA/cm2) for both Ag and TiO2 gratings with a mirror separation of 1200 nm.

Fig. 2
Fig. 2

Simulation results of a 2 μm poly-Si cell with cell structure shown in Fig. 1(a) with and without a Ag nanoparticle grating: (a) EQE response of the cell without any light trapping structures (black solid line); with Ag nanoparticle grating and a Ag mirror located 1200 nm behind (green dashed line); and the wavelengths corresponding to resonances in the air gap between the grating and the mirror (red dotted lines). (b) Reflectance from the grating/mirror combination when light is incident from semi-infinite, non-absorbing silicon. Zeroth order diffraction (solid blue line), higher order diffraction (dash green line) and total reflectance (purple dotted line) are plotted. (c) Higher order reflectance without the rear mirror (light blue solid line) and with the rear mirror (green dashed line). The resonance wavelengths plotted in (a) are also shown (red dotted lines).

Fig. 3
Fig. 3

Simulation results of a 2 μm poly-Si cell with the structure shown in Fig. 1(a) with and without TiO2 pillar gratings: (a) EQE response of the cell without any light trapping structures (black solid line); with TiO2 grating and a Ag mirror located 1200 nm away (green dashed line); and wavelengths corresponding to resonances in the air gap between the grating and the mirror (red dotted lines). (b) Reflectance from the grating/mirror combination when light is incident from semi-infinite, non-absorbing silicon. Zeroth order diffraction (solid blue line), higher order diffraction (green dashed line) and total reflectance (purple dotted line) are plotted. (c) Higher order reflectance with the rear mirror (light blue solid line) and without the rear mirror (green dashed line). The resonance wavelengths plotted in (a) are also shown (red dotted lines).

Fig. 4
Fig. 4

The short circuit currently density with varying distance between the substrate and the detached silver mirror.

Fig. 5
Fig. 5

(a) Calculated EQE for a 2 μm poly-crystalline Si solar cell as shown in Fig. 1(a) with planar rear surface (black solid line); with a Ag nanoparticle grating on the rear (blue dashed-dotted line); with a Ag nanoparticle grating and a Ag mirror (green dashed line) and the cavity resonance wavelength (red dotted line). (b) Reflectance into higher order modes for Ag particle grating where light is incident from semi-infinite, non-absorbing silicon with (green dashed line), and without (blue dashed-dotted line) an integrated Ag mirror. The cavity resonance wavelength (red dotted line) is also plotted.

Fig. 6
Fig. 6

Cavity model showing the incident light from the silicon (layer 1), passing through the grating which can be either Ag or TiO2, into air between the structure and the mirror (layer 2) and finally hitting the Ag mirror (layer 3).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r 13,SS = r 12,SS + t 21,SS r 23 t 12,SS exp(2ikL) 1 r 23 exp(2ikL) r 21,SS
r 13,PS = r 12,PS + t 21,PS r 23 t 12,SS exp(2ikL) 1 r 23 exp(2ikL) r 21,SS
r 23 = n 2 n 3 n 2 + n 3
1 r 23 exp(2ikL) r 21,SS

Metrics