Abstract

Divergence angle of antenna is an important parameter in laser optical communication. It determines the power of the receiver terminal. In this paper, the influence of temperature on the divergence angle is discussed. Theoretical analysis and experiment results demonstrate that the relationship between the variance of temperature and of divergence angle is linear.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Y. Tan, Y. Q. Yang, J. Ma, and J. J. Yu, “Pointing and tracking errors due to localized deformation in inter-satellite laser communication links,” Opt. Express 16(17), 13372–13380 (2008).
    [CrossRef] [PubMed]
  2. R. A. Conrad, W. E. Wilcox, T. H. Williams, S. Michael, and J. M. Roth, “Emulation of dynamic wavefront disturbances using a deformable mirror,” Opt. Express 17(5), 3447–3460 (2009).
    [CrossRef] [PubMed]
  3. M. Jeganathan, A. Portillo, C. Racho, S. Lee, D. Erickson, J. DePew, S. Monacos, and A. Biswas, “Lessons learnt from the Optical Communications Demonstrator (OCD),” Proc. SPIE 3615, 23–30 (1999).
    [CrossRef]
  4. M. R. García-Talavera, Á. Alonso, S. Chueca, J. J. Fuensalida, Z. Sodnik, V. Cessa, A. Bird, A. Comerón, A. Rodríguez, V. F. Dios, and J. A. Rubio, “Ground to space optical communication characterization,” Proc. SPIE 5892, 201–216 (2005).
  5. C. Chen and J. R. Lesh, “Overview of the Optical Communications Demonstrator,” Proc. SPIE 2123, 85–94 (1994).
    [CrossRef]
  6. S. Arnon, S. Rotman, and N. S. Kopeika, “Optimum transmitter optics aperture for satellite optical communication,” IEEE Trans. Aerosp. Electron. Syst. 34(2), 590–596 (1998).
    [CrossRef]
  7. A. Shlomi and N. S. Kopeika, “Free-space satellite optical communication: adaptive information bandwidth to maintain constant bit error rate during periods of high satellite vibration amplitudes,” Proc. SPIE 2699, 327–338 (1996).
    [CrossRef]
  8. E. Fischer, P. Adolph, T. Weigel, C. Haupt, and G. Baister, “Advanced optical solutions for inter-satellite communications,” Optik (Stuttg.) 112(9), 442–448 (2001).
    [CrossRef]
  9. M. Toyoshima, N. Takahashi, T. Jono, T. Yamawaki, K. Nakagawa, and A. Yamamoto, “Mutual alignment errors due to the variation of wave-front aberrations in a free-space laser communication link,” Opt. Express 9(11), 592–602 (2001).
    [CrossRef] [PubMed]
  10. T. P. O’Brien and B. Atwood, “Adjustable Truss for support, optical alignment, and athermalization of a schmidt camera,” Proc. SPIE 4841, 403–410 (2003).
    [CrossRef]

2009 (1)

2008 (1)

2005 (1)

M. R. García-Talavera, Á. Alonso, S. Chueca, J. J. Fuensalida, Z. Sodnik, V. Cessa, A. Bird, A. Comerón, A. Rodríguez, V. F. Dios, and J. A. Rubio, “Ground to space optical communication characterization,” Proc. SPIE 5892, 201–216 (2005).

2003 (1)

T. P. O’Brien and B. Atwood, “Adjustable Truss for support, optical alignment, and athermalization of a schmidt camera,” Proc. SPIE 4841, 403–410 (2003).
[CrossRef]

2001 (2)

1999 (1)

M. Jeganathan, A. Portillo, C. Racho, S. Lee, D. Erickson, J. DePew, S. Monacos, and A. Biswas, “Lessons learnt from the Optical Communications Demonstrator (OCD),” Proc. SPIE 3615, 23–30 (1999).
[CrossRef]

1998 (1)

S. Arnon, S. Rotman, and N. S. Kopeika, “Optimum transmitter optics aperture for satellite optical communication,” IEEE Trans. Aerosp. Electron. Syst. 34(2), 590–596 (1998).
[CrossRef]

1996 (1)

A. Shlomi and N. S. Kopeika, “Free-space satellite optical communication: adaptive information bandwidth to maintain constant bit error rate during periods of high satellite vibration amplitudes,” Proc. SPIE 2699, 327–338 (1996).
[CrossRef]

1994 (1)

C. Chen and J. R. Lesh, “Overview of the Optical Communications Demonstrator,” Proc. SPIE 2123, 85–94 (1994).
[CrossRef]

Adolph, P.

E. Fischer, P. Adolph, T. Weigel, C. Haupt, and G. Baister, “Advanced optical solutions for inter-satellite communications,” Optik (Stuttg.) 112(9), 442–448 (2001).
[CrossRef]

Alonso, Á.

M. R. García-Talavera, Á. Alonso, S. Chueca, J. J. Fuensalida, Z. Sodnik, V. Cessa, A. Bird, A. Comerón, A. Rodríguez, V. F. Dios, and J. A. Rubio, “Ground to space optical communication characterization,” Proc. SPIE 5892, 201–216 (2005).

Arnon, S.

S. Arnon, S. Rotman, and N. S. Kopeika, “Optimum transmitter optics aperture for satellite optical communication,” IEEE Trans. Aerosp. Electron. Syst. 34(2), 590–596 (1998).
[CrossRef]

Atwood, B.

T. P. O’Brien and B. Atwood, “Adjustable Truss for support, optical alignment, and athermalization of a schmidt camera,” Proc. SPIE 4841, 403–410 (2003).
[CrossRef]

Baister, G.

E. Fischer, P. Adolph, T. Weigel, C. Haupt, and G. Baister, “Advanced optical solutions for inter-satellite communications,” Optik (Stuttg.) 112(9), 442–448 (2001).
[CrossRef]

Bird, A.

M. R. García-Talavera, Á. Alonso, S. Chueca, J. J. Fuensalida, Z. Sodnik, V. Cessa, A. Bird, A. Comerón, A. Rodríguez, V. F. Dios, and J. A. Rubio, “Ground to space optical communication characterization,” Proc. SPIE 5892, 201–216 (2005).

Biswas, A.

M. Jeganathan, A. Portillo, C. Racho, S. Lee, D. Erickson, J. DePew, S. Monacos, and A. Biswas, “Lessons learnt from the Optical Communications Demonstrator (OCD),” Proc. SPIE 3615, 23–30 (1999).
[CrossRef]

Cessa, V.

M. R. García-Talavera, Á. Alonso, S. Chueca, J. J. Fuensalida, Z. Sodnik, V. Cessa, A. Bird, A. Comerón, A. Rodríguez, V. F. Dios, and J. A. Rubio, “Ground to space optical communication characterization,” Proc. SPIE 5892, 201–216 (2005).

Chen, C.

C. Chen and J. R. Lesh, “Overview of the Optical Communications Demonstrator,” Proc. SPIE 2123, 85–94 (1994).
[CrossRef]

Chueca, S.

M. R. García-Talavera, Á. Alonso, S. Chueca, J. J. Fuensalida, Z. Sodnik, V. Cessa, A. Bird, A. Comerón, A. Rodríguez, V. F. Dios, and J. A. Rubio, “Ground to space optical communication characterization,” Proc. SPIE 5892, 201–216 (2005).

Comerón, A.

M. R. García-Talavera, Á. Alonso, S. Chueca, J. J. Fuensalida, Z. Sodnik, V. Cessa, A. Bird, A. Comerón, A. Rodríguez, V. F. Dios, and J. A. Rubio, “Ground to space optical communication characterization,” Proc. SPIE 5892, 201–216 (2005).

Conrad, R. A.

DePew, J.

M. Jeganathan, A. Portillo, C. Racho, S. Lee, D. Erickson, J. DePew, S. Monacos, and A. Biswas, “Lessons learnt from the Optical Communications Demonstrator (OCD),” Proc. SPIE 3615, 23–30 (1999).
[CrossRef]

Dios, V. F.

M. R. García-Talavera, Á. Alonso, S. Chueca, J. J. Fuensalida, Z. Sodnik, V. Cessa, A. Bird, A. Comerón, A. Rodríguez, V. F. Dios, and J. A. Rubio, “Ground to space optical communication characterization,” Proc. SPIE 5892, 201–216 (2005).

Erickson, D.

M. Jeganathan, A. Portillo, C. Racho, S. Lee, D. Erickson, J. DePew, S. Monacos, and A. Biswas, “Lessons learnt from the Optical Communications Demonstrator (OCD),” Proc. SPIE 3615, 23–30 (1999).
[CrossRef]

Fischer, E.

E. Fischer, P. Adolph, T. Weigel, C. Haupt, and G. Baister, “Advanced optical solutions for inter-satellite communications,” Optik (Stuttg.) 112(9), 442–448 (2001).
[CrossRef]

Fuensalida, J. J.

M. R. García-Talavera, Á. Alonso, S. Chueca, J. J. Fuensalida, Z. Sodnik, V. Cessa, A. Bird, A. Comerón, A. Rodríguez, V. F. Dios, and J. A. Rubio, “Ground to space optical communication characterization,” Proc. SPIE 5892, 201–216 (2005).

García-Talavera, M. R.

M. R. García-Talavera, Á. Alonso, S. Chueca, J. J. Fuensalida, Z. Sodnik, V. Cessa, A. Bird, A. Comerón, A. Rodríguez, V. F. Dios, and J. A. Rubio, “Ground to space optical communication characterization,” Proc. SPIE 5892, 201–216 (2005).

Haupt, C.

E. Fischer, P. Adolph, T. Weigel, C. Haupt, and G. Baister, “Advanced optical solutions for inter-satellite communications,” Optik (Stuttg.) 112(9), 442–448 (2001).
[CrossRef]

Jeganathan, M.

M. Jeganathan, A. Portillo, C. Racho, S. Lee, D. Erickson, J. DePew, S. Monacos, and A. Biswas, “Lessons learnt from the Optical Communications Demonstrator (OCD),” Proc. SPIE 3615, 23–30 (1999).
[CrossRef]

Jono, T.

Kopeika, N. S.

S. Arnon, S. Rotman, and N. S. Kopeika, “Optimum transmitter optics aperture for satellite optical communication,” IEEE Trans. Aerosp. Electron. Syst. 34(2), 590–596 (1998).
[CrossRef]

A. Shlomi and N. S. Kopeika, “Free-space satellite optical communication: adaptive information bandwidth to maintain constant bit error rate during periods of high satellite vibration amplitudes,” Proc. SPIE 2699, 327–338 (1996).
[CrossRef]

Lee, S.

M. Jeganathan, A. Portillo, C. Racho, S. Lee, D. Erickson, J. DePew, S. Monacos, and A. Biswas, “Lessons learnt from the Optical Communications Demonstrator (OCD),” Proc. SPIE 3615, 23–30 (1999).
[CrossRef]

Lesh, J. R.

C. Chen and J. R. Lesh, “Overview of the Optical Communications Demonstrator,” Proc. SPIE 2123, 85–94 (1994).
[CrossRef]

Ma, J.

Michael, S.

Monacos, S.

M. Jeganathan, A. Portillo, C. Racho, S. Lee, D. Erickson, J. DePew, S. Monacos, and A. Biswas, “Lessons learnt from the Optical Communications Demonstrator (OCD),” Proc. SPIE 3615, 23–30 (1999).
[CrossRef]

Nakagawa, K.

O’Brien, T. P.

T. P. O’Brien and B. Atwood, “Adjustable Truss for support, optical alignment, and athermalization of a schmidt camera,” Proc. SPIE 4841, 403–410 (2003).
[CrossRef]

Portillo, A.

M. Jeganathan, A. Portillo, C. Racho, S. Lee, D. Erickson, J. DePew, S. Monacos, and A. Biswas, “Lessons learnt from the Optical Communications Demonstrator (OCD),” Proc. SPIE 3615, 23–30 (1999).
[CrossRef]

Racho, C.

M. Jeganathan, A. Portillo, C. Racho, S. Lee, D. Erickson, J. DePew, S. Monacos, and A. Biswas, “Lessons learnt from the Optical Communications Demonstrator (OCD),” Proc. SPIE 3615, 23–30 (1999).
[CrossRef]

Rodríguez, A.

M. R. García-Talavera, Á. Alonso, S. Chueca, J. J. Fuensalida, Z. Sodnik, V. Cessa, A. Bird, A. Comerón, A. Rodríguez, V. F. Dios, and J. A. Rubio, “Ground to space optical communication characterization,” Proc. SPIE 5892, 201–216 (2005).

Roth, J. M.

Rotman, S.

S. Arnon, S. Rotman, and N. S. Kopeika, “Optimum transmitter optics aperture for satellite optical communication,” IEEE Trans. Aerosp. Electron. Syst. 34(2), 590–596 (1998).
[CrossRef]

Rubio, J. A.

M. R. García-Talavera, Á. Alonso, S. Chueca, J. J. Fuensalida, Z. Sodnik, V. Cessa, A. Bird, A. Comerón, A. Rodríguez, V. F. Dios, and J. A. Rubio, “Ground to space optical communication characterization,” Proc. SPIE 5892, 201–216 (2005).

Shlomi, A.

A. Shlomi and N. S. Kopeika, “Free-space satellite optical communication: adaptive information bandwidth to maintain constant bit error rate during periods of high satellite vibration amplitudes,” Proc. SPIE 2699, 327–338 (1996).
[CrossRef]

Sodnik, Z.

M. R. García-Talavera, Á. Alonso, S. Chueca, J. J. Fuensalida, Z. Sodnik, V. Cessa, A. Bird, A. Comerón, A. Rodríguez, V. F. Dios, and J. A. Rubio, “Ground to space optical communication characterization,” Proc. SPIE 5892, 201–216 (2005).

Takahashi, N.

Tan, L. Y.

Toyoshima, M.

Weigel, T.

E. Fischer, P. Adolph, T. Weigel, C. Haupt, and G. Baister, “Advanced optical solutions for inter-satellite communications,” Optik (Stuttg.) 112(9), 442–448 (2001).
[CrossRef]

Wilcox, W. E.

Williams, T. H.

Yamamoto, A.

Yamawaki, T.

Yang, Y. Q.

Yu, J. J.

IEEE Trans. Aerosp. Electron. Syst. (1)

S. Arnon, S. Rotman, and N. S. Kopeika, “Optimum transmitter optics aperture for satellite optical communication,” IEEE Trans. Aerosp. Electron. Syst. 34(2), 590–596 (1998).
[CrossRef]

Opt. Express (3)

Optik (Stuttg.) (1)

E. Fischer, P. Adolph, T. Weigel, C. Haupt, and G. Baister, “Advanced optical solutions for inter-satellite communications,” Optik (Stuttg.) 112(9), 442–448 (2001).
[CrossRef]

Proc. SPIE (5)

T. P. O’Brien and B. Atwood, “Adjustable Truss for support, optical alignment, and athermalization of a schmidt camera,” Proc. SPIE 4841, 403–410 (2003).
[CrossRef]

A. Shlomi and N. S. Kopeika, “Free-space satellite optical communication: adaptive information bandwidth to maintain constant bit error rate during periods of high satellite vibration amplitudes,” Proc. SPIE 2699, 327–338 (1996).
[CrossRef]

M. Jeganathan, A. Portillo, C. Racho, S. Lee, D. Erickson, J. DePew, S. Monacos, and A. Biswas, “Lessons learnt from the Optical Communications Demonstrator (OCD),” Proc. SPIE 3615, 23–30 (1999).
[CrossRef]

M. R. García-Talavera, Á. Alonso, S. Chueca, J. J. Fuensalida, Z. Sodnik, V. Cessa, A. Bird, A. Comerón, A. Rodríguez, V. F. Dios, and J. A. Rubio, “Ground to space optical communication characterization,” Proc. SPIE 5892, 201–216 (2005).

C. Chen and J. R. Lesh, “Overview of the Optical Communications Demonstrator,” Proc. SPIE 2123, 85–94 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sketch map of the antenna.

Fig. 2
Fig. 2

Coordinate of the antenna.

Fig. 3
Fig. 3

Relationship between Δθ and ΔT of theory.

Fig. 4
Fig. 4

Geometrical relationship of several factors.

Fig. 5
Fig. 5

Measurement results at different temperatures. (a) T = 22°C. (b) T = 22.2°C. (c) T = 22.4°C. (d) T = 22.6°C. (e) T = 22.8°C. (f) T = 23°C. (g) T = 23.2°C. (h) T = 23.4°C. (i) T = 23.6°C. (j) T = 23.8°C. (k) T = 24°C.

Fig. 6
Fig. 6

Relationship between Δθ andΔT of measurements.

Tables (5)

Tables Icon

Table 1 Materials and CTE of each element

Tables Icon

Table 2 The change of Δθ due to ΔT from 0°C to 2°C

Tables Icon

Table 3 Simulation results of different θ value at different temperatures (22°C~24°C)

Tables Icon

Table 4 Contribution of each factor to the overall variance of divergence angle

Tables Icon

Table 5 Experimental results of different θ value at different temperatures (22°C~24°C)

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

z(h)= h 2 r 2 + r 2 2 (1+K) h 2 +A h 4 +B h 6 +...
r 1 = r 1 (1+ α 1 ΔT)
r 2 = r 2 (1+ α 2 ΔT)
d =d(1+ α 3 ΔT)
i 1 = sin 1 ( h 1 r 1 )
d z 2 +( r 1 r 1 2 h 1 2 )=( h 2 h 1 )cot(2 i 1 )
z'(h)= 2h r 2 [ r 2 2 (1+K) h 2 + r 2 ](1+K) h 3 ( r 2 + r 2 2 (1+K) h 2 ) 2 r 2 2 (1+K) h 2
γ= tan 1 2 h 2 r 2 [ r 2 2 (1+K) h 2 2 + r 2 ](1+K) h 2 3 ( r 2 + r 2 2 (1+K) h 2 2 ) 2 r 2 2 (1+K) h 2 2
i 2 =2 i 1 γ
Δθ=2 i 2 2 i 1
Δθ=2( i 1 γ)
sag=f- f 2 D 2 /4
θ= sin 1 (2 h 1 /2f) h 1 /f= 2 h 1 sag sag 2 + D 2 /4 8 h 1 sag/ D 2

Metrics